Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure-function relationship of CAP-Gly domains

Abstract

In all eukaryotes, CAP-Gly proteins control important cellular processes. The molecular mechanisms underlying the functions of CAP-Gly domains, however, are still poorly understood. Here we use the complex formed between the CAP-Gly domain of p150glued and the C-terminal zinc knuckle of CLIP170 as a model system to explore the structure-function relationship of CAP-Gly–mediated protein interactions. We demonstrate that the conserved GKNDG motif of CAP-Gly domains is responsible for targeting to the C-terminal EEY/F sequence motifs of CLIP170, EB proteins and microtubules. The CAP-Gly–EEY/F interaction is essential for the recruitment of the dynactin complex by CLIP170 and for activation of CLIP170. Our findings define the molecular basis of CAP-Gly domain function, including the tubulin detyrosination-tyrosination cycle. They further establish fundamental roles for the interaction between CAP-Gly proteins and C-terminal EEY/F sequence motifs in regulating complex and dynamic cellular processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding studies and X-ray crystal structure of p150n–ClipZn2.
Figure 2: Binding interface of p150n–ClipZn2, and sequence conservation.
Figure 3: Sequence conservation and binding sites of CAP-Gly domains.
Figure 4: The C-terminal DDETF sequence segment of CLIP170 is required for dynactin recruitment to CLIP170-associated microtubules.
Figure 5: CAP-Gly domains as EEY/F motif–recognition domains.
Figure 6: Activation of CLIP170.
Figure 7: Schematic illustration of the protein-protein interaction network analyzed and discussed in the present study.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Riehemann, K. & Sorg, C. Sequence homologies between four cytoskeleton-associated proteins. Trends Biochem. Sci. 18, 82–83 (1993).

    Article  CAS  Google Scholar 

  2. Gundersen, G.G. Evolutionary conservation of microtubule-capture mechanisms. Nat. Rev. Mol. Cell Biol. 3, 296–304 (2002).

    Article  CAS  Google Scholar 

  3. Galjart, N. & Perez, F. A plus-end raft to control microtubule dynamics and function. Curr. Opin. Cell Biol. 15, 48–53 (2003).

    Article  CAS  Google Scholar 

  4. Carvalho, P., Tirnauer, J.S. & Pellman, D. Surfing on microtubule ends. Trends Cell Biol. 13, 229–237 (2003).

    Article  CAS  Google Scholar 

  5. Howard, J. & Hyman, A.A. Dynamics and mechanics of the microtubule plus end. Nature 422, 753–758 (2003).

    Article  CAS  Google Scholar 

  6. Vaughan, K.T. Surfing, regulating and capturing: are all microtubule-tip-tracking proteins created equal? Trends Cell Biol. 14, 491–496 (2004).

    Article  CAS  Google Scholar 

  7. Galjart, N. CLIPs and CLASPs and cellular dynamics. Nat. Rev. Mol. Cell Biol. 6, 487–498 (2005).

    Article  CAS  Google Scholar 

  8. Akhmanova, A. & Hoogenraad, C.C. Microtubule plus-end-tracking proteins: mechanisms and functions. Curr. Opin. Cell Biol. 17, 47–54 (2005).

    Article  CAS  Google Scholar 

  9. Miller, R.K., D'Silva, S., Moore, J.K. & Goodson, H.V. The CLIP-170 orthologue Bik1p and positioning the mitotic spindle in yeast. Curr. Top. Dev. Biol. 76, 49–87 (2006).

    Article  CAS  Google Scholar 

  10. Badin-Larcon, A.C. et al. Suppression of nuclear oscillations in Saccharomyces cerevisiae expressing Glu tubulin. Proc. Natl. Acad. Sci. USA 101, 5577–5582 (2004).

    Article  CAS  Google Scholar 

  11. Wen, Y. et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat. Cell Biol. 6, 820–830 (2004).

    Article  CAS  Google Scholar 

  12. Erck, C. et al. A vital role of tubulin-tyrosine-ligase for neuronal organization. Proc. Natl. Acad. Sci. USA 102, 7853–7858 (2005).

    Article  CAS  Google Scholar 

  13. Peris, L. et al. Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J. Cell Biol. 174, 839–849 (2006).

    Article  CAS  Google Scholar 

  14. Li, S. et al. Crystal structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain. J. Biol. Chem. 277, 48596–48601 (2002).

    Article  CAS  Google Scholar 

  15. Saito, K. et al. The CAP-Gly domain of CYLD associates with the proline-rich sequence in NEMO/IKKγ. Structure 12, 1719–1728 (2004).

    Article  CAS  Google Scholar 

  16. Hayashi, I., Wilde, A., Mal, T.K. & Ikura, M. Structural basis for the activation of microtubule assembly by the EB1 and p150Glued complex. Mol. Cell 19, 449–460 (2005).

    Article  CAS  Google Scholar 

  17. Honnappa, S. et al. Key interaction modes of dynamic +TIP networks. Mol. Cell 23, 663–671 (2006).

    Article  CAS  Google Scholar 

  18. Goodson, H.V. et al. CLIP-170 interacts with dynactin complex and the APC-binding protein EB1 by different mechanisms. Cell Motil. Cytoskeleton 55, 156–173 (2003).

    Article  CAS  Google Scholar 

  19. Lansbergen, G. et al. Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization. J. Cell Biol. 166, 1003–1014 (2004).

    Article  CAS  Google Scholar 

  20. Ligon, L.A., Shelly, S.S., Tokito, M.K. & Holzbaur, E.L. Microtubule binding proteins CLIP-170, EB1, and p150Glued form distinct plus-end complexes. FEBS Lett. 580, 1327–1332 (2006).

    Article  CAS  Google Scholar 

  21. Sheeman, B. et al. Determinants of S. cerevisiae dynein localization and activation: implications for the mechanism of spindle positioning. Curr. Biol. 13, 364–372 (2003).

    Article  CAS  Google Scholar 

  22. Watson, P. & Stephens, D.J. Microtubule plus-end loading of p150Glued is mediated by EB1 and CLIP-170 but is not required for intracellular membrane traffic in mammalian cells. J. Cell Sci. 119, 2758–2767 (2006).

    Article  CAS  Google Scholar 

  23. Dujardin, D. et al. Evidence for a role of CLIP-170 in the establishment of metaphase chromosome alignment. J. Cell Biol. 141, 849–862 (1998).

    Article  CAS  Google Scholar 

  24. Puls, I. et al. Mutant dynactin in motor neuron disease. Nat. Genet. 33, 455–456 (2003).

    Article  CAS  Google Scholar 

  25. Levy, J.R. et al. A motor neuron disease-associated mutation in p150Glued perturbs dynactin function and induces protein aggregation. J. Cell Biol. 172, 733–745 (2006).

    Article  CAS  Google Scholar 

  26. Krishna, S.S., Majumdar, I. & Grishin, N.V. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res. 31, 532–550 (2003).

    Article  CAS  Google Scholar 

  27. Honnappa, S., John, C.M., Kostrewa, D., Winkler, F.K. & Steinmetz, M.O. Structural insights into the EB1-APC interaction. EMBO J. 24, 261–269 (2005).

    Article  CAS  Google Scholar 

  28. Askham, J.M., Vaughan, K.T., Goodson, H.V. & Morrison, E.E. Evidence that an interaction between EB1 and p150Glued is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol. Biol. Cell 13, 3627–3645 (2002).

    Article  CAS  Google Scholar 

  29. Yan, X., Habedanck, R. & Nigg, E.A. A complex of two centrosomal proteins, CAP350 and FOP, cooperates with EB1 in microtubule anchoring. Mol. Biol. Cell 17, 634–644 (2006).

    Article  CAS  Google Scholar 

  30. Parvari, R. et al. Mutation of TBCE causes hypoparathyroidism-retardation-dysmorphism and autosomal recessive Kenny-Caffey syndrome. Nat. Genet. 32, 448–452 (2002).

    Article  CAS  Google Scholar 

  31. Folker, E.S., Baker, B.M. & Goodson, H.V. Interactions between CLIP-170, tubulin, and microtubules: implications for the mechanism of Clip-170 plus-end tracking behavior. Mol. Biol. Cell 16, 5373–5384 (2005).

    Article  CAS  Google Scholar 

  32. Tirnauer, J.S., Grego, S., Salmon, E.D. & Mitchison, T.J. EB1-microtubule interactions in Xenopus egg extracts: role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules. Mol. Biol. Cell 13, 3614–3626 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Vaughan, P.S., Miura, P., Henderson, M., Byrne, B. & Vaughan, K.T. A role for regulated binding of p150Glued to microtubule plus ends in organelle transport. J. Cell Biol. 158, 305–319 (2002).

    Article  CAS  Google Scholar 

  34. Karki, S. & Holzbaur, E.L. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol. 11, 45–53 (1999).

    Article  CAS  Google Scholar 

  35. Allan, V. Dynactin. Curr. Biol. 10, R432 (2000).

    Article  CAS  Google Scholar 

  36. Busch, K.E., Hayles, J., Nurse, P. & Brunner, D. Tea2p kinesin is involved in spatial microtubule organization by transporting tip1p on microtubules. Dev. Cell 6, 831–843 (2004).

    Article  CAS  Google Scholar 

  37. Busch, K.E. & Brunner, D. The microtubule plus end-tracking proteins mal3p and tip1p cooperate for cell-end targeting of interphase microtubules. Curr. Biol. 14, 548–559 (2004).

    Article  CAS  Google Scholar 

  38. Perez, F., Diamantopoulos, G.S., Stalder, R. & Kreis, T.E. CLIP-170 highlights growing microtubule ends in vivo. Cell 96, 517–527 (1999).

    Article  CAS  Google Scholar 

  39. Hayashi, I., Plevin, M.J. & Ikura, M. Activation of microtubule assembly by plus-end tracking proteins: regulatory interplays between EB1, CLIP-170 and p150Glued. Nat. Struct. Mol. Biol., advance online publication 9 September 2007 (doi:10.1038/nsmb1299).

    Article  CAS  Google Scholar 

  40. Westermann, S. & Weber, K. Post-translational modifications regulate microtubule function. Nat. Rev. Mol. Cell Biol. 4, 938–947 (2003).

    Article  CAS  Google Scholar 

  41. Scheel, J. et al. Purification and analysis of authentic CLIP-170 and recombinant fragments. J. Biol. Chem. 274, 25883–25891 (1999).

    Article  CAS  Google Scholar 

  42. Komarova, Y. et al. EB1 and EB3 control CLIP dissociation from the ends of growing microtubules. Mol. Biol. Cell 16, 5334–5345 (2005).

    Article  CAS  Google Scholar 

  43. Studier, F.W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article  CAS  Google Scholar 

  44. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

Download references

Acknowledgements

We thank I. Hayashi for providing data before publication, F. Winkler and D. Kostrewa for support with the X-ray data processing, T. Güntert and Y. Bächtiger for technical assistance and C. Weirich for careful reading of the manuscript. X-ray data were collected at beamline X06SA of the Swiss Light Source. This work was supported by the Swiss National Science Foundation through grant 3100A0-109423 (to M.O.S.) and within the framework of the National Center of Competence in Research Structural Biology program.

Author information

Authors and Affiliations

Authors

Contributions

A.W. and S.H. designed and executed the cloning, protein purification and structure determination. R.J. designed and executed the cloning. O.O. and I.J. designed and executed the ITC experiments. D.F. purified the protein. A.A. designed and executed the fluorescence microscopy and FRET experiments and wrote the paper. M.O.S. designed the research, guided the project and wrote the paper.

Corresponding author

Correspondence to Michel O Steinmetz.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 (PDF 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisbrich, A., Honnappa, S., Jaussi, R. et al. Structure-function relationship of CAP-Gly domains. Nat Struct Mol Biol 14, 959–967 (2007). https://doi.org/10.1038/nsmb1291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1291

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing