Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

ACUTE LYMPHOBLASTIC LEUKEMIA

Optimizing the treatment of acute lymphoblastic leukemia in younger and older adults: new drugs and evolving paradigms

Abstract

In the past decade, the available treatments for patients with acute lymphoblastic leukemia (ALL) have rapidly expanded, in parallel with an increased understanding of the genomic features that impact the disease biology and clinical outcomes. With the development of the anti-CD22 antibody-drug conjugate inotuzumab ozogamicin, the CD3-CD19 bispecific T-cell engager antibody blinatumomab, CD19 chimeric antigen receptor T-cell therapy, and the potent BCR-ABL1 tyrosine kinase inhibitor ponatinib, the outlook of ALL in both younger and older adults has substantially improved. The availability of highly effective drugs raised important questions concerning the optimal combination and sequence of these agents, their incorporation into frontline regimens, and the role of hematopoietic stem cell transplantation. In this review, we discuss the rapidly evolving paradigms in the treatment of ALL, highlighting both established and effective regimens, as well as promising new therapies that are being evaluated in ongoing clinical trials. We specifically focus on novel combination regimens in both the frontline and salvage settings that are leading to new standards of care in the treatment of ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kantarjian H, Thomas D, O’Brien S, Cortes J, Giles F, Jeha S, et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer. 2004;101:2788–801.

    Article  CAS  PubMed  Google Scholar 

  2. Rowe JM, Buck G, Burnett AK, Chopra R, Wiernik PH, Richards SM, et al. Induction therapy for adults with acute lymphoblastic leukemia: results of more than 1500 patients from the international ALL trial: MRC UKALL XII/ECOG E2993. Blood. 2005;106:3760–7.

    Article  CAS  PubMed  Google Scholar 

  3. Berry DA, Zhou S, Higley H, Mukundan L, Fu S, Reaman GH, et al. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: a meta-analysis. JAMA Oncol. 2017;3:e170580.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ribera JM, Oriol A, Morgades M, Montesinos P, Sarra J, Gonzalez-Campos J, et al. Treatment of high-risk Philadelphia chromosome-negative acute lymphoblastic leukemia in adolescents and adults according to early cytologic response and minimal residual disease after consolidation assessed by flow cytometry: final results of the PETHEMA ALL-AR-03 trial. J Clin Oncol. 2014;32:1595–604.

    Article  CAS  PubMed  Google Scholar 

  5. Ravandi F, O’Brien S, Thomas D, Faderl S, Jones D, Garris R, et al. First report of phase 2 study of dasatinib with hyper-CVAD for the frontline treatment of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia. Blood. 2010;116:2070–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Daver N, Thomas D, Ravandi F, Cortes J, Garris R, Jabbour E, et al. Final report of a phase II study of imatinib mesylate with hyper-CVAD for the front-line treatment of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Haematologica. 2015;100:653–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chalandon Y, Thomas X, Hayette S, Cayuela JM, Abbal C, Huguet F, et al. Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood. 2015;125:3711–9.

    Article  CAS  PubMed  Google Scholar 

  8. Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375:740–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kantarjian H, Stein A, Gokbuget N, Fielding AK, Schuh AC, Ribera JM, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 2017;376:836–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martinelli G, Boissel N, Chevallier P, Ottmann O, Gökbuget N, Topp MS, et al. Complete hematologic and molecular response in adult patients with relapsed/refractory Philadelphia chromosome–positive B-precursor acute lymphoblastic leukemia following treatment with blinatumomab: results from a phase II, single-arm, multicenter study. J Clin Oncol. 2017;35:1795–802. 2017/06/01.

    Article  CAS  PubMed  Google Scholar 

  11. Gokbuget N, Dombret H, Bonifacio M, Reichle A, Graux C, Faul C, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131:1522–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with b-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pui CH, Crist WM, Look AT. Biology and clinical significance of cytogenetic abnormalities in childhood acute lymphoblastic leukemia. Blood. 1990;76:1449–63.

    Article  CAS  PubMed  Google Scholar 

  14. Chao NJ, Blume KG, Forman SJ, Snyder DS. Long-term follow-up of allogeneic bone marrow recipients for Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 1995;85:3353–4.

    Article  CAS  PubMed  Google Scholar 

  15. Thomas X, Thiebaut A, Olteanu N, Danaila C, Charrin C, Archimbaud E, et al. Philadelphia chromosome positive adult acute lymphoblastic leukemia: characteristics, prognostic factors and treatment outcome. Hematol Cell Ther. 1998;40:119–28.

    CAS  PubMed  Google Scholar 

  16. Ravandi F, Jorgensen JL, O’Brien SM, Jabbour E, Thomas DA, Borthakur G, et al. Minimal residual disease assessed by multi-parameter flow cytometry is highly prognostic in adult patients with acute lymphoblastic leukaemia. Br J Haematol. 2016;172:392–400.

    Article  CAS  PubMed  Google Scholar 

  17. Short NJ, Jabbour E, Sasaki K, Patel K, O’Brien SM, Cortes JE, et al. Impact of complete molecular response on survival in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2016;128:504–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shen S, Chen X, Cai J, Yu J, Gao J, Hu S, et al. Effect of dasatinib vs imatinib in the treatment of pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: a randomized clinical trial. JAMA Oncol. 2020;6:358–66.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tanguy-Schmidt A, Rousselot P, Chalandon Y, Cayuela JM, Hayette S, Vekemans MC, et al. Long-term follow-up of the imatinib GRAAPH-2003 study in newly diagnosed patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: a GRAALL study. Biol Blood Marrow Transpl. 2013;19:150–5.

    Article  CAS  Google Scholar 

  20. Fielding AK, Rowe JM, Buck G, Foroni L, Gerrard G, Litzow MR, et al. UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood. 2014;123:843–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Piccaluga PP, Paolini S, Martinelli G. Tyrosine kinase inhibitors for the treatment of Philadelphia chromosome-positive adult acute lymphoblastic leukemia. Cancer. 2007;110:1178–86.

    Article  CAS  PubMed  Google Scholar 

  22. Ravandi F, O’Brien SM, Cortes JE, Thomas DM, Garris R, Faderl S, et al. Long-term follow-up of a phase 2 study of chemotherapy plus dasatinib for the initial treatment of patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer. 2015;121:4158–64.

    Article  CAS  PubMed  Google Scholar 

  23. Ravandi F, Othus M, O’Brien SM, Forman SJ, Ha CS, Wong JYC, et al. US intergroup study of chemotherapy plus dasatinib and allogeneic stem cell transplant in Philadelphia chromosome positive ALL. Blood Adv. 2016;1:250–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim DY, Joo YD, Lim SN, Kim SD, Lee JH, Lee JH, et al. Nilotinib combined with multiagent chemotherapy for newly diagnosed Philadelphia-positive acute lymphoblastic leukemia. Blood. 2015;126:746–56.

    Article  CAS  PubMed  Google Scholar 

  25. Short NJ, Kantarjian H, Kanagal-Shamanna R, Sasaki K, Ravandi F, Cortes J, et al. Ultra-accurate duplex sequencing for the assessment of pretreatment ABL1 kinase domain mutations in Ph+ ALL. Blood Cancer J. 2020;10:61.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rousselot P, Coude MM, Gokbuget N, Gambacorti Passerini C, Hayette S, Cayuela JM, et al. Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL. Blood. 2016;128:774–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pfeifer H, Wassmann B, Pavlova A, Wunderle L, Oldenburg J, Binckebanck A, et al. Kinase domain mutations of BCR-ABL frequently precede imatinib-based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood. 2007;110:727–34.

    Article  CAS  PubMed  Google Scholar 

  28. Jabbour E, Kantarjian H, Ravandi F, Thomas D, Huang X, Faderl S, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a single-centre, phase 2 study. Lancet Oncol. 2015;16:1547–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Short NJ, Kantarjian HM, Ravandi F, Daver NG, Pemmaraju N, Thomas DA, et al. Frontline hyper-CVAD plus ponatinib for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: updated results of a phase II study. J Clin Oncol. 2017;35:7013–7013. 2017/05/20.

    Article  Google Scholar 

  30. Short NJ, Kantarjian HM, Ravandi F, Huang X, Daver NG, DiNardo CD, et al. Long-term safety and efficacy of hyper-CVAD plus ponatinib as frontline therapy for adults with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2019;134:283–283.

    Article  Google Scholar 

  31. Sasaki K, Jabbour EJ, Ravandi F, Short NJ, Thomas DA, Garcia-Manero G, et al. Hyper-CVAD plus ponatinib versus hyper-CVAD plus dasatinib as frontline therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: a propensity score analysis. Cancer. 2016;122:3650–6.

    Article  CAS  PubMed  Google Scholar 

  32. Jabbour E, DerSarkissian M, Duh MS, McCormick N, Cheng WY, McGarry LJ, et al. Efficacy of ponatinib versus earlier generation tyrosine kinase inhibitors for front-line treatment of newly diagnosed Philadelphia-positive acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 2018;18:257–65.

    Article  PubMed  Google Scholar 

  33. Ottmann OG, Pfeifer H, Cayuela J-M, Spiekermann K, Jung W, Beck J, et al. Nilotinib (Tasigna®) and low intensity chemotherapy for first-line treatment of elderly patients with BCR-ABL1-positive acute lymphoblastic leukemia: final results of a prospective multicenter trial (EWALL-PH02). Blood. 2018;132:31.

    Article  Google Scholar 

  34. Chiaretti S, Vitale A, Elia L, Fedullo AL, Albino S, Piciocchi A, et al. Multicenter total therapy GIMEMA LAL 1509 protocol for de novo adult Ph+ acute lymphoblastic leukemia (ALL) patients. Updated results and refined genetic-based prognostic stratification. Blood. 2015;126:81–81.

    Article  Google Scholar 

  35. Foa R, Vitale A, Vignetti M, Meloni G, Guarini A, De Propris MS, et al. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2011;118:6521–8.

    Article  CAS  PubMed  Google Scholar 

  36. Martinelli G, Piciocchi A, Papayannidis C, Paolini S, Robustelli V, Soverini S, et al. First report of the GIMEMA LAL1811 phase II prospective study of the combination of steroids with ponatinib as frontline therapy of elderly or unfit patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2017;130:99.

    Article  Google Scholar 

  37. Vignetti M, Fazi P, Cimino G, Martinelli G, Di Raimondo F, Ferrara F, et al. Imatinib plus steroids induces complete remissions and prolonged survival in elderly Philadelphia chromosome-positive patients with acute lymphoblastic leukemia without additional chemotherapy: results of the Gruppo Italiano Malattie Ematologiche dell’Adulto (GIMEMA) LAL0201-B protocol. Blood. 2007;109:3676–8.

    Article  CAS  PubMed  Google Scholar 

  38. Martinelli G, Boissel N, Chevallier P, Ottmann O, Gokbuget N, Topp MS, et al. Complete hematologic and molecular response in adult patients with relapsed/refractory Philadelphia chromosome-positive B-precursor acute lymphoblastic leukemia following treatment with blinatumomab: results from a phase II, single-arm, multicenter study. J Clin Oncol. 2017;35:1795–802.

    Article  CAS  PubMed  Google Scholar 

  39. Assi R, Kantarjian H, Short NJ, Daver N, Takahashi K, Garcia-Manero G, et al. Safety and efficacy of blinatumomab in combination with a tyrosine kinase inhibitor for the treatment of relapsed Philadelphia chromosome-positive leukemia. Clin Lymphoma Myeloma Leuk. 2017;17:897–901.

    Article  PubMed  Google Scholar 

  40. King AC, Pappacena JJ, Tallman MS, Park JH, Geyer MB. Blinatumomab administered concurrently with oral tyrosine kinase inhibitor therapy is a well-tolerated consolidation strategy and eradicates measurable residual disease in adults with Philadelphia chromosome positive acute lymphoblastic leukemia. Leuk Res. 2019;79:27–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Foà R, Bassan R, Vitale A, Elia L, Piciocchi A, Puzzolo MC, et al. Dasatinib-blinatumomab for Ph-positive acute lymphoblastic leukemia in adults. N Engl J Med. 2020;383:1613–23.

    Article  PubMed  Google Scholar 

  42. Stock W, Martinelli G, Stelljes M, DeAngelo DJ, Gökbuget N, Advani AS, et al. Outcomes with inotuzumab ozogamicin (InO) in patients with Philadelphia chromosome–positive (Ph+) relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL). J Clin Oncol. 2018;36:7030–7030. 2018/05/20.

