Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Smoking accelerates pancreatic cancer progression by promoting differentiation of MDSCs and inducing HB-EGF expression in macrophages

Abstract

Smoking is an established risk factor for pancreatic cancer (PC), but late diagnosis limits the evaluation of its mechanistic role in the progression of PC. We used a well-established genetically engineered mouse model (LSL-K-rasG12D) of PC to elucidate the role of smoking during initiation and development of pancreatic intraepithelial neoplasia (PanIN). The 10-week-old floxed mice (K-rasG12D; Pdx-1cre) and their control unfloxed (LSL-K-rasG12D) littermates were exposed to cigarette smoke (total suspended particles: 150 mg/m3) for 20 weeks. Smoke exposure significantly accelerated the development of PanIN lesions in the floxed mice, which correlated with tenfold increase in the expression of cytokeratin19. The systemic accumulation of myeloid-derived suppressor cells (MDSCs) decreased significantly in floxed mice compared with unfloxed controls (P<0.01) after the smoke exposure with the concurrent increase in the macrophage (P<0.05) and dendritic cell (DCs) (P<0.01) population. Further, smoking-induced inflammation (IFN-γ, CXCL2; P<0.05) was accompanied by enhanced activation of pancreatic stellate cells and elevated levels of serum retinoic acid-binding protein 4, indicating increased bioavailability of retinoic acid which contributes to differentiation of MDSCs to tumor-associated macrophages (TAMs) and DCs. TAMs predominantly contribute to the increased expression of heparin-binding epidermal growth factor-like growth factor (EGFR ligand) in pre-neoplastic lesions in smoke-exposed floxed mice that facilitate acinar-to-ductal metaplasia (ADM). Further, smoke exposure also resulted in partial suppression of the immune system early during PC progression. Overall, the present study provides a novel mechanism of smoking-induced increase in ADM in the presence of constitutively active K-ras mutation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Braat H, Bruno M, Kuipers EJ, Peppelenbosch MP . Pancreatic cancer: promise for personalised medicine? Cancer Lett 2012; 318: 1–8.

    Article  CAS  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2012. CA Cancer J Clin 2012; 62: 10–29.

    Article  Google Scholar 

  3. Maitra A, Hruban RH . Pancreatic cancer. Annu Rev Pathol 2008; 3: 157–188.

    Article  CAS  Google Scholar 

  4. Gabrilovich DI, Nagaraj S . Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9: 162–174.

    Article  CAS  Google Scholar 

  5. Toh B, Wang X, Keeble J, Sim WJ, Khoo K, Wong WC et al. Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS Biol 2011; 9: e1001162.

    Article  CAS  Google Scholar 

  6. Zhao F, Obermann S, von WR, Haile L, Manns MP, Korangy F et al. Increase in frequency of myeloid-derived suppressor cells in mice with spontaneous pancreatic carcinoma. Immunology 2009; 128: 141–149.

    Article  CAS  Google Scholar 

  7. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 2006; 66: 1123–1131.

    Article  CAS  Google Scholar 

  8. Bracci PM . Obesity and pancreatic cancer: overview of epidemiologic evidence and biologic mechanisms. Mol Carcinog 2012; 51: 53–63.

    Article  CAS  Google Scholar 

  9. Duell EJ, Holly EA, Bracci PM, Liu M, Wiencke JK, Kelsey KT . A population-based, case-control study of polymorphisms in carcinogen-metabolizing genes, smoking, and pancreatic adenocarcinoma risk. J Natl Cancer Inst 2002; 94: 297–306.

    Article  CAS  Google Scholar 

  10. Duell EJ . Epidemiology and potential mechanisms of tobacco smoking and heavy alcohol consumption in pancreatic cancer. Mol Carcinog 2012; 51: 40–52.

    Article  CAS  Google Scholar 

  11. Sopori M . Effects of cigarette smoke on the immune system. Nat Rev Immunol 2002; 2: 372–377.

    Article  CAS  Google Scholar 

  12. Sopori ML, Kozak W . Immunomodulatory effects of cigarette smoke. J Neuroimmunol 1998; 83: 148–156.

    Article  CAS  Google Scholar 

  13. Zeidel A, Beilin B, Yardeni I, Mayburd E, Smirnov G, Bessler H . Immune response in asymptomatic smokers. Acta Anaesthesiol Scand 2002; 46: 959–964.

    Article  CAS  Google Scholar 

  14. Blackford A, Parmigiani G, Kensler TW, Wolfgang C, Jones S, Zhang X et al. Genetic mutations associated with cigarette smoking in pancreatic cancer. Cancer Res 2009; 69: 3681–3688.

    Article  CAS  Google Scholar 

  15. Malfertheiner P, Schutte K . Smoking—a trigger for chronic inflammation and cancer development in the pancreas. Am J Gastroenterol 2006; 101: 160–162.

    Article  CAS  Google Scholar 

  16. Nouri-Shirazi M, Guinet E . Evidence for the immunosuppressive role of nicotine on human dendritic cell functions. Immunology 2003; 109: 365–373.

    Article  CAS  Google Scholar 

  17. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003; 4: 437–450.

    Article  CAS  Google Scholar 

  18. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 2005; 7: 469–483.

    Article  CAS  Google Scholar 

  19. Elliott MK, Sisson JH, West WW, Wyatt TA . Differential in vivo effects of whole cigarette smoke exposure versus cigarette smoke extract on mouse ciliated tracheal epithelium. Exp Lung Res 2006; 32: 99–118.

    Article  CAS  Google Scholar 

  20. Hengesbach LM, Hoag KA . Physiological concentrations of retinoic acid favor myeloid dendritic cell development over granulocyte development in cultures of bone marrow cells from mice. J Nutr 2004; 134: 2653–2659.

    Article  CAS  Google Scholar 

  21. Kusmartsev S, Cheng F, Yu B, Nefedova Y, Sotomayor E, Lush R et al. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res 2003; 63: 4441–4449.

    CAS  PubMed  Google Scholar 

  22. Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA, Gabrilovich DI . Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res 2007; 67: 11021–11028.

    Article  CAS  Google Scholar 

  23. Apte MV, Haber PS, Applegate TL, Norton ID, McCaughan GW, Korsten MA et al. Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 1998; 43: 128–133.

    Article  CAS  Google Scholar 

  24. Bachem MG, Schneider E, Gross H, Weidenbach H, Schmid RM, Menke A et al. Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 1998; 115: 421–432.

    Article  CAS  Google Scholar 

  25. McCarroll JA, Phillips PA, Santucci N, Pirola RC, Wilson JS, Apte MV . Vitamin A inhibits pancreatic stellate cell activation: implications for treatment of pancreatic fibrosis. Gut 2006; 55: 79–89.

    Article  CAS  Google Scholar 

  26. McCarroll JA, Phillips PA, Park S, Doherty E, Pirola RC, Wilson JS et al. Pancreatic stellate cell activation by ethanol and acetaldehyde: is it mediated by the mitogen-activated protein kinase signaling pathway? Pancreas 2003; 27: 150–160.

    Article  CAS  Google Scholar 

  27. Habisch H, Zhou S, Siech M, Bachem MG . Interaction of stellate cells with pancreatic carcinoma cells. Cancers (Basel) 2010; 2: 1661–1682.

    Article  CAS  Google Scholar 

  28. Hutchison SK, Harrison C, Stepto N, Meyer C, Teede HJ . Retinol-binding protein 4 and insulin resistance in polycystic ovary syndrome. Diabetes Care 2008; 31: 1427–1432.

    Article  CAS  Google Scholar 

  29. Manicassamy S, Pulendran B . Retinoic acid-dependent regulation of immune responses by dendritic cells and macrophages. Semin Immunol 2009; 21: 22–27.

    Article  CAS  Google Scholar 

  30. Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ et al. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 2006; 66: 9299–9307.

    Article  CAS  Google Scholar 

  31. Ding Q, Jin T, Wang Z, Chen Y . Catalase potentiates retinoic acid-induced THP-1 monocyte differentiation into macrophage through inhibition of peroxisome proliferator-activated receptor gamma. J Leukoc Biol 2007; 81: 1568–1576.

    Article  CAS  Google Scholar 

  32. Zhang QW, Liu L, Gong CY, Shi HS, Zeng YH, Wang XZ et al. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One 2012; 7: e50946.

    Article  CAS  Google Scholar 

  33. Ray KC, Moss ME, Franklin JL, Weaver CJ, Higginbotham J, Song Y et al. Heparin-binding epidermal growth factor-like growth factor eliminates constraints on activated Kras to promote rapid onset of pancreatic neoplasia. Oncogene 2013; 33: 823–831.

    Article  Google Scholar 

  34. Means AL, Ray KC, Singh AB, Washington MK, Whitehead RH, Harris RC Jr et al. Overexpression of heparin-binding EGF-like growth factor in mouse pancreas results in fibrosis and epithelial metaplasia. Gastroenterology 2003; 124: 1020–1036.

    Article  CAS  Google Scholar 

  35. Navas C, Hernandez-Porras I, Schuhmacher AJ, Sibilia M, Guerra C, Barbacid M . EGF receptor signaling is essential for k-ras oncogene-driven pancreatic ductal adenocarcinoma. Cancer Cell 2012; 22: 318–330.

    Article  CAS  Google Scholar 

  36. Kroening PR, Barnes TW, Pease L, Limper A, Kita H, Vassallo R . Cigarette smoke-induced oxidative stress suppresses generation of dendritic cell IL-12 and IL-23 through ERK-dependent pathways. J Immunol 2008; 181: 1536–1547.

    Article  CAS  Google Scholar 

  37. Zhang S, Petro TM . The effect of nicotine on murine CD4 T cell responses. Int J Immunopharmacol 1996; 18: 467–478.

    Article  CAS  Google Scholar 

  38. Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH . Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res 2007; 67: 9518–9527.

    Article  CAS  Google Scholar 

  39. Colby JK, Klein RD, McArthur MJ, Conti CJ, Kiguchi K, Kawamoto T et al. Progressive metaplastic and dysplastic changes in mouse pancreas induced by cyclooxygenase-2 overexpression. Neoplasia 2008; 10: 782–796.

    Article  CAS  Google Scholar 

  40. Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 2012; 21: 822–835.

    Article  CAS  Google Scholar 

  41. Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D . Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 2012; 21: 836–847.

    Article  CAS  Google Scholar 

  42. Breitman TR, Collins SJ, Keene BR . Terminal differentiation of human promyelocytic leukemic cells in primary culture in response to retinoic acid. Blood 1981; 57: 1000–1004.

    CAS  PubMed  Google Scholar 

  43. van Bockstaele DR, Lenjou M, Snoeck HW, Lardon F, Stryckmans P, Peetermans ME . Direct effects of 13-cis and all-trans retinoic acid on normal bone marrow (BM) progenitors: comparative study on BM mononuclear cells and on isolated CD34+ BM cells. Ann Hematol 1993; 66: 61–66.

    Article  CAS  Google Scholar 

  44. Kuwata T, Wang IM, Tamura T, Ponnamperuma RM, Levine R, Holmes KL et al. Vitamin A deficiency in mice causes a systemic expansion of myeloid cells. Blood 2000; 95: 3349–3356.

    CAS  PubMed  Google Scholar 

  45. Froeling FE, Feig C, Chelala C, Dobson R, Mein CE, Tuveson DA et al. Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-beta-catenin signaling to slow tumor progression. Gastroenterology 2011; 141: 1486–1497.

    Article  CAS  Google Scholar 

  46. van Geenen EJ, Smits MM, Schreuder TC, van der Peet DL, Bloemena E, Mulder CJ . Smoking is related to pancreatic fibrosis in humans. Am J Gastroenterol 2011; 106: 1161–1166.

    Article  Google Scholar 

  47. Mohty M, Morbelli S, Isnardon D, Sainty D, Arnoulet C, Gaugler B et al. All-trans retinoic acid skews monocyte differentiation into interleukin-12-secreting dendritic-like cells. Br J Haematol 2003; 122: 829–836.

    Article  CAS  Google Scholar 

  48. Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 2005; 65: 5278–5283.

    Article  CAS  Google Scholar 

  49. Edwards JP, Zhang X, Frauwirth KA, Mosser DM . Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 2006; 80: 1298–1307.

    Article  CAS  Google Scholar 

  50. Moniaux N, Chakraborty S, Yalniz M, Gonzalez J, Shostrom VK, Standop J et al. Early diagnosis of pancreatic cancer: neutrophil gelatinase-associated lipocalin as a marker of pancreatic intraepithelial neoplasia. Br J Cancer 2008; 98: 1540–1547.

    Article  CAS  Google Scholar 

  51. Singh AP, Moniaux N, Chauhan SC, Meza JL, Batra SK . Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis. Cancer Res 2004; 64: 622–630.

    Article  CAS  Google Scholar 

  52. Momi N, Ponnusamy MP, Kaur S, Rachagani S, Kunigal SS, Chellappan S et al. Nicotine/cigarette smoke promotes metastasis of pancreatic cancer through alpha7nAChR-mediated MUC4 upregulation. Oncogene 2013; 32: 1384–1395.

    Article  CAS  Google Scholar 

  53. Mathison A, Liebl A, Bharucha J, Mukhopadhyay D, Lomberk G, Shah V et al. Pancreatic stellate cell models for transcriptional studies of desmoplasia-associated genes. Pancreatology 2010; 10: 505–516.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Patrick C Swanson, Creighton University, Omaha, for suggestions. We appreciate the UNMC Cell Analysis Facility for analysis and graduate students and technician Erik Moore from Dr Batra’s lab for help in sample preparation. This work was supported in part by the grant from National Institute of Health (R01CA78590, EDRN U01 CA111294, R01 CA133774, R01 CA131944, SPORE P50 CA127297, T32 CA009476, P20 GM103480, R21 CA156037 and U54 TMEN CA163120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S K Batra.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Torres, M., Kaur, S. et al. Smoking accelerates pancreatic cancer progression by promoting differentiation of MDSCs and inducing HB-EGF expression in macrophages. Oncogene 34, 2052–2060 (2015). https://doi.org/10.1038/onc.2014.154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.154

This article is cited by

Search

Quick links