Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cell-cycle coordination between DNA replication and recombination revealed by a vertebrate N-end rule degron-Rad51

Abstract

Coordination of homologous DNA recombination (HDR) with DNA replication maintains the fidelity of cell division. Exploiting Varshavsky's N-end rule to create a thermosensitive degron for conditional genetics in an avian cell line, we confirm that inactivation of the essential HDR enzyme Rad51 in a single cell cycle does not stop replicative DNA synthesis but, instead, causes G2 arrest. Rad51 complementation after the completion of replication overcomes this block, suggesting that HDR becomes necessary in G2. Indeed, DNA structures that bind activated replication protein A accumulate during the S phase, to be preferentially resolved during G2 by a Rad51-dependent mechanism. Breaks affecting a single chromatid predominate after the first cell cycle without Rad51, subsequently evolving into isochromatid lesions. We suggest a model for the vertebrate cell cycle in which HDR during the G2 phase is separated from DNA replication in S phase and chromosome segregation in M.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A thermosensitive conditional N-end rule degron in DT40 cells.
Figure 2: Degron-RAD51 supports cell viability.
Figure 3: Degron-RAD51 supports sister-chromatid exchange (SCE).
Figure 4: RAD51 is dispensable for replicative DNA synthesis but becomes essential after replication for mitotic entry.
Figure 5: RAD51 complementation after the completion of replicative DNA synthesis suffices to prevent G2 arrest.
Figure 6: ssDNA structures marked by anti–p-RPA staining accumulate in the first cell cycle without RAD51.
Figure 7: ssDNA structures are preferentially resolved during G2 by a RAD51-dependent mechanism.
Figure 8: ssDNA foci accumulate during unchallenged replication in wild-type cells and colocalize with RAD51 foci preferentially during G2.

Similar content being viewed by others

References

  1. Paques, F. & Haber, J.E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. West, S.C. Molecular views of recombination proteins and their control. Nat. Rev. Mol. Cell Biol. 4, 435–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Hoeijmakers, J.H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, X. & Haber, J.E. Role of Saccharomyces single-stranded DNA-binding protein RPA in the strand invasion step of double-strand break repair. PLoS Biol. 2, e21 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sugawara, N., Wang, X. & Haber, J.E. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol. Cell 12, 209–219 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Kanaar, R., Hoeijmakers, J.H. & van Gent, D.C. Molecular mechanisms of DNA double strand break repair. Trends Cell Biol. 8, 483–489 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Sung, P., Krejci, L., Van Komen, S. & Sehorn, M.G. Rad51 recombinase and recombination mediators. J. Biol. Chem. 278, 42729–42732 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Wyman, C., Ristic, D. & Kanaar, R. Homologous recombination-mediated double-strand break repair. DNA Repair (Amst.) 3, 827–833 (2004).

    Article  CAS  Google Scholar 

  9. Symington, L.S. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 66, 630–670 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sonoda, E. et al. Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J. 17, 598–608 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takata, M. et al. The Rad51 paralog Rad51B promotes homologous recombinational repair. Mol. Cell. Biol. 20, 6476–6482 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takata, M. et al. Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol. Cell. Biol. 21, 2858–2866 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Patel, K.J. et al. Involvement of Brca2 in DNA repair. Mol. Cell 1, 347–357 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Eppink, B., Wyman, C. & Kanaar, R. Multiple interlinked mechanisms to circumvent DNA replication roadblocks. Exp. Cell Res. 312, 2660–2665 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Dronkert, M.L. & Kanaar, R. Repair of DNA interstrand cross-links. Mutat. Res. 486, 217–247 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Patel, K.J. & Joenje, H. Fanconi anemia and DNA replication repair. DNA Repair (Amst.) 6, 885–890 (2007).

    Article  CAS  Google Scholar 

  17. Lomonosov, M., Anand, S., Sangrithi, M., Davies, R. & Venkitaraman, A.R. Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein. Genes Dev. 17, 3017–3022 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Henry-Mowatt, J. et al. XRCC3 and Rad51 modulate replication fork progression on damaged vertebrate chromosomes. Mol. Cell 11, 1109–1117 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Lusetti, S.L. & Cox, M.M. The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu. Rev. Biochem. 71, 71–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Khakhar, R.R., Cobb, J.A., Bjergbaek, L., Hickson, I.D. & Gasser, S.M. RecQ helicases: multiple roles in genome maintenance. Trends Cell Biol. 13, 493–501 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Michel, B., Grompone, G., Flores, M.J. & Bidnenko, V. Multiple pathways process stalled replication forks. Proc. Natl. Acad. Sci. USA 101, 12783–12788 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu, V.P. et al. Gross chromosomal rearrangements and genetic exchange between nonhomologous chromosomes following BRCA2 inactivation. Genes Dev. 14, 1400–1406 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dohmen, R.J., Wu, P. & Varshavsky, A. Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263, 1273–1276 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Labib, K., Tercero, J.A. & Diffley, J.F. Uninterrupted MCM2–7 function required for DNA replication fork progression. Science 288, 1643–1647 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Fukagawa, T., Regnier, V. & Ikemura, T. Creation and characterization of temperature-sensitive CENP-C mutants in vertebrate cells. Nucleic Acids Res. 29, 3796–3803 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sonoda, E. et al. Sister chromatid exchanges are mediated by homologous recombination in vertebrate cells. Mol. Cell. Biol. 19, 5166–5169 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dodson, H. et al. Centrosome amplification induces by DNA damage occurs during a prolonged G2 phase and involves ATM. EMBO J. 23, 3864–3873 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zou, L. & Elledge, S.J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Block, W.D., Yu, Y. & Lees-Miller, S.P. Phosphatidyl inositol 3-kinase-like serine/threonine protein kinases (PIKKs) are required for DNA damage-induced phosphorylation of the 32 kDa subunit of replication protein A at threonine 21. Nucleic Acids Res. 32, 997–1005 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Raderschall, E., Golub, E.I. & Haaf, T. Nuclear foci of mammalian recombination proteins are located at single-stranded DNA regions formed after DNA damage. Proc. Natl. Acad. Sci. USA 96, 1921–1926 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Savage, J.R. Classification and relationships of induced chromosomal structural changes. J. Med. Genet. 13, 103–122 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haber, J.E. DNA recombination: the replication connection. Trends Biochem. Sci. 24, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Aguilera, A. & Gomez-Gonzalez, B. Genome instability: a mechanistic view of its causes and consequences. Nat. Rev. Genet. 9, 204–217 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Michel, B. et al. Rescue of arrested replication forks by homologous recombination. Proc. Natl. Acad. Sci. USA 98, 8181–8188 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kogoma, T. Recombination by replication. Cell 85, 625–627 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Kuzminov, A. Collapse and repair of replication forks in Escherichia coli. Mol. Microbiol. 16, 373–384 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Merrill, B.J. & Holm, C. The RAD52 recombinational repair pathway is essential in pol30 (PCNA) mutants that accumulate small single-stranded DNA fragments during DNA synthesis. Genetics 148, 611–624 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsuzuki, T. et al. Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc. Natl. Acad. Sci. USA 93, 6236–6240 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shinohara, A., Ogawa, H. & Ogawa, T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69, 457–470 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Muris, D.F. et al. Homologous recombination in the fission yeast Schizosaccharomyces pombe: different requirements for the rhp51+, rhp54+ and rad22+ genes. Curr. Genet. 31, 248–254 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Lopes, M., Foiani, M. & Sogo, J.M. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 21, 15–27 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Mojas, N., Lopes, M. & Jiricny, J. Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA. Genes Dev. 21, 3342–3355 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stojic, L. et al. Mismatch repair-dependent G2 checkpoint induced by low doses of SN1 type methylating agents requires the ATR kinase. Genes Dev. 18, 1331–1344 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sogo, J.M., Lopes, M. & Foiani, M. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297, 599–602 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Lopes, M. et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412, 557–561 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Meister, P. et al. Temporal separation of replication and recombination requires the intra-S checkpoint. J. Cell Biol. 168, 537–544 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liberi, G. et al. Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev. 19, 339–350 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Branzei, D. et al. Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 127, 509–522 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Pfander, B., Moldovan, G.L., Sacher, M., Hoege, C. & Jentsch, S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Sanchez-Diaz, A., Kanemaki, M., Marchesi, V. & Labib, K. Rapid depletion of budding yeast proteins by fusion to a heat-inducible degron. Sci. STKE 223, pl8 (2004).

    Google Scholar 

  52. Yu, D.S. et al. Dynamic control of Rad51 recombinase by self-association and interaction with BRCA2. Mol. Cell 12, 1029–1041 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Niedzwiedz, W. et al. The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol. Cell 15, 607–620 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Gallant, P. & Nigg, E.A. Cyclin B2 undergoes cell cycle-dependent nuclear translocation and, when expressed as a non-destructible mutant, causes mitotic arrest in HeLa cells. J. Cell Biol. 117, 213–224 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Sangrithi, M.N. et al. Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome. Cell 121, 887–898 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Sonoda, E. et al. Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev. Cell 1, 759–770 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to E. Nigg (Max Planck Institute, Martinsreid, Germany) for providing anti–cyclin B, K. Labib (PICR, Manchester) for providing pKL187 and S. Takeda (Kyoto University, Japan) for providing the Rad51−/−(tetRAD51) DT40 strain. We thank N. Ayoub for help in establishing the degron-EGFP system in DT40, E. Rajendra for technical help with the DT40 experiments and critical review of the manuscript, and members of our laboratory for helpful discussions. X.S. is supported by a studentship from A*STAR, Singapore, and J.A.B. by a Wellcome Trust grant to A.R.V. Work in A.R.V.'s laboratory is supported by the UK Medical Research Council.

Author information

Authors and Affiliations

Authors

Contributions

X.S. and J.A.B. together performed the experiments, with J.A.B. as the primary contributor to Figures 4c and 5c and Supplementary Figure 3, and X.S. as the primary contributor to the remaining figures. J.A.B. was instrumental in optimizing the experimental conditions for the use of N-end degrons in DT40 cells and provided guidance to X.S. X.S., J.A.B. and A.R.V. interpreted the data. X.S. and J.A.B. prepared the figures. A.R.V. supervised the work and wrote the paper with the help of X.S. and J.A.B.

Corresponding author

Correspondence to Ashok R Venkitaraman.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 968 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, X., Bernal, J. & Venkitaraman, A. Cell-cycle coordination between DNA replication and recombination revealed by a vertebrate N-end rule degron-Rad51. Nat Struct Mol Biol 15, 1049–1058 (2008). https://doi.org/10.1038/nsmb.1490

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1490

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing