Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Mek1–Mek2 heterodimer determines the strength and duration of the Erk signal

Abstract

Mek1 and Mek2 (also known as Map2k1 and Map2k2, respectively) are evolutionarily conserved, dual-specificity kinases that mediate Erk1 and Erk2 activation during adhesion and growth factor signaling. Here we describe a previously uncharacterized, unexpected role of Mek1 in downregulating Mek2-dependent Erk signaling. Mek1 mediates the regulation of Mek2 in the context of a previously undiscovered Mek1–Mek2 complex. The Mek heterodimer is negatively regulated by Erk-mediated phosphorylation of Mek1 on Thr292, a residue missing in Mek2. Disabling this Erk-proximal negative-feedback step stabilizes the phosphorylation of both Mek2 and Erk in cultured cells and in vivo in Mek1 knockout embryos and mice. Thus, in disagreement with the current perception of the pathway, the role of Mek1 and Mek2 in growth factor–induced Erk phosphorylation is not interchangeable. Our data establish Mek1 as the crucial modulator of Mek and Erk signaling and have potential implications for the role of Mek1 and Mek2 in tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mek1 ablation affects fibroblast shape and impairs haptotaxis and adhesion-dependent Erk signaling.
Figure 2: Mek1 ablation increases growth factor–stimulated migration and Erk phosphorylation.
Figure 3: Mek1 regulates Mek2 phosphorylation.
Figure 4: Mek1 and Mek2 form heterodimers in wild-type cells.
Figure 5: Erk-mediated negative-feedback regulation in the context of the Mek heterodimer.
Figure 6: Mek1 ablation deregulates signaling in vivo.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Harding, A. & Hancock, J.F. Ras nanoclusters: combining digital and analog signaling. Cell Cycle 7, 127–134 (2008).

    Article  CAS  Google Scholar 

  2. Kolch, W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat. Rev. Mol. Cell Biol. 6, 827–837 (2005).

    Article  CAS  Google Scholar 

  3. Orton, R.J. et al. Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem. J. 392, 249–261 (2005).

    Article  CAS  Google Scholar 

  4. Duesbery, N. & Vande Woude, G. BRAF and MEK mutations make a late entrance. Sci. STKE 2006, pe15 (2006).

    PubMed  Google Scholar 

  5. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  Google Scholar 

  6. Estep, A.L., Palmer, C., McCormick, F. & Rauen, K.A. Mutation analysis of BRAF, MEK1 and MEK2 in 15 ovarian cancer cell lines: implications for therapy. PLoS ONE 2, e1279 (2007).

    Article  Google Scholar 

  7. Huang, C., Jacobson, K. & Schaller, M.D. MAP kinases and cell migration. J. Cell Sci. 117, 4619–4628 (2004).

    Article  CAS  Google Scholar 

  8. Fukuda, M., Gotoh, I., Adachi, M., Gotoh, Y. & Nishida, E. A novel regulatory mechanism in the mitogen-activated protein (MAP) kinase cascade. Role of nuclear export signal of MAP kinase kinase. J. Biol. Chem. 272, 32642–32648 (1997).

    Article  CAS  Google Scholar 

  9. Brunet, A., Pages, G. & Pouyssegur, J. Growth factor-stimulated MAP kinase induces rapid retrophosphorylation and inhibition of MAP kinase kinase (MEK1). FEBS Lett. 346, 299–303 (1994).

    Article  CAS  Google Scholar 

  10. Xu, B., Wilsbacher, J.L., Collisson, T. & Cobb, M.H. The N-terminal ERK-binding site of MEK1 is required for efficient feedback phosphorylation by ERK2 in vitro and ERK activation in vivo. J. Biol. Chem. 274, 34029–34035 (1999).

    Article  CAS  Google Scholar 

  11. Schaeffer, H.J. et al. MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science 281, 1668–1671 (1998).

    Article  CAS  Google Scholar 

  12. Roy, M., Li, Z. & Sacks, D.B. IQGAP1 is a scaffold for mitogen-activated protein kinase signaling. Mol. Cell. Biol. 25, 7940–7952 (2005).

    Article  CAS  Google Scholar 

  13. Yin, G., Haendeler, J., Yan, C. & Berk, B.C. GIT1 functions as a scaffold for MEK1-extracellular signal-regulated kinase 1 and 2 activation by angiotensin II and epidermal growth factor. Mol. Cell. Biol. 24, 875–885 (2004).

    Article  CAS  Google Scholar 

  14. Belanger, L.F. et al. Mek2 is dispensable for mouse growth and development. Mol. Cell. Biol. 23, 4778–4787 (2003).

    Article  CAS  Google Scholar 

  15. Giroux, S. et al. Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr. Biol. 9, 369–372 (1999).

    Article  CAS  Google Scholar 

  16. Bissonauth, V., Roy, S., Gravel, M., Guillemette, S. & Charron, J. Requirement for Map2k1 (Mek1) in extra-embryonic ectoderm during placentogenesis. Development 133, 3429–3440 (2006).

    Article  CAS  Google Scholar 

  17. Scholl, F.A. et al. Mek1/2 MAPK kinases are essential for mammalian development, homeostasis, and Raf-induced hyperplasia. Dev. Cell 12, 615–629 (2007).

    Article  CAS  Google Scholar 

  18. Ohren, J.F. et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat. Struct. Mol. Biol. 11, 1192–1197 (2004).

    Article  CAS  Google Scholar 

  19. Eblen, S.T. et al. Mitogen-activated protein kinase feedback phosphorylation regulates MEK1 complex formation and activation during cellular adhesion. Mol. Cell. Biol. 24, 2308–2317 (2004).

    Article  CAS  Google Scholar 

  20. Hayashi, S., Lewis, P., Pevny, L. & McMahon, A.P. Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech. Dev. 119, S97–S101 (2002).

    Article  Google Scholar 

  21. Tronche, F. et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet. 23, 99–103 (1999).

    Article  CAS  Google Scholar 

  22. Galabova-Kovacs, G. et al. Essential role of B-Raf in oligodendrocyte maturation and myelination during postnatal central nervous system development. J. Cell Biol. 180, 947–955 (2008).

    Article  CAS  Google Scholar 

  23. Ussar, S. & Voss, T. MEK1 and MEK2, different regulators of the G1/S transition. J. Biol. Chem. 279, 43861–43869 (2004).

    Article  CAS  Google Scholar 

  24. Santos, S.D., Verveer, P.J. & Bastiaens, P.I. Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat. Cell Biol. 9, 324–330 (2007).

    Article  CAS  Google Scholar 

  25. Rossomando, A.J., Dent, P., Sturgill, T.W. & Marshak, D.R. Mitogen-activated protein kinase kinase 1 (MKK1) is negatively regulated by threonine phosphorylation. Mol. Cell. Biol. 14, 1594–1602 (1994).

    Article  CAS  Google Scholar 

  26. Park, E.R., Eblen, S.T. & Catling, A.D. MEK1 activation by PAK: a novel mechanism. Cell. Signal. 19, 1488–1496 (2007).

    Article  CAS  Google Scholar 

  27. Pike, A.C. et al. Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites. EMBO J. 27, 704–714 (2008).

    Article  CAS  Google Scholar 

  28. Buday, L., Warne, P.H. & Downward, J. Downregulation of the Ras activation pathway by MAP kinase phosphorylation of Sos. Oncogene 11, 1327–1331 (1995).

    CAS  PubMed  Google Scholar 

  29. Sundberg-Smith, L.J., Doherty, J.T., Mack, C.P. & Taylor, J.M. Adhesion stimulates direct PAK1/ERK2 association and leads to ERK-dependent PAK1 Thr212 phosphorylation. J. Biol. Chem. 280, 2055–2064 (2005).

    Article  CAS  Google Scholar 

  30. Dougherty, M.K. et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell 17, 215–224 (2005).

    Article  CAS  Google Scholar 

  31. Brummer, T., Naegele, H., Reth, M. & Misawa, Y. Identification of novel ERK-mediated feedback phosphorylation sites at the C-terminus of B-Raf. Oncogene 22, 8823–8834 (2003).

    Article  CAS  Google Scholar 

  32. Weber, C.K., Slupsky, J.R., Kalmes, H.A. & Rapp, U.R. Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res. 61, 3595–3598 (2001).

    CAS  PubMed  Google Scholar 

  33. Garnett, M.J., Rana, S., Paterson, H., Barford, D. & Marais, R. Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol. Cell 20, 963–969 (2005).

    Article  CAS  Google Scholar 

  34. Rushworth, L.K., Hindley, A.D., O'Neill, E. & Kolch, W. Regulation and Role of Raf-1/B-Raf Heterodimerization. Mol. Cell. Biol. 26, 2262–2272 (2006).

    Article  CAS  Google Scholar 

  35. Wellbrock, C., Karasarides, M. & Marais, R. The RAF proteins take centre stage. Nat. Rev. Mol. Cell Biol. 5, 875–885 (2004).

    Article  CAS  Google Scholar 

  36. Moissoglu, K. & Schwartz, M.A. Integrin signalling in directed cell migration. Biol. Cell 98, 547–555 (2006).

    Article  CAS  Google Scholar 

  37. Armant, D.R. Blastocysts don't go it alone. Extrinsic signals fine-tune the intrinsic developmental program of trophoblast cells. Dev. Biol. 280, 260–280 (2005).

    Article  CAS  Google Scholar 

  38. Slack-Davis, J.K. et al. PAK1 phosphorylation of MEK1 regulates fibronectin-stimulated MAPK activation. J. Cell Biol. 162, 281–291 (2003).

    Article  CAS  Google Scholar 

  39. Rodriguez-Viciana, P. et al. Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science 311, 1287–1290 (2006).

    Article  CAS  Google Scholar 

  40. Corson, L.B., Yamanaka, Y., Lai, K.M. & Rossant, J. Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development 130, 4527–4537 (2003).

    Article  CAS  Google Scholar 

  41. Mikula, M. et al. Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. EMBO J. 20, 1952–1962 (2001).

    Article  CAS  Google Scholar 

  42. Ehrenreiter, K. et al. Raf-1 regulates Rho signaling and cell migration. J. Cell Biol. 168, 955–964 (2005).

    Article  CAS  Google Scholar 

  43. Wallace, I.M., O'Sullivan, O., Higgins, D.G. & Notredame, C. M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res. 34, 1692–1699 (2006).

    Article  CAS  Google Scholar 

  44. Do, C.B., Mahabhashyam, M.S., Brudno, M. & Batzoglou, S. ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res. 15, 330–340 (2005).

    Article  CAS  Google Scholar 

  45. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article  CAS  Google Scholar 

  46. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  Google Scholar 

  47. Vinh le, S. & von Haeseler, A. IQPNNI: moving fast through tree space and stopping in time. Mol. Biol. Evol. 21, 1565–1571 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Decker for critical reading of the manuscript, T. Zoranovic, C. Wasinger, M. Hamerl and the Max F. Perutz Laboratories (MFPL) animal house for outstanding technical assistance, I. Ebersberger (MFPL) for providing all ortholog Mek sequences listed in HaMSTR. This work was supported by FWF grants P19530 (to M.B.) and T196 (to V.J.).

Author information

Authors and Affiliations

Authors

Contributions

F.C., G.R., V.J., and G.G.-K. performed research; M.B. designed research; R.d.M.S. analyzed sequence information; O.C. performed molecular modelling; M.B. wrote the paper.

Corresponding author

Correspondence to Manuela Baccarini.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1 and 2 (PDF 322 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catalanotti, F., Reyes, G., Jesenberger, V. et al. A Mek1–Mek2 heterodimer determines the strength and duration of the Erk signal. Nat Struct Mol Biol 16, 294–303 (2009). https://doi.org/10.1038/nsmb.1564

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1564

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing