Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation

Abstract

The imprinted, developmentally regulated H19 long noncoding RNA has been implicated in the pathogenesis of diverse human cancers, but the underlying mechanisms have remained poorly understood. Here, we report that H19 promotes tumor cell migration and invasion by inhibiting let-7, a potent tumor suppressor microRNA that functions to posttranscriptionally suppress the expression of oncogenes that regulate cell growth and motility. We show that H19 depletion impairs, whereas its overexpression enhances the motility and invasiveness of tumor cells. These phenomena occur, at least in part through affecting let-7-mediated regulation of metastasis-promoting genes, including Hmga2, c-Myc and Igf2bp3. This H19/let-7-dependent regulation is recapitulated in vivo where co-expressions of oncogenes and H19 exist in both primary human ovarian and endometrial cancers. Furthermore, we provide evidence that the anti-diabetic drug metformin inhibits tumor cell migration and invasion, partly by downregulating H19 via DNA methylation. Our results reveal a novel mechanism underpinning H19-mediated regulation in metastasis and may explain why in some cases increased let-7 expression unexpectedly correlates with poor prognosis, given the widely accepted role for let-7 as a tumor suppressor. Targeting this newly identified pathway might offer therapeutic opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Gabory A, Jammes H, Dandolo L . The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays 2010; 32: 473–480.

    Article  CAS  PubMed  Google Scholar 

  2. Matouk I, Raveh E, Ohana P, Lail RA, Gershtain E, Gilon M et al. The increasing complexity of the oncofetal h19 gene locus: functional dissection and therapeutic intervention. Intl J Mol Sci 2013; 14: 4298–4316.

    Article  CAS  Google Scholar 

  3. Tanos V, Prus D, Ayesh S, Weinstein D, Tykocinski ML, De-Groot N et al. Expression of the imprinted H19 oncofetal RNA in epithelial ovarian cancer. Eur J Obstet Gynecol Reprod Biol 1999; 85: 7–11.

    Article  CAS  PubMed  Google Scholar 

  4. Tanos V, Ariel I, Prus D, De-Groot N, Hochberg A . H19 and IGF2 gene expression in human normal, hyperplastic, and malignant endometrium. Intl J Gynecol Cancer 2004; 14: 521–525.

    Article  CAS  Google Scholar 

  5. Tsang WP, Ng EK, Ng SS, Jin H, Yu J, Sung JJ et al. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis 2010; 31: 350–358.

    Article  CAS  PubMed  Google Scholar 

  6. Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A et al. The H19 non-coding RNA is essential for human tumor growth. PLoS ONE 2007; 2: e845.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J . Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett 2013; 333: 213–221.

    Article  CAS  PubMed  Google Scholar 

  8. Wang G, Lunardi A, Zhang J, Chen Z, Ala U, Webster KA et al. Zbtb7a suppresses prostate cancer through repression of a Sox9-dependent pathway for cellular senescence bypass and tumor invasion. Nat Genet 2013; 45: 739–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B . Tumour-suppressor activity of H19 RNA. Nature 1993; 365: 764–767.

    Article  CAS  PubMed  Google Scholar 

  10. Yoshimizu T, Miroglio A, Ripoche MA, Gabory A, Vernucci M, Riccio A et al. The H19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci USA 2008; 105: 12417–12422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang L, Yang F, Yuan J-h, Yuan S-x, Zhou W-p, Huo X-s et al. Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis 2013; 34: 577–586.

    Article  PubMed  Google Scholar 

  12. Fanale D, Amodeo V, Corsini LR, Rizzo S, Bazan V, Russo A . Breast cancer genome-wide association studies: there is strength in numbers. Oncogene 2011; 31: 2121–2128.

    Article  PubMed  Google Scholar 

  13. Riaz M, Berns EM, Sieuwerts AM, Ruigrok-Ritstier K, de Weerd V, Groenewoud A et al. Correlation of breast cancer susceptibility loci with patient characteristics, metastasis-free survival, and mRNA expression of the nearest genes. Breast Cancer Res Treat 2011; 133: 12.

    Google Scholar 

  14. Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell 2013; 52: 101–112.

    Article  CAS  PubMed  Google Scholar 

  15. Roush S, Slack FJ . The let-7 family of microRNAs. Trends Cell Biol 2008; 18: 505–516.

    Article  CAS  PubMed  Google Scholar 

  16. Fabian MR, Sonenberg N . The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 2012; 19: 586–593.

    Article  CAS  PubMed  Google Scholar 

  17. Liu Q, Lv G-D, Qin X, Gen Y-H, Zheng S-T, Liu T et al. Role of microRNA let-7 and effect to HMGA2 in esophageal squamous cell carcinoma. Mol Biol Rep 2012; 39: 1239–1246.

    Article  CAS  PubMed  Google Scholar 

  18. Qian P, Zuo Z, Wu Z, Meng X, Li G, Wu Z et al. Pivotal role of reduced let-7g expression in breast cancer invasion and metastasis. Cancer Res 2011; 71: 6463–6474.

    Article  CAS  PubMed  Google Scholar 

  19. Yun J, Frankenberger CA, Kuo W-L, Boelens MC, Eves EM, Cheng N et al. Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. EMBO J 2011; 30: 4500–4514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fu X, Meng Z, Linag W, Tian Y, Wang X, Han W et al. miR-26a enhances miRNA biogenesis by targeting Lin28B and Zcchc11 to suppress tumor growth and metastasis. Oncogene 2014; 33: 4296–4306.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao B, Han H, Chen J, Zhang Z, Li S, Fang F et al. MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3. Cancer Lett 2014; 342: 43–51.

    Article  CAS  PubMed  Google Scholar 

  22. Barsyte-Lovejoy D, Lau SK, Boutros PC, Khosravi F, Jurisica I, Andrulis IL et al. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res 2006; 66: 5330–5337.

    Article  CAS  PubMed  Google Scholar 

  23. Lee YS, Dutta A . The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 2007; 21: 1025–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mayr C, Hemann MT, Bartel DP . Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 2007; 315: 1576–1579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 2007; 67: 9762–9770.

    Article  CAS  PubMed  Google Scholar 

  26. Zhu H, Shyh-Chang N, Segre AV, Shinoda G, Shah SP, Einhorn WS et al. The Lin28/let-7 axis regulates glucose metabolism. Cell 2011; 147: 81–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Toledano H, D'Alterio C, Czech B, Levine E, Jones DL . The let-7-Imp axis regulates ageing of the Drosophila testis stem-cell niche. Nature 2012; 485: 605–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM et al. Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J 2009; 28: 347–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morishita A, Zaidi MR, Mitoro A, Sankarasharma D, Szabolcs M, Okada Y et al. HMGA2 is a driver of tumor metastasis. Cancer Res 2013; 73: 4289–4299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guo L, Chen C, Shi M, Wang F, Chen X, Diao D et al. Stat3-coordinated Lin-28-let-7-HMGA2 and miR-200-ZEB1 circuits initiate and maintain oncostatin M-driven epithelial-mesenchymal transition. Oncogene 2013; 32: 5272–5282.

    Article  CAS  PubMed  Google Scholar 

  31. Sun M, Song C-X, Huang H, Frankenberger CA, Sankarasharma D, Gomes S et al. HMGA2/TET1/HOXA9 signaling pathway regulates breast cancer growth and metastasis. Proc Natl Acad Sci USA 2013; 110: 9920–9925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thornton JE, Gregory RI . How does Lin28 let-7 control development and disease? Trends Cell Biol 2012; 22: 474–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang Y . A mirror of two faces: Lin28 as a master regulator of both miRNA and mRNA. Wiley Interdiscip Rev RNA 2012; 3: 483–494 29.

    Article  CAS  PubMed  Google Scholar 

  34. Bell JL, Wachter K, Muhleck B, Pazaitis N, Kohn M, Lederer M et al. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol Life Sci 2013; 70: 2657–2675.

    Article  CAS  PubMed  Google Scholar 

  35. Jeng Y-M, Chang C-C, Hu F-C, Chou H-YE, Kao H-L, Wang T-H et al. RNA-binding protein insulin-like growth factor II mRNA-binding protein 3 expression promotes tumor invasion and predicts early recurrence and poor prognosis in hepatocellular carcinoma. Hepatology 2008; 48: 1118–1127.

    Article  CAS  PubMed  Google Scholar 

  36. Walter O, Prasad M, Lu S, Quinlan RM, Edmiston KL, Khan A . IMP3 is a novel biomarker for triple negative invasive mammary carcinoma associated with a more aggressive phenotype. Hum Pathol 2009; 40: 1528–1533.

    Article  CAS  PubMed  Google Scholar 

  37. Samanta S, Sharma VM, Khan A, Mercurio AM . Regulation of IMP3 by EGFR signaling and repression by ERbeta: implications for triple-negative breast cancer. Oncogene 2012; 31: 4689–4697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vikesaa J, Hansen TVO, Jonson L, Borup R, Wewer UM, Christiansen J et al. RNA-binding IMPs promote cell adhesion and invadopodia formation. EMBO J 2006; 25: 1456–1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Suvasini R, Shruti B, Thota B, Shinde SV, Friedmann-Morvinski D, Nawaz Z et al. Insulin growth factor-2 binding protein 3 (IGF2BP3) is a glioblastoma-specific marker that activates phosphatidylinositol 3-kinase/mitogen-activated protein kinase (PI3K/MAPK) pathways by modulating IGF-2. J Biol Chem 2011; 286: 25882–25890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tokumaru S, Suzuki M, Yamada H, Nagino M, Takahashi T . let-7 regulates Dicer expression and constitutes a negative feedback loop. Carcinogenesis 2008; 29: 2073–2077.

    Article  CAS  PubMed  Google Scholar 

  41. Forman JJ, Legesse-Miller A, Coller HA . A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci USA 2008; 105: 14879–14884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zeisberg M, Neilson EG . Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 2009; 119: 1429–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Green JM, Alvero AB, Kohen F, Mor G . Targeting the mitochondria activates two independent cell death pathways in ovarian cancer stem cells. Mol Cancer Ther 2009; 8: 1385–1393.

    Google Scholar 

  44. Zhao S, Choi M, Overton JD, Bellone S, Roque DM, Cocco E et al. Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma. Proc Natl Acad Sci USA 2013; 110: 2916–2921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pollak M . Potential applications for biguanides in oncology. J Clin Invest 2013; 123: 3693–3700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bednar F, Simeone DM . Metformin and cancer stem cells: old drug, new targets. Cancer Prev Res (Phila) 2012; 5: 351–354.

    Article  CAS  Google Scholar 

  47. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K . Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 2009; 69: 7507–7511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bao B, Wang Z, Ali S, Ahmad A, Azmi AS, Sarkar SH et al. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev Res (Phila) 2012; 5: 355–364.

    Article  CAS  Google Scholar 

  49. Gou S, Cui P, Li X, Shi P, Liu T, Wang C . Low concentrations of metformin selectively inhibit CD133+ cell proliferation in pancreatic cancer and have anticancer action. PloS One 2013; 8: e63969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wurth R, Pattarozzi A, Gatti M, Bajetto A, Corsaro A, Parodi A et al. Metformin selectively affects human glioblastoma tumor-initiating cell viability: A role for metformin-induced inhibition of Akt. Cell Cycle 2013; 12: 145–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu B, Li S, Sheng L, Zhu J, Gu L, Shen H et al. Metformin inhibits the development and metastasis of ovarian cancer. Oncol Rep 2012; 28: 903–908.

    Article  CAS  PubMed  Google Scholar 

  52. Cerezo M, Tichet M, Abbe P, Ohanna M, Lehraiki A, Rouaud F et al. Metformin blocks melanoma invasion and metastasis development in AMPK/p53-dependent manner. Mol Cancer Ther 2013; 12: 1605–1615.

    Article  CAS  PubMed  Google Scholar 

  53. Sarfstein R, Friedman Y, Attias-Geva Z, Fishman A, Bruchim I, Werner H . Metformin downregulates the insulin/IGF-I signaling pathway and inhibits different uterine serous carcinoma (USC) cells proliferation and migration in p53-dependent or -independent manners. PLoS ONE 2013; 8: e61537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Steenman MJ, Rainier S, Dobry CJ, Grundy P, Horon IL, Feinberg AP . Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour. Nat Genet 1994; 7: 433–439.

    Article  CAS  PubMed  Google Scholar 

  55. Gao Z-H, Suppola S, Liu J, Heikkila P, Janne J, Voutilainen R . Association of H19 promoter methylation with the expression of H19 and IGF-II genes in adrenocortical tumors. J Clin Endocrinol Metabol 2002; 87: 1170–1176.

    Article  CAS  Google Scholar 

  56. Srivastava M, Hsieh S, Grinberg A, Williams-Simons L, Huang SP, Pfeifer K . H19 and Igf2 monoallelic expression is regulated in two distinct ways by a shared cis acting regulatory region upstream of H19. Genes Dev 2000; 14: 1186–1195.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lu L, Katsaros D, de la Longrais IA, Sochirca O, Yu H . Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 2007; 67: 10117–10122.

    Article  CAS  PubMed  Google Scholar 

  58. Lu L, Katsaros D, Zhu Y, Hoffman A, Luca S, Marion CE et al. Let-7a regulation of insulin-like growth factors in breast cancer. Breast Cancer Res Treat 2011; 126: 687–694.

    Article  CAS  PubMed  Google Scholar 

  59. Tang Z, Ow GS, Thiery JP, Ivshina AV, Kuznetsov VA . Meta-analysis of transcriptome reveals let-7b as an unfavorable prognostic biomarker and predicts molecular and clinical subclasses in high-grade serous ovarian carcinoma. Int J Cancer 2013; 134: 306–318.

    Article  CAS  PubMed  Google Scholar 

  60. Kalender A, Selvaraj A, Kim SY, Gulati P, Brule S, Viollet B et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metabol 2010; 11: 390–401.

    Article  CAS  Google Scholar 

  61. Ben Sahra I, Regazzetti C, Robert G, Laurent K, Le Marchand-Brustel Y, Auberger P et al. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res 2011; 71: 4366–4372.

    Article  CAS  PubMed  Google Scholar 

  62. Kangaspeska S, Stride B, Metivier R, Polycarpou-Schwarz M, Ibberson D, Carmouche RP et al. Transient cyclical methylation of promoter DNA. Nature 2008; 452: 112–115.

    Article  CAS  PubMed  Google Scholar 

  63. Grayson DR, Guidotti A . The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmacology 2013; 38: 138–166.

    Article  CAS  PubMed  Google Scholar 

  64. Reid G, Metivier R, Lin C-Y, Denger S, Ibberson D, Ivacevic T et al. Multiple mechanisms induce transcriptional silencing of a subset of genes, including oestrogen receptor alpha, in response to deacetylase inhibition by valproic acid and trichostatin A. Oncogene 2005; 24: 4894–4907.

    Article  CAS  PubMed  Google Scholar 

  65. Timp W, Feinberg AP . Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nature Rev Cancer 2013; 13: 497–510.

    Article  CAS  Google Scholar 

  66. Feinberg AP, Vogelstein B . Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983; 301: 89–92.

    Article  CAS  PubMed  Google Scholar 

  67. Akinyeke T, Matsumura S, Wang X, Wu Y, Schalfer ED, Saxena A et al. Metformin targets c-MYC oncogene to prevent prostate cancer. Carcinogenesis 2013; 34: 2823–2832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Behrens BC, Hamilton TC, Masuda H, Grotzinger KR, Whang-Peng J, Louie KG et al. Characterization of a cis-diamminedichloroplatinum(II)-resistant human ovarian cancer cell line and its use in evaluation of platinum analogues. Cancer Res 1987; 47: 414–418.

    CAS  PubMed  Google Scholar 

  69. Yin G, Alvero AB, Craveiro V, Holmberg JC, Fu HH, Montagna MK et al. Constitutive proteasomal degradation of TWIST-1 in epithelial-ovarian cancer stem cells impacts differentiation and metastatic potential. Oncogene 2013; 32: 39–49.

    Article  CAS  PubMed  Google Scholar 

  70. Feng C, Neumeister V, Ma W, Xu J, Lu L, Bordeaux J et al. Lin28 regulates HER2 and promotes malignancy through multiple mechanisms. Cell Cycle 2012; 11: 13.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Gil Mor for A2780 and Tara R127 cells. This work was supported by the following grants: the State of Connecticut Stem Cell grant 09SCAYALE14, Albert McKern Scholar Award 1063338, and funds from National Natural Science Foundation of China 81202057 and 81272858.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Huang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Zhou, J., Gao, Y. et al. Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation. Oncogene 34, 3076–3084 (2015). https://doi.org/10.1038/onc.2014.236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.236

This article is cited by

Search

Quick links