Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of BRCA2 in replication-coupled DNA interstrand cross-link repair in vitro

Abstract

Using a defined substrate DNA with a single psoralen interstrand cross-link (ICL), we studied the molecular mechanism of human ICL repair. In vitro ICL repair by human extracts is dependent on replication and is a largely error-free process. Extracts from a human BRCA2-defective mutant cell line, CAPAN-1, are severely compromised in ICL repair. Specifically, 'unhooked' but not fully repaired products accumulate in the reaction with CAPAN-1, and transient expression of BRCA2 in CAPAN-1 restores repair activity. Together, these results reveal that BRCA2 participates in repair of replication-mediated double-strand breaks generated when replication forks encounter ICLs. We also show that nucleotide excision repair is essential for the removal of the lesion left behind on one strand after unhooking. This study provides new mechanistic insights into the repair of ICLs in human cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro ICL repair is DNA replication dependent and error-free.
Figure 2: BRCA2 stimulates replication-coupled ICL repair.
Figure 3: Defining the roles of BRCA2 and NER in ICL repair.

Similar content being viewed by others

References

  1. Dronkert, M.L. & Kanaar, R. Repair of DNA interstrand cross-links. Mutat. Res. 486, 217–247 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. McHugh, P.J., Spanswick, V.J. & Hartley, J.A. Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncol. 2, 483–490 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Spanswick, V.J. et al. Repair of DNA interstrand crosslinks as a mechanism of clinical resistance to melphalan in multiple myeloma. Blood 100, 224–229 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Thompson, L.H. & Schild, D. Homologous recombinational repair of DNA ensures mammalian chromosome stability. Mutat. Res. 477, 131–153 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. De Silva, I.U., McHugh, P.J., Clingen, P.H. & Hartley, J.A. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol. Cell. Biol. 20, 7980–7990 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kuraoka, I. et al. Repair of an interstrand DNA cross-link initiated by ERCC1-XPF repair/recombination nuclease. J. Biol. Chem. 275, 26632–26636 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, N., Lu, X., Zhang, X., Peterson, C.A. & Legerski, R.J. hMutSbeta is required for the recognition and uncoupling of psoralen interstrand cross-links in vitro. Mol. Cell. Biol. 22, 2388–2397 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Akkari, Y.M., Bateman, R.L., Reifsteck, C.A., Olson, S.B. & Grompe, M. DNA replication is required To elicit cellular responses to psoralen-induced DNA interstrand cross-links. Mol. Cell. Biol. 20, 8283–8289 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bessho, T. Induction of DNA replication-mediated double strand breaks by psoralen DNA interstrand cross-links. J. Biol. Chem. 278, 5250–5254 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Rothfuss, A. & Grompe, M. Repair kinetics of genomic interstrand DNA cross-links: evidence for DNA double-strand break-dependent activation of the Fanconi anemia/BRCA pathway. Mol. Cell. Biol. 24, 123–134 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Niedernhofer, L.J. et al. The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Mol. Cell. Biol. 24, 5776–5787 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Niedernhofer, L.J., Lalai, A.S. & Hoeijmakers, J.H. Fanconi anemia (cross)linked to DNA repair. Cell 123, 1191–1198 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Tavtigian, S.V. et al. The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat. Genet. 12, 333–337 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Wooster, R. et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 378, 789–792 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Brenneman, M. BRCA1 and BRCA2 in DNA repair and genome stability. DNA Damage and Repair Vol. 3 (eds. Nickoloff, J.A. & Hoekstra, M.F.) 237–267 (Humana Press, Totowa, New Jersey, USA, 2001).

    Chapter  Google Scholar 

  16. Kraakman-van der Zwet, M. et al. Brca2 (XRCC11) deficiency results in radioresistant DNA synthesis and a higher frequency of spontaneous deletions. Mol. Cell. Biol. 22, 669–679 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tutt, A. & Ashworth, A. The relationship between the roles of BRCA genes in DNA repair and cancer predisposition. Trends Mol. Med. 8, 571–576 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Venkitaraman, A.R. Functions of BRCA1 and BRCA2 in the biological response to DNA damage. J. Cell Sci. 114, 3591–3598 (2001).

    CAS  PubMed  Google Scholar 

  19. Moynahan, M.E., Pierce, A.J. & Jasin, M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol. Cell 7, 263–272 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Xia, F. et al. Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining. Proc. Natl. Acad. Sci. USA 98, 8644–8649 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Petukhova, G., Lee, E.-H. & Sung, P. DNA end-processing and heteroduplex DNA formation during recombinational repair of DNA double-strand breaks. DNA Damage and Repair Vol. 3 (eds. Nickoloff, J.A. & Hoekstra, M.F.) 125–146 (Humana Press, Totowa, New Jersey, USA, 2001).

    Chapter  Google Scholar 

  22. Sung, P. Mediating repair. Nat. Struct. Mol. Biol. 12, 213–214 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. West, S.C. Molecular views of recombination proteins and their control. Nat. Rev. Mol. Cell Biol. 4, 435–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, P.L. et al. The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc. Natl. Acad. Sci. USA 95, 5287–5292 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Davies, A.A. et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol. Cell 7, 273–282 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Galkin, V.E. et al. BRCA2 BRC motifs bind RAD51-DNA filaments. Proc. Natl. Acad. Sci. USA 102, 8537–8542 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wong, A.K., Pero, R., Ormonde, P.A., Tavtigian, S.V. & Bartel, P.L. RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J. Biol. Chem. 272, 31941–31944 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Mizuta, R. et al. RAB22 and RAB163/mouse BRCA2: proteins that specifically interact with the RAD51 protein. Proc. Natl. Acad. Sci. USA 94, 6927–6932 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sharan, S.K. et al. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386, 804–810 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. San Filippo, J. et al. Recombination mediator and Rad51 targeting activities of a human BRCA2 polypeptide. J. Biol. Chem. 281, 11649–11657 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, H., Li, Q., Fan, J., Holloman, W.K. & Pavletich, N.P. The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA-ssDNA junction. Nature 433, 653–657 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Cheng, S., Van Houten, B., Gamper, H.B., Sancar, A. & Hearst, J.E. Use of psoralen-modified oligonucleotides to trap three-stranded RecA-DNA complexes and repair of these cross-linked complexes by ABC excinuclease. J. Biol. Chem. 263, 15110–15117 (1988).

    CAS  PubMed  Google Scholar 

  33. Van Houten, B., Gamper, H., Holbrook, S.R., Hearst, J.E. & Sancar, A. Action mechanism of ABC excision nuclease on a DNA substrate containing a psoralen crosslink at a defined position. Proc. Natl. Acad. Sci. USA 83, 8077–8081 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goggins, M. et al. Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res. 56, 5360–5364 (1996).

    CAS  PubMed  Google Scholar 

  35. Connor, F. et al. Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nat. Genet. 17, 423–430 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Morimatsu, M., Donoho, G. & Hasty, P. Cells deleted for Brca2 COOH terminus exhibit hypersensitivity to gamma-radiation and premature senescence. Cancer Res. 58, 3441–3447 (1998).

    CAS  PubMed  Google Scholar 

  37. Yu, V.P. et al. Gross chromosomal rearrangements and genetic exchange between nonhomologous chromosomes following BRCA2 inactivation. Genes Dev. 14, 1400–1406 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. van der Heijden, M.S. et al. In vivo therapeutic responses contingent on Fanconi anemia/BRCA2 status of the tumor. Clin. Cancer Res. 11, 7508–7515 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Lomonosov, M., Anand, S., Sangrithi, M., Davies, R. & Venkitaraman, A.R. Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein. Genes Dev. 17, 3017–3022 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cox, M.M. The nonmutagenic repair of broken replication forks via recombination. Mutat. Res. 510, 107–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Helleday, T. Pathways for mitotic homologous recombination in mammalian cells. Mutat. Res. 532, 103–115 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Johnson, R.D. & Jasin, M. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 19, 3398–3407 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saleh-Gohari, N. & Helleday, T. Strand invasion involving short tract gene conversion is specifically suppressed in BRCA2-deficient hamster cells. Oncogene 23, 9136–9141 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Sonoda, E. et al. Sister chromatid exchanges are mediated by homologous recombination in vertebrate cells. Mol. Cell. Biol. 19, 5166–5169 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stark, J.M., Pierce, A.J., Oh, J., Pastink, A. & Jasin, M. Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol. Cell. Biol. 24, 9305–9316 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arnaudeau, C., Lundin, C. & Helleday, T. DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. J. Mol. Biol. 307, 1235–1245 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Hatanaka, A. et al. Similar effects of Brca2 truncation and Rad51 paralog deficiency on immunoglobulin V gene diversification in DT40 cells support an early role for Rad51 paralogs in homologous recombination. Mol. Cell. Biol. 25, 1124–1134 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takata, M. et al. Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol. Cell. Biol. 21, 2858–2866 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mu, D. et al. DNA interstrand cross-links induce futile repair synthesis in mammalian cell extracts. Mol. Cell. Biol. 20, 2446–2454 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Durocher, Y., Perret, S. & Kamen, A. High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res. 30, E9 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Hearst for the psoralen-modified oligonucleotides, S. Powell (Washington University) for the HA-BRCA2 plasmid and J. Reardon, R. Lahue, R. Lewis and A. Tomkinson for critical reading of the manuscript. This work was supported by grant CA095291 from the US National Institutes of Health and grant DAMD17-03-1-0225 from the US Army Medical Research and Materiel Command.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadayoshi Bessho.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Defined substrate DNA used in the study (PDF 568 kb)

Supplementary Fig. 2

Control experiments for BRCA2-dependent, replication-coupled ICL repair (PDF 339 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cipak, L., Watanabe, N. & Bessho, T. The role of BRCA2 in replication-coupled DNA interstrand cross-link repair in vitro. Nat Struct Mol Biol 13, 729–733 (2006). https://doi.org/10.1038/nsmb1120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing