Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conformational ensemble of the sodium-coupled aspartate transporter

Abstract

Sodium and aspartate symporter from Pyrococcus horikoshii, GltPh, is a homolog of the mammalian glutamate transporters, homotrimeric integral membrane proteins that control neurotransmitter levels in brain synapses. These transporters function by alternating between outward-facing and inward-facing states, in which the substrate binding site is oriented toward the extracellular space and the cytoplasm, respectively. Here we used double electron-electron resonance (DEER) spectroscopy to probe the structure and the state distribution of the subunits in the trimer in distinct hydrophobic environments of detergent micelles and lipid bilayers. Our experiments reveal a conformational ensemble of protomers that sample the outward-facing and inward-facing states with nearly equal probabilities, indicative of comparable energies, and independently of each other. On average, the distributions varied only modestly in detergent and in bilayers, but in several mutants unique conformations were stabilized by the latter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spin-labeled residues.
Figure 2: Narrow distance distributions of trimerization domain residue 55.
Figure 3: Broad distance distributions measured for residues in the transport domain.
Figure 4: Comparison of measured and expected distances.
Figure 5: The inward and outward-facing states of GltPh have close energies.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Danbolt, N.C. Glutamate uptake. Prog. Neurobiol. 65, 1–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Hinoi, E., Takarada, T., Tsuchihashi, Y. & Yoneda, Y. Glutamate transporters as drug targets. Curr. Drug Targets CNS Neurol. Disord. 4, 211–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Levy, L.M., Warr, O. & Attwell, D. Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J. Neurosci. 18, 9620–9628 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zerangue, N. & Kavanaugh, M.P. Flux coupling in a neuronal glutamate transporter. Nature 383, 634–637 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Owe, S.G., Marcaggi, P. & Attwell, D. The ionic stoichiometry of the GLAST glutamate transporter in salamander retinal glia. J. Physiol. (Lond.) 577, 591–599 (2006).

    Article  CAS  Google Scholar 

  6. Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431, 811–818 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Boudker, O., Ryan, R.M., Yernool, D., Shimamoto, K. & Gouaux, E. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445, 387–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Reyes, N., Ginter, C. & Boudker, O. Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462, 880–885 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Verdon, G. & Boudker, O. Crystal structure of an asymmetric trimer of a bacterial glutamate transporter homolog. Nat. Struct. Mol. Biol. 19, 355–357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ryan, R.M., Compton, E.L. & Mindell, J.A. Functional characterization of a Na+-dependent aspartate transporter from Pyrococcus horikoshii. J. Biol. Chem. 284, 17540–17548 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Groeneveld, M. & Slotboom, D.J. Na+: aspartate coupling stoichiometry in the glutamate transporter homologue GltPh. Biochemistry 49, 3511–3513 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Yernool, D., Boudker, O., Folta-Stogniew, E. & Gouaux, E. Trimeric subunit stoichiometry of the glutamate transporters from Bacillus caldotenax and Bacillus stearothermophilus. Biochemistry 42, 12981–12988 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Gendreau, S. et al. A trimeric quaternary structure is conserved in bacterial and human glutamate transporters. J. Biol. Chem. 279, 39505–39512 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Groeneveld, M. & Slotboom, D.J. Rigidity of the subunit interfaces of the trimeric glutamate transporter GltT during translocation. J. Mol. Biol. 372, 565–570 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Focke, P.J., Moenne-Loccoz, P. & Larsson, H.P. Opposite movement of the external gate of a glutamate transporter homolog upon binding cotransported sodium compared with substrate. J. Neurosci. 31, 6255–6262 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang, Z. & Tajkhorshid, E. Dynamics of the extracellular gate and ion-substrate coupling in the glutamate transporter. Biophys. J. 95, 2292–2300 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shrivastava, I.H., Jiang, J., Amara, S.G. & Bahar, I. Time-resolved mechanism of extracellular gate opening and substrate binding in a glutamate transporter. J. Biol. Chem. 283, 28680–28690 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Borbat, P.P. & Freed, J.H. Measuring distances by pulsed dipolar ESR spectroscopy: spin-labeled histidine kinases. Methods Enzymol. 423, 52–116 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Borbat, P.P. & Freed, J.H. Pros and cons of pulse dipolar ESR: DQC and DEER. EPR Newsletter 17, 21–33 (2007).

    Google Scholar 

  20. Mchaourab, H.S., Steed, P.R. & Kazmier, K. Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy. Structure 19, 1549–1561 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reginsson, G.W. & Schiemann, O. Pulsed electron-electron double resonance: beyond nanometre distance measurements on biomacromolecules. Biochem. J. 434, 353–363 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Borbat, P.P. et al. Conformational motion of the ABC transporter MsbA induced by ATP hydrolysis. PLoS Biol. 5, e271 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tong, J., Borbat, P.P., Freed, J.H. & Shin, Y.K. A scissors mechanism for stimulation of SNARE-mediated lipid mixing by cholesterol. Proc. Natl. Acad. Sci. USA 106, 5141–5146 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Georgieva, E.R., Ramlall, T.F., Borbat, P.P., Freed, J.H. & Eliezer, D. Membrane-bound alpha-synuclein forms an extended helix: long-distance pulsed ESR measurements using vesicles, bicelles, and rodlike micelles. J. Am. Chem. Soc. 130, 12856–12857 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Georgieva, E.R., Ramlall, T.F., Borbat, P.P., Freed, J.H. & Eliezer, D. The lipid-binding domain of wild type and mutant alpha-synuclein: compactness and interconversion between the broken and extended helix forms. J. Biol. Chem. 285, 28261–28274 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Upadhyay, A.K., Borbat, P.P., Wang, J., Freed, J.H. & Edmondson, D.E. Determination of the oligomeric states of human and rat monoamine oxidases in the outer mitochondrial membrane and octyl beta-D-glucopyranoside micelles using pulsed dipolar electron spin resonance spectroscopy. Biochemistry 47, 1554–1566 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Vamvouka, M., Cieslak, J., Van Eps, N., Hubbell, W. & Gross, A. The structure of the lipid-embedded potassium channel voltage sensor determined by double-electron-electron resonance spectroscopy. Protein Sci. 17, 506–517 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Claxton, D.P. et al. Ion/substrate-dependent conformational dynamics of a bacterial homolog of neurotransmitter:sodium symporters. Nat. Struct. Mol. Biol. 17, 822–829 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Joseph, B., Jeschke, G., Goetz, B.A., Locher, K.P. & Bordignon, E. Transmembrane gate movements in the type II ATP-binding cassette (ABC) importer BtuCD-F during nucleotide cycle. J. Biol. Chem. 286, 41008–41017 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Borbat, P.P., Mchaourab, H.S. & Freed, J.H. Protein structure determination using long-distance constraints from double-quantum coherence ESR: study of T4 lysozyme. J. Am. Chem. Soc. 124, 5304–5314 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Kazmier, K., Alexander, N.S., Meiler, J. & Mchaourab, H.S. Algorithm for selection of optimized EPR distance restraints for de novo protein structure determination. J. Struct. Biol. 173, 549–557 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Georgieva, E.R. et al. Effect of freezing conditions on distances and their distributions derived from double electron electron resonance (DEER): a study of doubly-spin-labeled T4 lysozyme. J. Magn. Reson. 216, 69–77 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Polyhach, Y., Bordignon, E. & Jeschke, G. Rotamer libraries of spin labelled cysteines for protein studies. Phys. Chem. Chem. Phys. 13, 2356–2366 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Bhatnagar, J. et al. Structure of the ternary complex formed by a chemotaxis receptor signaling domain, the CheA histidine kinase, and the coupling protein CheW as determined by pulsed dipolar ESR spectroscopy. Biochemistry 49, 3824–3841 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Jeschke, G., Sajid, M., Schulte, M. & Godt, A. Three-spin correlations in double electron-electron resonance. Phys. Chem. Chem. Phys. 11, 6580–6591 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Shimamoto, K. et al. DL-threo-beta-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters. Mol. Pharmacol. 53, 195–201 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Bhatnagar, J., Freed, J.H. & Crane, B.R. Rigid body refinement of protein complexes with long-range distance restraints from pulsed dipolar ESR. Methods Enzymol. 423, 117–133 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Jiang, J., Shrivastava, I.H., Watts, S.D., Bahar, I. & Amara, S.G. Large collective motions regulate the functional properties of glutamate transporter trimers. Proc. Natl. Acad. Sci. USA 108, 15141–15146 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grewer, C. et al. Individual subunits of the glutamate transporter EAAC1 homotrimer function independently of each other. Biochemistry 44, 11913–11923 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Koch, H.P. & Larsson, H.P. Small-scale molecular motions accomplish glutamate uptake in human glutamate transporters. J. Neurosci. 25, 1730–1736 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leary, G.P., Stone, E.F., Holley, D.C. & Kavanaugh, M.P. The glutamate and chloride permeation pathways are colocalized in individual neuronal glutamate transporter subunits. J. Neurosci. 27, 2938–2942 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, Z. et al. Transport direction determines the kinetics of substrate transport by the glutamate transporter EAAC1. Proc. Natl. Acad. Sci. USA 104, 18025–18030 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Phillips, R., Ursell, T., Wiggins, P. & Sens, P. Emerging roles for lipids in shaping membrane-protein function. Nature 459, 379–385 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Andersen, O.S. & Koeppe, R.E., II. Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 36, 107–130 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Lee, A.G. How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta 1666, 62–87 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Duong, M.T., Jaszewski, T.M., Fleming, K.G. & MacKenzie, K.R. Changes in apparent free energy of helix-helix dimerization in a biological membrane due to point mutations. J. Mol. Biol. 371, 422–434 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kaback, H.R. et al. Site-directed alkylation and the alternating access model for LacY. Proc. Natl. Acad. Sci. USA 104, 491–494 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Smirnova, I. et al. Sugar binding induces an outward facing conformation of LacY. Proc. Natl. Acad. Sci. USA 104, 16504–16509 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Weyand, S. et al. Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322, 709–713 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shimamura, T. et al. Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1. Science 328, 470–473 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Borbat, P.P., Crepeau, R.H. & Freed, J.H. Multifrequency two-dimensional Fourier transform ESR: an X/Ku-band spectrometer. J. Magn. Reson. 127, 155–167 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Borbat, P.P. & Freed, J.H. Pulse dipolar ESR: distance measurements. in Structural Information from Spin-Labels and Intrinsic Paramagnetic Centres in the Biosciences. Structure and Bonding. (eds., Harmer, J. & Timmel, C.) (Springer, Berlin, 2012).

  53. Pannier, M., Veit, S., Godt, A., Jeschke, G. & Spiess, H.W. Dead-time free measurement of dipole-dipole interactions between electron spins. J. Magn. Reson. 142, 331–340 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Chiang, Y.W., Borbat, P.P. & Freed, J.H. The determination of pair distance distributions by pulsed ESR using Tikhonov regularization. J. Magn. Reson. 172, 279–295 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Chiang, Y.W., Borbat, P.P. & Freed, J.H. Maximum entropy: a complement to Tikhonov regularization for determination of pair distance distributions by pulsed ESR. J. Magn. Reson. 177, 184–196 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by US National Institute of Neurological Disorders and Stroke grants NS064357 and NS064357-02S1 and a grant from Bohmfalk Charitable Trust to O.B., and US National Center for Research Recourses grant P41-RR016292, US National Institute of General Medical Sciences grant P41GM103521 and US National Institute of Biomedical Imaging and Bioengineering grant R010EB003150 J.H.F.

Author information

Authors and Affiliations

Authors

Contributions

E.R.G. and O.B. developed the mutation strategy for DEER spectroscopy, and designed the molecular biology and biochemical part of the experiments. E.R.G., P.P.B. and J.H.F. designed the DEER spectroscopy experiments. E.R.G. performed most of the DEER spectroscopy experiments, protein expression and purification, and spin labeling. C.G. carried out the mutagenesis and participated in protein expression and purification. P.P.B. performed some of the DEER measurements. E.R.G., O.B. and P.P.B. analyzed the data. O.B., E.R.G., P.P.B. and J.H.F. wrote the manuscript.

Corresponding author

Correspondence to Olga Boudker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–2 and Supplementary Note (PDF 1371 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgieva, E., Borbat, P., Ginter, C. et al. Conformational ensemble of the sodium-coupled aspartate transporter. Nat Struct Mol Biol 20, 215–221 (2013). https://doi.org/10.1038/nsmb.2494

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2494

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing