Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Targeting anthracyclines in early breast cancer: new candidate predictive biomarkers emerge

Abstract

The search for a predictive marker of sensitivity to anthracycline-based chemotherapy has proven challenging. Despite human epidermal growth factor receptor 2 (HER2) being a strong prognostic marker in breast cancer, the only therapies with which there is a recognized functional link to the HER2 oncogene are those directly targeting the molecule itself. Despite this, HER2 has been extensively assessed as a predictive marker in a variety of chemotherapy regimens including anthracyclines. Analysis of anthracycline response in patients with HER2 amplification has given conflicting results. This led to the suggestion that HER2 amplification was acting as a surrogate for the gene encoding topoisomerase IIα (TOP2A), a direct cellular target of anthracyclines. Despite an attractive functional link between TOP2A and anthracyclines, published studies have failed to show strong evidence of an interaction between TOP2A genetic aberrations and anthracycline response. A number of other biomarkers have also been assessed for their role in predicting anthracycline response, including TP53 (tumour protein 53) and BRCA1 (breast cancer 1, early onset), together with an increasing emergence of gene expression profiling to produce predictive signatures of response. Moreover, recent evidence has emerged from presentations suggesting new candidate markers of response that warrant further investigation: Chr17CEP duplication and tissue inhibitor of metalloproteases 1. This review will discuss research into HER2 and TOP2A as predictive markers of anthracycline response and will focus on current research into other possible candidate predictive markers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  • Aas T, Borresen AL, Geisler S, Smith-Sorensen B, Johnsen H, Varhaug JE et al. (1996). Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 2: 811–814.

    CAS  PubMed  Google Scholar 

  • Andersen CL, Monni O, Wagner U, Kononen J, Barlund M, Bucher C et al. (2002). High-throughput copy number analysis of 17q23 in 3520 tissue specimens by fluorescence in situ hybridization to tissue microarrays. Am J Pathol 161: 73–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arriola E, Marchio C, Tan DSP, Drury SC, Lambros MB, Natrajan R et al. (2008). Genomic analysis of the HER2//TOP2A amplicon in breast cancer and breast cancer cell lines. Lab Invest 88: 491–503.

    CAS  PubMed  Google Scholar 

  • Bartlett J, Munro A, Dunn J, Hiller L, Jordan S, Twelves C et al. (2009a). Chromosome 17 polysomy (Ch17) as a predictor of anthracycline response: emerging evidence from the UK NEAT adjuvant breast cancer trial. Cancer Res 69: 45.

    Google Scholar 

  • Bartlett JM, Desmedt C, Munro A, O'Malley FP, Larsimont D, Di Leo A et al. (2009b). Chromosome 17 polysomy: a unifying hypothesis underlying benefit from adjuvant anthracyclines? Cancer Res 69: 6059.

    Google Scholar 

  • Bartlett JMS, Going JJ, Mallon E, Watters AD, Reeves JR, Stanton PD et al. (2001). Evaluating HER2 amplification and overexpression in breast cancer. J Pathol 195: 422–428.

    CAS  PubMed  Google Scholar 

  • Bartlett JMS, Munro AF, Cameron DA, Thomas JS, Prescott RJ, Twelves C . (2008). Type I receptor tyrosine kinase profiles identify patients with enhanced benefit from anthracyclines in the BR9601 adjuvant breast cancer chemotherapy trial. J Clin Oncol 26: 1–9.

    Google Scholar 

  • Bartlett JMS, Munro AF, Dunn JA, McConkey C, Jordan S, Twelves CJ et al. (2010). Predictive markers of anthracycline benefit: a prospectively planned analysis of the UK National Epirubicin Adjuvant Trial (NEAT/BR9601). Lancet Oncol 11: 266–274.

    CAS  PubMed  Google Scholar 

  • Bertheau P, Plassa F, Espié M, Turpin E, de Roquancourt A, Marty M et al. (2002). Effect of mutated TP53 on response of advanced breast cancers to high-dose chemotherapy. Lancet 360: 852–854.

    CAS  PubMed  Google Scholar 

  • Bertheau P, Turpin E, Rickman D, Espie M, de Reynies A, Feugeas JP et al. (2009). Exquisite sensitivity of TP53 mutant and basal breast cancers to a dose-dense epirubicin-cyclophosphamide regimen. PLoS Med 4: e90.

    Google Scholar 

  • Bhargava R, Lal P, Chen BY . (2005). HER-2/neu and topoisomerase II alpha gene amplification and protein expression in invasive breast carcinomas—chromogenic in situ hybridization and immunohistochemical analyses. Am J Clin Pathol 123: 889–895.

    CAS  PubMed  Google Scholar 

  • Bidard FC, Matthieu MC, Chollet P, Raoefils I, Abrial C, Domont J et al. (2008). p53 status and efficacy of primary anthracyclines/alkylating agent-based regimen according to breast cancer molecular classes. Ann Oncol 19: 1261–1265.

    PubMed  Google Scholar 

  • Biganzoli L, Claudino WM, Pestrin M, Pozzessere D, Di Leo A . (2007). Selection of chemotherapeutic drugs in adjuvant programs based on molecular profiles: where do we stand? Crit Rev Oncol/Hematol 62: 1–8.

    Google Scholar 

  • Bonnefoi H, Potti A, Delorenzi M, Mauriac L, Campone M, Tubiana-Hulin M et al. (2007). Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00-01 clinical trial. Lancet Oncol 8: 1071–1078.

    CAS  PubMed  Google Scholar 

  • Borg A, Baldetorp B, Ferno M, Killander D, Olsson H, Sigurdsson H . (1991). ERBB2 amplification in breast cancer with a high rate of proliferation. Oncogene 6: 137–143.

    CAS  PubMed  Google Scholar 

  • Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z . (2006). A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 38: 1043–1048.

    CAS  PubMed  Google Scholar 

  • Cersosimo RJ, Hong WK . (1986). Epirubicin: a review of the pharmacology, clinical activity, and adverse effects of an adriamycin analogue. J Clin Oncol 4: 425–439.

    CAS  PubMed  Google Scholar 

  • Cheung HW, Jin DY, Ling MT, Wong YC, Wang Q, Tsao SW et al. (2005). Mitotic arrest deficient 2 expression induces chemosensitization to a DNA-damaging agent, cisplatin, in nasopharyngeal carcinoma cells. Cancer Res 65: 1450–1458.

    CAS  PubMed  Google Scholar 

  • Cortes-Funes H, Coronado C . (2007). Role of anthracyclines in the era of targeted therapy. Cardiovasc Toxicol 7: 56–60.

    CAS  PubMed  Google Scholar 

  • Davidsen ML, Wurtz SO, Romer MU, Sorensen NM, Johansen SK, Christensen IJ et al. (2006). TIMP-1 gene deficiency increases tumour cell sensitivity to chemotherapy-induced apoptosis. Br J Cancer 95: 1114–1120.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Del Mastro L, Bruzzi P, Nicolo G, Cavazzini G, Contu A, D'Amico M et al. (2005). HER2 expression and efficacy of dose-dense anthracycline-containing adjuvant chemotherapy in breast cancer patients. Br J Cancer 93: 7–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Denkert C, Loibl S, Noske A, Roller M, Muller BM, Komor M et al. (2010). Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 28: 105–113.

    CAS  PubMed  Google Scholar 

  • Di Leo A, Chan S, Paesmans M, Friedrichs K, Pinter T, Cocquyt V et al. (2004). HER-2/neu as a predictive marker in a population of advanced breast cancer patients randomly treated either with single-agent doxorubicin or single-agent docetaxel. Breast Cancer Res Treat 86: 197–206.

    CAS  PubMed  Google Scholar 

  • Di Leo A, Gancberg D, Larsimont D, Tanner M, Jarvinen T, Rouas G et al. (2002). HER-2 amplification and topoisomerase ii{alpha} gene aberrations as predictive markers in node-positive breast cancer patients randomly treated either with an an. Clin Cancer Res 8: 1107–1116.

    CAS  PubMed  Google Scholar 

  • Di Leo A, Isola J, Piette F, Ejlertsen B, Pritchard KI, Bartlett JM et al. (2009). A meta-analysis of phase III trials evaluating the predictive value of HER2 and topoisomerase II alpha in early breast cancer patients treated with CMF or anthracycline-based adjuvant therapy. Cancer Res 69: 705.

    Google Scholar 

  • Di Leo A, Isola J . (2003). Topoisomerase IIalpha as a marker predicting the efficacy of anthracyclines in breast cancer: are we at the end of the beginning? Clin Breast Cancer 4: 179–186.

    CAS  PubMed  Google Scholar 

  • Di Leo A, Larsimont D, Gabcberg D, Jarvinen T, Beauduin M, Vindevoghel A et al. (2001). HER-2 and topo-isomerase II{alpha} as predictive markers in a population of node-positive breast cancer patients randomly treat. Ann Oncol 12: 1081–1089.

    CAS  PubMed  Google Scholar 

  • Di Leo A, Tanner M, Desmedt C, Paesmans M, Cardoso F, Durbecq V et al. (2007). p-53 gene mutations as a predictive marker in a population of advanced breast cancer patients randomly treated with doxorubicin or docetaxel in the context of a phase III clinical trial. Ann Oncol 18: 997–1003.

    CAS  PubMed  Google Scholar 

  • Du Y, Yin F, Liu C, Hu S, Wang J, Xie H et al. (2006). Depression of MAD2 inhibits apoptosis of gastric cancer cells by upregulating Bcl-2 and interfering mitochondrion pathway. Biochem Biophys Res Commun 345: 1092–1098.

    CAS  PubMed  Google Scholar 

  • Eifel P, Axelson JA, Costa J, Crowley J, Curran WJ, Deshler A et al. (2001). National Institutes of Health Consensus Development Conference statement: adjuvant therapy for breast cancer, November 1-3, 2000. J Natl Cancer Inst 93: 979–989.

    CAS  PubMed  Google Scholar 

  • Ejlertsen B, Jensen MB, Nielsen KV, Balslev E, Rasmussen BB, Willemoe GL et al. (2010). HER2, TOP2A, and TIMP-1 and responsiveness to adjuvant anthracycline-containing chemotherapy in high-risk breast cancer patients. J Clin Oncol 28: 984–990.

    CAS  PubMed  Google Scholar 

  • Fedier A, Steiner RA, Schwarz VA, Lenherr L, Haller U, Fink D . (2003). The effect of loss of Brca1 on the sensitivity to anticancer agents in p53-deficient cells. Int J Oncol 22: 1169–1173.

    CAS  PubMed  Google Scholar 

  • Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H et al. (2008). Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14: 518–527.

    CAS  PubMed  Google Scholar 

  • Fraser JA, Reeves JR, Stanton PD, Black DM, Going JJ, Cooke TG et al. (2003). A role for BRCA1 in sporadic breast cancer. Br J Cancer 88: 1263–1270.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fung MKL, Cheung HW, Ling MT, Cheung ALM, Wong YC, Wang X . (2006). Role of MEK/ERK pathway in the MAD2-mediated cisplatin sensitivity in testicular germ cell tumour cells. B J Cancer 95: 475–484.

    CAS  Google Scholar 

  • Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma YT, Ortiz C et al. (2009). Activation of the NLRP3 inflammasome in dendritic cells induces IL-1 beta-dependent adaptive immunity against tumors. Nat Med 15: 1170–1199.

    CAS  PubMed  Google Scholar 

  • Greenberg RA . (2009). Recognition of DNA double strand breaks by the BRCA1 tumor suppressor network. Chromosoma 117: 305–317.

    Google Scholar 

  • Hernando E, Nahle Z, Juan G, Diaz-Rodriguez E, Alaminos M, Hemann M et al. (2004). Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430: 797–802.

    CAS  PubMed  Google Scholar 

  • Holten-Andersen MN, Stephens RW, Nielsen HJ, Murphy G, Christensen IJ, Stetler-Stevenson W et al. (2000). High preoperative plasma tissue inhibitor of metalloproteinase-1 levels are associated with short survival of patients with colorectal cancer. Clin Cancer Res 6: 4292–4299.

    CAS  PubMed  Google Scholar 

  • Hutchins LF, Green SJ, Ravdin PM, Lew D, Martino S, Abeloff M et al. (2005). Randomized, controlled trial of cyclophosphamide, methotrexate, and fluorouracil versus cyclophosphamide, doxorubicin, and fluorouracil with and without tamoxifen for high-risk, node-negative breast cancer: treatment results of intergroup protocol INT-0102. J Clin Oncol 23: 8313–8321.

    CAS  PubMed  Google Scholar 

  • Jarvinen T, Liu ET . (2003). Topoisomerase IIalpha gene (TOP2A) amplification and deletion in cancer--more common than anticipated. Cytopathology 14: 309–313.

    CAS  PubMed  Google Scholar 

  • Jarvinen TA, Tanner M, Barlund M, Borg A, Isola J . (1999). Characterization of topoisomerase II alpha gene amplification and deletion in breast cancer. Genes Chromosomes Cancer 26: 142–150.

    CAS  PubMed  Google Scholar 

  • Jarvinen TAH, Tanner M, Rantanen V, Barlund M, Borg A, Grenman S et al. (2000a). Amplification and deletion of topoisomerase II alpha associate with ErbB-2 amplification and affect sensitivity to topoisomerase II inhibitor doxorubicin in breast cancer. Am J Pathol 156: 839–847.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvinen TAH, Tanner M, Rantanen V, Barlund M, Borg A, Grenman S et al. (2000b). Amplification and deletion of topoisomerase ii{alpha} associate with erbb-2 amplification and affect sensitivity to topoisomerase ii inhibitor doxorubicin in breast can. Am J Pathol 156: 839–847.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Goldberg ID, Shi YE . (2002). Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene 21: 2245–2252.

    CAS  PubMed  Google Scholar 

  • John RG . (2003). Impact of germline BRCA1 mutations and overexpression of p53 on prognosis and response to treatment following breast carcinoma. Cancer 97: 527–536.

    Google Scholar 

  • Kallioniemi A, Kallioniemi OP, Piper J, Tanner M, Stokke T, Chen L et al. (1994). Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci USA 91: 2156–2160.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HT, Chen JJ . (2008). New players in the BRCA1-mediated DNA damage responsive pathway. Mol Cells 25: 457–461.

    CAS  PubMed  Google Scholar 

  • Klijn JG, Berns PM, Bontenbal M, Foekens JA . (1993). Growth factors: clinical implications in breast cancer. Ann New York Acad Sci 698: 85–101.

    CAS  Google Scholar 

  • Knoop AS, Knudsen H, Balslev E, Rasmussen BB, Overgaard J, Nielsen KV et al. (2005). Retrospective analysis of topoisomerase iia amplifications and deletions as predictive markers in primary breast cancer patients randomly assigned to cyclophosphamide, methotrexate, and fluorouracil or cyclophosphamide, epirubicin, and fluorouracil: Danish Breast Cancer Cooperative Group. J Clin Oncol 23: 7483–7490.

    CAS  PubMed  Google Scholar 

  • Levine MN, Bramwell VH, Pritchard KI, Norris BD, Shepherd LE, Abu-Zahra H et al. (1998). Randomized trial of intensive cyclophosphamide, epirubicin, and fluorouracil chemotherapy compared with cyclophosphamide, methotrexate, and fluorouracil in premenopausal women with node-positive breast cancer. National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 16: 2651–2658.

    CAS  PubMed  Google Scholar 

  • Levine MN, Pritchard KI, Bramwell VHC, Shepherd LE, Tu D, Paul N . (2005). Randomized trial comparing cyclophosphamide, epirubicin, and fluorouracil with cyclophosphamide, methotrexate, and fluorouracil in premenopausal women with node-positive breast cancer: update of National Cancer Institute of Canada Clinical Trials Group Trial MA5. J Clin Oncol 23: 5166–5170.

    CAS  PubMed  Google Scholar 

  • Lipton A, Leitzel K, Chaudri-Ross HA, Evans DB, Ali SM, Demers L et al. (2008). Serum TIMP-1 and response to the aromatase inhibitor letrozole versus tamoxifen in metastatic breast cancer. J Clin Oncol 26: 2653–2658.

    CAS  PubMed  Google Scholar 

  • McArthur HL, Tan LK, Patil S, Wigler M, Hudis CA, Hicks J et al. (2009). High resolution representational oligonucleotide microarray analysis (ROMA) suggests that TOPO2 and HER2 co-amplification is uncommon in human breast cancer. Cancer Res 69: 2023.

    Google Scholar 

  • McClendon AK, Osheroff N . (2007). DNA topoisomerase II, genotoxicity, and cancer. Mutat Res 623: 83–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCullough SD, Hu Y, Li R . (2007). BRCA1 in initiation, invasion, and metastasis of breast cancer: a perspective from the tumor microenvironment. Cancer Metast Biol Treat 11: 31–46.

    CAS  Google Scholar 

  • Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L . (2004). Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56: 185–229.

    CAS  PubMed  Google Scholar 

  • Murphy CG, Moynahan ME . (2010). BRCA gene structure and function in tumor suppression a repair-centric perspective. Cancer J 16: 39–47.

    CAS  PubMed  Google Scholar 

  • Muss HB, Thor AD, Berry DA, Kute T, Liu ET, Koerner F et al. (1994). c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. N Engl J Med 330: 1260–1266.

    CAS  PubMed  Google Scholar 

  • Nevins JR . (2001). The Rb/E2F pathway and cancer. Human Mol Gen 10: 699–703.

    CAS  Google Scholar 

  • Nielsen KV, Ejlertsen B, Moller S, Jorgensen JT, Knoop A, Knudsen H et al. (2008). The value of TOP2A gene copy number variation as a biomarker in breast cancer: update of DBCG trial 89D. Acta Oncol 47: 725–734.

    CAS  PubMed  Google Scholar 

  • Norton L . (2008). Cancer stem cells, self-feeding, and decremented exponential growth: theoretical and clinical implications. Breast Cancer 29: 27–36.

    Google Scholar 

  • O'Malley FP, Chia S, Tu D, Shepherd LE, Levine MN, Bramwell VH et al. (2009). Topoisomerase II alpha and responsiveness of breast cancer to adjuvant chemotherapy. J Natl Cancer Inst 101: 644–650.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O'Malley FP, Chia S, Tu D, Shepherd LE, Levine MN, Huntsman DG et al. (2006). Prognostic and predictive value of topoisomerase II alpha in a randomized trial comparing CMF to CEF in premenopausal women with node positive breast cancer (NCIC CTG MA.5). ASCO Meeting Abst 24: 533.

  • Olivier M, Petitjean A, Marcel V, Petre A, Mounawar M, Plymoth A et al. (2008). Recent advances in p53 research: an interdisciplinary perspective. Cancer Gene Ther 16: 1–12.

    PubMed  Google Scholar 

  • Orsetti B, Nugoli M, Cervera N, Lasorsa L, Chuchana P, Ursule L et al. (2004). Genomic and expression profiling of chromosome 17 in breast cancer reveals complex patterns of alterations and novel candidate genes. Cancer Res 64: 6453–6460.

    CAS  PubMed  Google Scholar 

  • Paik S, Bryant J, Park C, Fisher B, Tan-Chiu E, Hyams D et al. (1998). cerB-2 and response to doxorubicin in patients with axillary lymph node-positive, hormone receptor-negative breast cancer. J Natl Cancer Inst 90: 1361–1370.

    CAS  PubMed  Google Scholar 

  • Paik S, Bryant J, Tan-Chiu E, Yothers G, Park C, Wickerham DL et al. (2000). HER2 and choice of adjuvant chemotherapy for invasive breast cancer: national surgical adjuvant breast and bowel project protocol b-15. J Natl Cancer Inst 92: 1991–1998.

    CAS  PubMed  Google Scholar 

  • Pegram MD, Finn RS, Arzoo K, Beryt M, Pietras RJ, Slamon DJ . (1997). The effect of HER-2/neu overexpression on chemotherapeutic drug sensitivity in human breast and ovarian cancer cells. Oncogene 15: 537–547.

    CAS  PubMed  Google Scholar 

  • Pellikainen JM, Ropponen KM, Kataja VV, Kellokoski JK, Eskelinen MJ, Kosma VM . (2004). Expression of matrix metalloproteinase (MMP)-2 and MMP-9 in breast cancer with special reference to activator protein-2, HER2, and prognosis. Clin Cancer Res 10: 7621–7628.

    CAS  PubMed  Google Scholar 

  • Poole CJ, Earl HM, Hiller L, Dunn JA, Bathers S, Grieve RJ et al. (2006). Epirubicin and cyclophosphamide, methotrexate, and fluorouracil as adjuvant therapy for early breast cancer. N Engl J Med 355: 1851–1862.

    CAS  PubMed  Google Scholar 

  • Pritchard KI, Messersmith H, Elavathil L, Trudeau M, O'Malley F, Dhesy-Thind B . (2008). HER-2 and topoisomerase ii as predictors of response to chemotherapy. J Clin Oncol 26: 736–744.

    CAS  PubMed  Google Scholar 

  • Pritchard KI, Shepherd LE, O'Malley FP, Andrulis IL, Tu D, Bramwell VH et al. (2006). HER2 and responsiveness of breast cancer to adjuvant chemotherapy. N Engl J Med 354: 2103–2111.

    CAS  PubMed  Google Scholar 

  • Rahko E, Blanco G, Soini Y, Bloigu R, Jukkola AA . (2003). Mutant TP53 gene status is associated with a poor prognosis and anthracycline-resistance in breast cancer patients. Eur J Cancer 39: 447–453.

    CAS  PubMed  Google Scholar 

  • Ree AH, Florenes VA, Berg JP, Maelandsmo GM, Nesland JM, Fodstad O . (1997). High levels of messenger RNAs for tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in primary breast carcinomas are associated with development of distant metastases. Clin Cancer Res 3: 1623–1628.

    CAS  PubMed  Google Scholar 

  • Reinholz MM, Jenkins RB, Hillman D, Lingle WL, Davidson N, Martino S et al. (2007). The clinical significance of polysomy 17 in the HER2+ N9831 intergroup adjuvant trastuzumab trial. Breast Cancer Res Treat 106: S11.

    Google Scholar 

  • Ried T, Just KE, Holtgreve-Grez H, Manoir S, Speicher MR, Schrock E et al. (1995). Comparative genomic hybridization of formalin-fixed, paraffin-embedded breast tumors reveals different patterns of chromsomal gains and losses in fibroadenomas and diploid and aneuploid carcinomas. Cancer Res 55: 5415–5423.

    CAS  PubMed  Google Scholar 

  • Schmidt M, Hengstler JG, von Torne C, Koelbl H, Gehrmann MC . (2009). Coordinates in the universe of node-negative breast cancer revisited. Cancer Res 69: 2695–2698.

    CAS  PubMed  Google Scholar 

  • Schrohl AS, Holten-Andersen MN, Peters HA, Look MP, Meijer-van Gelder ME, Klijn JGM et al. (2004). Tumor tissue levels of tissue inhibitor of metalloproteinase-1 as a prognostic marker in primary breast cancer. Clin Cancer Res 10: 2289–2298.

    CAS  PubMed  Google Scholar 

  • Schrohl AS, Meijer-van Gelder ME, Holten-Andersen MN, Christensen IJ, Look MP, Mouridsen HT et al. (2006). Primary tumor levels of tissue inhibitor of metalloproteinases-1 are predictive of resistance to chemotherapy in patients with metastatic breast cancer. Clin Cancer Res 12: 7054–7058.

    CAS  PubMed  Google Scholar 

  • Slamon D, Eiermann W, Robert N . (2005). Phase III randomized trial comparing doxorubicin and cyclophosphamide followed by docetaxel (AC-T) with doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab (AC-TH) with docetaxel, carboplatin and trastuzumab (TCH) in HER2 positive early breast cancer patients: BCIRG 006 study. Breast Cancer Res Treat 94: S5.

    Google Scholar 

  • Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707–712.

    CAS  PubMed  Google Scholar 

  • Small GW, Somasundaram S, Moore DT, Shi YY, Orlowski RZ . (2003). Repression of mitogen-activated protein kinase (MAPK) phosphatase-1 by anthracyclines contributes to their antiapoptotic activation of p44/42-MAPK. J Pharmacol Exp Ther 307: 861–869.

    CAS  PubMed  Google Scholar 

  • Spencer DM, Cutts SM, Kimura K, Gray PJ, Phillips DR . (2003). Detection of labile anthracycline-DNA adducts by real-time PCR. Oncology Res 13: 479–489.

    Google Scholar 

  • Taatjes DJ, Fenick DJ, Koch TH . (1999). Nuclear targeting and nuclear retention of anthracycline formaldehyde conjugates implicates DNA covalent bonding in the cytotoxic mechanism of anthracyclines. Chem Res Toxicol 12: 588–596.

    CAS  PubMed  Google Scholar 

  • Tanner M, Isola J, Wiklund T, Erikstein B, Kellokumpu-Lehtinen P, Malmstrom P et al. (2006). Topoisomerase IIalpha gene amplification predicts favorable treatment response to tailored and dose-escalated anthracycline-based adjuvant chemotherapy in HER-2/neu-amplified breast cancer: Scandinavian Breast Group Trial 9401. J Clin Oncol 24: 2428–2436.

    CAS  PubMed  Google Scholar 

  • Teschendorff AE, Miremadi A, Pinder SE, Ellis IO, Caldas C . (2007). An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol 8: R157.

    PubMed  PubMed Central  Google Scholar 

  • Todorovic-Rakovic N, Neskovic-Konstantinovic Z, Nikolic-Vukosavljevic D . (2009). Metastatic breast cancer survival according to HER2 and Topo2a gene status. Dis Markers 26: 171–180.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tordai A, Wang J, Andre F, Liedtke C, Yan K, Sotiriou C et al. (2008). Evaluation of biological pathways involved in chemotherapy response in breast cancer. Breast Cancer Res 10: 37–46.

    Google Scholar 

  • Tovey SM, Witton CJ, Bartlett JMS, Stanton PD, Reeves JR, Cooke TG . (2004). Outcome and human epidermal growth factor receptor (HER) 1-4 status in invasive breast carcinomas with proliferation indices evaluated by bromodeoxyuridine labelling. Breast Cancer Res 6: R246–R251.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent-Salomon A, Rousseau A, Jouve M, Beuzeboc P, Sigal-Zafrani B, Frθneaux P et al. (2004). Proliferation markers predictive of the pathological response and disease outcome of patients with breast carcinomas treated by anthracycline-based preoperative chemotherapy. Eur J Cancer 40: 1502–1508.

    CAS  PubMed  Google Scholar 

  • Wurtz SO, Schrohl AO, Mouridsen HT, Brunner N . (2008). TIMP-1 as a tumor marker in breast cancer—an update. Acta Oncologica 47: 580–590.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M S Bartlett.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munro, A., Cameron, D. & Bartlett, J. Targeting anthracyclines in early breast cancer: new candidate predictive biomarkers emerge. Oncogene 29, 5231–5240 (2010). https://doi.org/10.1038/onc.2010.286

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.286

Keywords

This article is cited by

Search

Quick links