Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Communication between ClpX and ClpP during substrate processing and degradation

Abstract

In the ClpXP compartmental protease, ring hexamers of the AAA+ ClpX ATPase bind, denature and then translocate protein substrates into the degradation chamber of the double-ring ClpP14 peptidase. A key question is the extent to which functional communication between ClpX and ClpP occurs and is regulated during substrate processing. Here, we show that ClpX-ClpP affinity varies with the protein-processing task of ClpX and with the catalytic engagement of the active sites of ClpP. Functional communication between symmetry-mismatched ClpXP rings depends on the ATPase activity of ClpX and seems to be transmitted through structural changes in its IGF loops, which contact ClpP. A conserved arginine in the sensor II helix of ClpX links the nucleotide state of ClpX to the binding of ClpP and protein substrates. A simple model explains the observed relationships between ATP binding, ATP hydrolysis and functional interactions between ClpX, protein substrates and ClpP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Symmetry mismatch between ClpX and ClpP.
Figure 2: Properties of ClpX loopless.
Figure 3: An assay for ClpX-ClpP interaction in solution.
Figure 4: ClpX-ClpP affinity changes in an ATPase-dependent manner during substrate denaturation and translocation.
Figure 5: Modification of the ClpP active sites strengthens ClpX binding.
Figure 6: ClpP rescues the unfolding defects of ClpX mutants.
Figure 7: The ATP state of ClpX is required for strong ClpP interactions.
Figure 8: Model for the interaction of ClpX and ClpP.

Similar content being viewed by others

References

  1. Ogura, T. & Wilkinson, A.J. AAA+ superfamily ATPases: common structure—diverse function. Genes Cells 6, 575–597 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Glickman, M.H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615–623 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Gottesman, S., Wickner, S. & Maurizi, M.R. Protein quality control: triage by chaperones and proteases. Genes Dev. 11, 815–823 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Gottesman, S., Maurizi, M.R. & Wickner, S. Regulatory subunits of energy-dependent proteases. Cell 91, 435–438 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Bochtler, M., Ditzel, L., Groll, M. & Huber, R. Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc. Natl. Acad. Sci. USA 94, 6070–6074 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–471 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, J., Hartling, J.A. & Flanagan, J.M. The structure of ClpP at 2.3 Å resolution suggests a model for ATP-dependent proteolysis. Cell 91, 447–456 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, J., Hartling, J.A. & Flanagan, J.M. Crystal structure determination of Escherichia coli ClpP starting from an EM-derived mask. J. Struct. Biol. 124, 151–163 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Bochtler, M. et al. The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 403, 800–805 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Groll, M. et al. A gated channel into the proteasome core particle. Nat. Struct. Biol. 7, 1062–1067 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Sousa, M.C. et al. Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103, 633–643 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Whitby, F.G. et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408, 115–120 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, J. et al. Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9, 177–184 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Sousa, M.C. & McKay, D.B. Structure of Haemophilus influenzae HslV protein at 1.9 Å resolution, revealing a cation-binding site near the catalytic site. Acta Crystallogr. D 57, 1950–1954 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Guenther, B., Onrust, R., Sali, A., O'Donnell, M. & Kuriyan, J. Crystal structure of the δ' subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell 91, 335–345 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Neuwald, A.F., Aravind, L., Spouge, J.L. & Koonin, E.V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).

    CAS  PubMed  Google Scholar 

  17. Wang, J. et al. Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Structure 9, 1107–1116 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Sousa, M.C., Kessler, B.M., Overkleeft, H.S. & McKay, D.B. Crystal structure of HslUV complexed with a vinyl sulfone inhibitor: corroboration of a proposed mechanism of allosteric activation of HslV by HslU. J. Mol. Biol. 318, 779–785 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Yoo, S.J. et al. Purification and characterization of the heat shock proteins HslV and HslU that form a new ATP-dependent protease in Escherichia coli. J. Biol. Chem. 271, 14035–14040 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Seol, J.H. et al. The heat-shock protein HslVU from Escherichia coli is a protein-activated ATPase as well as an ATP-dependent proteinase. Eur. J. Biochem. 247, 1143–1150 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Ramachandran, R., Hartmann, C., Song, H.K., Huber, R. & Bochtler, M. Functional interactions of HslV (ClpQ) with the ATPase HslU (ClpY). Proc. Natl. Acad. Sci. USA 99, 7396–7401 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Seong, I.S. et al. The C-terminal tails of HslU ATPase act as a molecular switch for activation of HslV peptidase. J. Biol. Chem. 277, 25976–25982 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Grimaud, R., Kessel, M., Beuron, F., Steven, A.C. & Maurizi, M.R. Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J. Biol. Chem. 273, 12476–12481 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Beuron, F. et al. At sixes and sevens: characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease. J. Struct. Biol. 123, 248–259 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Ortega, J., Singh, S.K., Ishikawa, T., Maurizi, M.R. & Steven, A.C. Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP. Mol. Cell 6, 1515–1521 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, Y.I. et al. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat. Struct. Biol. 8, 230–233 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Singh, S.K. et al. Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis. J. Biol. Chem. 276, 29420–29429 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Guo, F., Maurizi, M.R., Esser, L. & Xia, D. Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease. J. Biol. Chem. 277, 46743–46752 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Kim, D.Y. & Kim, K.K. Crystal structure of ClpX molecular chaperone from Helicobacter pylori. J. Biol. Chem. 278, 50664–50670 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Thompson, M.W., Singh, S.K. & Maurizi, M.R. Processive degradation of proteins by the ATP-dependent Clp protease from Escherichia coli. Requirement for the multiple array of active sites in ClpP but not ATP hydrolysis. J. Biol. Chem. 269, 18209–18215 (1994).

    CAS  PubMed  Google Scholar 

  31. Kim, Y.I., Burton, R.E., Burton, B.M., Sauer, R.T. & Baker, T.A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 5, 639–648 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Hwang, B.J., Woo, K.M., Goldberg, A.L. & Chung, C.H. Protease Ti, a new ATP-dependent protease in Escherichia coli, contains protein-activated ATPase and proteolytic functions in distinct subunits. J. Biol. Chem. 263, 8727–8734 (1988).

    CAS  PubMed  Google Scholar 

  33. Gottesman, S., Roche, E., Zhou, Y. & Sauer, R.T. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12, 1338–1347 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Singh, S.K., Grimaud, R., Hoskins, J.R., Wickner, S. & Maurizi, M.R. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP. Proc. Natl. Acad. Sci. USA 97, 8898–8903 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kenniston, J.A., Baker, T.A., Fernandez, J.M. & Sauer, R.T. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. Cell 114, 511–520 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Wah, D.A., Levchenko, I., Baker, T.A. & Sauer, R.T. Characterization of a specificity factor for an AAA+ ATPase. Assembly of SspB dimers with ssrA-tagged proteins and the ClpX hexamer. Chem. Biol. 9, 1237–1245 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Wojtyra, U.A., Thibault, G., Tuite, A. & Houry, W.A. The N-terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function. J. Biol. Chem. 278, 48981–48990 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Flynn, J.M., Neher, S.B., Kim, Y.I., Sauer, R.T. & Baker, T.A. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell 11, 671–683 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Joshi, S.A., Baker, T.A. & Sauer, R.T. C-terminal domain mutations in ClpX uncouple substrate binding from an engagement step required for unfolding. Mol. Microbiol. 48, 67–76 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Burton, R.E., Baker, T.A. & Sauer, R.T. Energy-dependent degradation: linkage between ClpX-catalyzed nucleotide hydrolysis and protein-substrate processing. Protein Sci. 12, 893–902 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Singh, S.K., Guo, F. & Maurizi, M.R. ClpA and ClpP remain associated during multiple rounds of ATP-dependent protein degradation by ClpAP protease. Biochemistry 38, 14906–14915 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Ortega, J., Lee, H.S., Maurizi, M.R. & Steven, A.C. Alternating translocation of protein substrates from both ends of ClpXP protease. EMBO J. 21, 4938–4949 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Levchenko, I., Luo, L. & Baker, T.A. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev. 9, 2399–2408 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Levchenko, I., Yamauchi, M. & Baker, T.A. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway. Genes Dev. 11, 1561–1572 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Segel, I.H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems (Wiley Classics Library edn) 72–74 (Wiley, New York, 1993).

    Google Scholar 

  46. Karon, B.S., Mahaney, J.E. & Thomas, D.D. Halothane and cyclopiazonic acid modulate Ca-ATPase oligomeric state and function in sarcoplasmic reticulum. Biochemistry 33, 13928–13937 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Boyd, R. Burton, E. Courtenay, C. Farrell, J. Flynn, R. Grant, J. Kenniston, I. Levchenko, S. Siddiqui and D. Wah for discussion and materials, R. Horvitz and J. King for use of equipment and D. Kim and K. Kim (Sungkyunkwan University School of Medicine, Korea) for the ClpX hexamer coordinates. This work was supported by grants from the US National Institutes of Health and the Howard Hughes Medical Institute (HHMI). T. Baker is an employee of HHMI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert T Sauer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, S., Hersch, G., Baker, T. et al. Communication between ClpX and ClpP during substrate processing and degradation. Nat Struct Mol Biol 11, 404–411 (2004). https://doi.org/10.1038/nsmb752

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb752

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing