Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Nuclear trafficking of EGFR by Vps34 represses Arf expression to promote lung tumor cell survival

Abstract

Epidermal growth factor receptor (EGFR) is a cell surface receptor that has an essential role in cell proliferation and survival, and overexpression of EGFR is a common feature of human cancers. In Non-small-cell lung cancer (NSCLC), activating mutations of EGFR have also been described. We recently showed that mutant EGFR-L858R inhibits the expression of the p14ARF tumor-suppressor protein to promote cell survival. In this study, we defined the molecular bases by which EGFR controls Arf expression. Using various lung tumor models, we showed that EGF stimulation inhibits Arf transcription by a mechanism involving the nuclear transport and recruitment of EGFR to the Arf promoter. We unraveled the vesicular trafficking protein Vps34 as a mediator of EGFR nuclear trafficking and showed that its neutralization prevents the accumulation of EGFR to the Arf promoter in response to ligand activation. Finally, in lung tumor cells that carry mutant EGFR-L858R, we demonstrated that inhibition of Vps34 using small interfering RNA restrains nuclear EGFR location and restores Arf expression leading to apoptosis. These findings identify the Arf tumor suppressor as a new transcriptional target of nuclear EGFR and highlight Vps34 as an important regulator of the nuclear EGFR/Arf survival pathway. As a whole, they provide a mechanistic explanation to the inverse correlation between nuclear expression of EGFR and overall survival in NSCLC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Nicholson RI, Gee JM, Harper ME . EGFR and cancer prognosis. Eur J Cancer 2001; 37: S9–S15.

    Article  CAS  Google Scholar 

  2. Krause DS, Van Etten RA . Tyrosine kinases as targets for cancer therapy. N Engl J Med 2005; 353: 172–187.

    Article  CAS  Google Scholar 

  3. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I et al. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 2004; 101: 13306–13311.

    Article  CAS  Google Scholar 

  4. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304: 1497–1500.

    Article  CAS  Google Scholar 

  5. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350: 2129–2139.

    Article  CAS  Google Scholar 

  6. Yarden Y, Sliwkowski MX . Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001; 2: 127–137.

    Article  CAS  Google Scholar 

  7. Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW . Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 2003; 284: 31–53.

    Article  CAS  Google Scholar 

  8. Olayioye MA, Neve RM, Lane HA, Hynes NE . The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 2000; 19: 3159–3167.

    Article  CAS  Google Scholar 

  9. Schlessinger J . Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 2002; 110: 669–672.

    Article  CAS  Google Scholar 

  10. Lill NL, Sever NI . Where EGF receptors transmit their signals. Sci Signal 2012; 5 pe41.

  11. Wang YN, Yamaguchi H, Hsu JM, Hung MC . Nuclear trafficking of the epidermal growth factor receptor family membrane proteins. Oncogene 2010; 29: 3997–4006.

    Article  CAS  Google Scholar 

  12. Lo HW . Nuclear mode of the EGFR signaling network: biology, prognostic value, and therapeutic implications. Discov Med 2010; 10: 44–51.

    PubMed  PubMed Central  Google Scholar 

  13. Brand TM, Iida M, Li C, Wheeler DL . The nuclear epidermal growth factor receptor signaling network and its role in cancer. Discov Med 2011; 12: 419–432.

    PubMed  PubMed Central  Google Scholar 

  14. Wang YN, Hung MC . Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family. Cell Biosci 2012; 2: 13.

    Article  CAS  Google Scholar 

  15. Huang WC, Chen YJ, Li LY, Wei YL, Hsu SC, Tsai SL et al. Nuclear translocation of epidermal growth factor receptor by Akt-dependent phosphorylation enhances breast cancer-resistant protein expression in gefitinib-resistant cells. J Biol Chem 2011; 286: 20558–20568.

    Article  CAS  Google Scholar 

  16. Liccardi G, Hartley JA, Hochhauser D . EGFR nuclear translocation modulates DNA repair following cisplatin and ionizing radiation treatment. Cancer Res 2011; 71: 1103–1114.

    Article  CAS  Google Scholar 

  17. Chen DJ, Nirodi CS . The epidermal growth factor receptor: a role in repair of radiation-induced DNA damage. Clin Cancer Res 2007; 13: 6555–6560.

    Article  CAS  Google Scholar 

  18. Traynor AM, Weigel TL, Oettel KR, Yang DT, Zhang C, Kim K et al. Nuclear EGFR protein expression predicts poor survival in early stage non-small cell lung cancer. Lung Cancer 2013; 81: 138–141.

    Article  Google Scholar 

  19. Tao Y, Song X, Deng X, Xie D, Lee LM, Liu Y et al. Nuclear accumulation of epidermal growth factor receptor and acceleration of G1/S stage by Epstein-Barr-encoded oncoprotein latent membrane protein 1. Exp Cell Res 2005; 303: 240–251.

    Article  CAS  Google Scholar 

  20. Mao L, Merlo A, Bedi G, Shapiro GI, Edwards CD, Rollins BJ et al. A novel p16INK4A transcript. Cancer Res 1995; 55: 2995–2997.

    CAS  PubMed  Google Scholar 

  21. Quelle DE, Zindy F, Ashmun RA, Sherr CJ . Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 1995; 83: 993–1000.

    Article  CAS  Google Scholar 

  22. Ozenne P, Eymin B, Brambilla E, Gazzeri S . The ARF tumor suppressor: structure, functions and status in cancer. Int J Cancer 2010; 127: 2239–2247.

    Article  CAS  Google Scholar 

  23. Sherr CJ . Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 2006; 6: 663–673.

    Article  CAS  Google Scholar 

  24. Eymin B, Leduc C, Coll JL, Brambilla E, Gazzeri S . p14ARF induces G2 arrest and apoptosis independently of p53 leading to regression of tumours established in nude mice. Oncogene 2003; 22: 1822–1835.

    Article  CAS  Google Scholar 

  25. Ozenne P, Dayde D, Brambilla E, Eymin B, Gazzeri S . p14(ARF) inhibits the growth of lung adenocarcinoma cells harbouring an EGFR L858R mutation by activating a STAT3-dependent pro-apoptotic signalling pathway. Oncogene 2013; 32: 1050–1058.

    Article  CAS  Google Scholar 

  26. Carpenter G, Liao HJ . Receptor tyrosine kinases in the nucleus. Cold Spring Harb Perspect Biol 2013; 5: a008979.

    Article  Google Scholar 

  27. Lo HW, Hsu SC, Ali-Seyed M, Gunduz M, Xia W, Wei Y et al. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell 2005; 7: 575–589.

    Article  CAS  Google Scholar 

  28. Lin SY, Makino K, Xia W, Matin A, Wen Y, Kwong KY et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol 2001; 3: 802–808.

    Article  CAS  Google Scholar 

  29. Burda P, Padilla SM, Sarkar S, Emr SD . Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase. J Cell Sci 2002; 115: 3889–3900.

    Article  CAS  Google Scholar 

  30. Xia W, Wei Y, Du Y, Liu J, Chang B, Yu YL et al. Nuclear expression of epidermal growth factor receptor is a novel prognostic value in patients with ovarian cancer. Mol Carcinog 2009; 48: 610–617.

    Article  CAS  Google Scholar 

  31. Lo HW, Xia W, Wei Y, Ali-Seyed M, Huang SF, Hung MC . Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Res 2005; 65: 338–348.

    CAS  PubMed  Google Scholar 

  32. Psyrri A, Yu Z, Weinberger PM, Sasaki C, Haffty B, Camp R et al. Quantitative determination of nuclear and cytoplasmic epidermal growth factor receptor expression in oropharyngeal squamous cell cancer by using automated quantitative analysis. Clin Cancer Res 2005; 11: 5856–5862.

    Article  CAS  Google Scholar 

  33. Mosesson Y, Mills GB, Yarden Y . Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer 2008; 8: 835–850.

    Article  CAS  Google Scholar 

  34. Massie C, Mills IG . The developing role of receptors and adaptors. Nat Rev Cancer 2006; 6: 403–409.

    Article  CAS  Google Scholar 

  35. Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD . Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 1993; 260: 88–91.

    Article  CAS  Google Scholar 

  36. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B . The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 2010; 11: 329–341.

    Article  CAS  Google Scholar 

  37. Simonsen A, Tooze SA . Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J Cell Biol 2009; 186: 773–782.

    Article  CAS  Google Scholar 

  38. Backer JM . The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J 2008; 410: 1–17.

    Article  CAS  Google Scholar 

  39. Dittmann K, Mayer C, Fehrenbacher B, Schaller M, Kehlbach R, Rodemann HP . Nuclear EGFR shuttling induced by ionizing radiation is regulated by phosphorylation at residue Thr654. FEBS Lett 2010; 584: 3878–3884.

    Article  CAS  Google Scholar 

  40. Giri DK, Ali-Seyed M, Li LY, Lee DF, Ling P, Bartholomeusz G et al. Endosomal transport of ErbB-2: mechanism for nuclear entry of the cell surface receptor. Mol Cell Biol 2005; 25: 11005–11018.

    Article  CAS  Google Scholar 

  41. Hung LY, Tseng JT, Lee YC, Xia W, Wang YN, Wu ML et al. Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression. Nucleic Acids Res 2008; 36: 4337–4351.

    Article  CAS  Google Scholar 

  42. Jaganathan S, Yue P, Paladino DC, Bogdanovic J, Huo Q, Turkson J . A functional nuclear epidermal growth factor receptor, SRC and Stat3 heteromeric complex in pancreatic cancer cells. PLoS One 2011; 6: e19605.

    Article  CAS  Google Scholar 

  43. Lo HW, Cao X, Zhu H, Ali-Osman F . Cyclooxygenase-2 is a novel transcriptional target of the nuclear EGFR-STAT3 and EGFRvIII-STAT3 signaling axes. Mol Cancer Res 2010; 8: 232–245.

    Article  CAS  Google Scholar 

  44. Maggi Jr LB, Winkeler CL, Miceli AP, Apicelli AJ, Brady SN, Kuchenreuther MJ et al. ARF tumor suppression in the nucleolus. Biochim Biophys Acta 2014; 1842: 831–839.

    Article  CAS  Google Scholar 

  45. Zhao ZH, Wang SF, Yu L, Wang J, Chang H, Yan WL et al. Overexpression of Pokemon in non-small cell lung cancer and foreshowing tumor biological behavior as well as clinical results. Lung Cancer 2008; 62: 113–119.

    Article  Google Scholar 

  46. Meng X, Wang Y, Zheng X, Liu C, Su B, Nie H et al. shRNA-mediated knockdown of Bmi-1 inhibit lung adenocarcinoma cell migration and metastasis. Lung Cancer 2012; 77: 24–30.

    Article  Google Scholar 

  47. Dovey JS, Zacharek SJ, Kim CF, Lees JA . Bmi1 is critical for lung tumorigenesis and bronchioalveolar stem cell expansion. Proc Natl Acad Sci USA 2008; 105: 11857–11862.

    Article  CAS  Google Scholar 

  48. Vonlanthen S, Heighway J, Altermatt HJ, Gugger M, Kappeler A, Borner MM et al. The bmi-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression. Br J Cancer 2001; 84: 1372–1376.

    Article  CAS  Google Scholar 

  49. Abhold EL, Kiang A, Rahimy E, Kuo SZ, Wang-Rodriguez J, Lopez JP et al. EGFR kinase promotes acquisition of stem cell-like properties: a potential therapeutic target in head and neck squamous cell carcinoma stem cells. PLoS One 2012; 7: e32459.

    Article  CAS  Google Scholar 

  50. Aggarwal H, Aggarwal A, Agrawal DK . Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells. Exp Mol Pathol 2011; 91: 496–501.

    Article  CAS  Google Scholar 

  51. Mounawar M, Mukeria A, Le Calvez F, Hung RJ, Renard H, Cortot A et al. Patterns of EGFR, HER2, TP53, and KRAS mutations of p14arf expression in non-small cell lung cancers in relation to smoking history. Cancer Res 2007; 67: 5667–5672.

    Article  CAS  Google Scholar 

  52. Cortot AB, Younes M, Martel-Planche G, Guibert B, Isaac S, Souquet PJ et al. Mutation of TP53 and alteration of p14(arf) expression in EGFR- and KRAS-mutated lung adenocarcinomas. Clin Lung Cancer 2014; 15: 124–130.

    Article  CAS  Google Scholar 

  53. Marsh T, Debnath J . Ironing out VPS34 inhibition. Nat Cell Biol 2015; 17: 1–3.

    Article  CAS  Google Scholar 

  54. Li C, Iida M, Dunn EF, Ghia AJ, Wheeler DL . Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene 2009; 28: 3801–3813.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor A Gazdar for providing us with the H1719, HCC827 and H1975 cellular models and Dr MC Hung for the CHO-EGFR and CHO-EGFR-pNLS cells. This work was supported by Institut National de la Santé et de la Recherche Médicale U823, the Fondation ARC pour la recherche sur le cancer (grant no. 20131200109), the Fondation de France and the Ligue Nationale contre Le Cancer Comité de Savoie. DD was supported by the Fond de Dotation pour la Recherche en Santé Respiratoire 2010 and the Fondation ARC pour la recherche sur le cancer. MG was supported by le Fonds Agir pour les Maladies Chroniques. A-SH was supported by the French Research Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Gazzeri.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dayde, D., Guerard, M., Perron, P. et al. Nuclear trafficking of EGFR by Vps34 represses Arf expression to promote lung tumor cell survival. Oncogene 35, 3986–3994 (2016). https://doi.org/10.1038/onc.2015.480

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.480

This article is cited by

Search

Quick links