    Article  Google Scholar 

  43. Jain N, Maiti A, Ravandi F, Konopleva M, Alvarado Y, Kadia TM, et al. Inotuzumab ozogamicin (INO) plus bosutinib (BOS) in R/R PH+ ALL or CML in lymphoid blast phase (CML LBP). J Clin Oncol. 2020;38:7512–7512.

    Article  Google Scholar 

  44. Leonard JT, Rowley JS, Eide CA, Traer E, Hayes-Lattin B, Loriaux M, et al. Targeting BCL-2 and ABL/LYN in Philadelphia chromosome-positive acute lymphoblastic leukemia. Sci Transl Med. 2016;8:354ra114.

    Article  PubMed  CAS  Google Scholar 

  45. Short NJ, Konopleva M, Kadia T, Kebriaei P, Daver N, Huang X, et al. An effective chemotherapy-free regimen of ponatinib plus venetoclax for relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia. Am J Hematol. 2021;96:E229–32.

  46. Short NJ, Kantarjian HM, Ravandi F, Huang X, Ferrajoli A, Kadia TM, et al. Hyper-CVAD and sequential blinatumomab in adults with newly diagnosed Philadelphia chromosome-negative B-cell acute lymphoblastic leukemia: results from a phase II study. Blood. 2020;136:9–11.

    Article  Google Scholar 

  47. Kantarjian HM, O’Brien S, Smith TL, Cortes J, Giles FJ, Beran M, et al. Results of treatment with hyper-CVAD, a dose-intensive regimen, in adult acute lymphocytic leukemia. J Clin Oncol. 2000;18:547–61.

    Article  CAS  PubMed  Google Scholar 

  48. Short NJ, Kantarjian H, Jabbour E, Ravandi F. Novel therapies for older adults with acute lymphoblastic leukemia. Curr Hematol Malignanc Rep. 2018;13:91–99.

    Article  Google Scholar 

  49. O’Brien S, Thomas DA, Ravandi F, Faderl S, Pierce S, Kantarjian H. Results of the hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone regimen in elderly patients with acute lymphocytic leukemia. Cancer. 2008;113:2097–101.

    Article  PubMed  CAS  Google Scholar 

  50. Gokbuget N. How I treat older patients with ALL. Blood. 2013;122:1366–75.

    Article  PubMed  CAS  Google Scholar 

  51. Li S, Molony JT, Chia V, Katz AJ. Patient characteristics and treatment patterns in elderly patients newly diagnosed with acute lymphoblastic leukemia (ALL) using 100% medicare ALL data. Blood. 2016;128:3981.

    Article  Google Scholar 

  52. Geyer MB, Hsu M, Devlin SM, Tallman MS, Douer D, Park JH. Overall survival among older US adults with ALL remains low despite modest improvement since 1980: SEER analysis. Blood. 2017;129:1878–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kantarjian H, Ravandi F, Short NJ, Huang X, Jain N, Sasaki K, et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukaemia: a single-arm, phase 2 study. Lancet Oncol. 2018;19:240–8.

    Article  CAS  PubMed  Google Scholar 

  54. Short NJ, Kantarjian HM, Ravandi F, Huang X, Jain N, Kadia TM, et al. Reduced-intensity chemotherapy with mini-hyper-CVD plus inotuzumab ozogamicin, with or without blinatumomab, in older adults with newly diagnosed Philadelphia chromosome-negative acute lymphoblastic leukemia: results from a phase II study. Blood. 2020;136:15–17.

    Article  Google Scholar 

  55. Jabbour EJ, Sasaki K, Ravandi F, Short NJ, Garcia-Manero G, Daver N, et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy (mini-HCVD) with or without blinatumomab versus standard intensive chemotherapy (HCVAD) as frontline therapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukemia: a propensity score analysis. Cancer. 2019;125:2579–86.

    Article  CAS  PubMed  Google Scholar 

  56. Advani AS, Moseley A, O’Dwyer KM, Wood B, Fang M, Wieduwilt MJ, et al. Results of SWOG 1318: a phase 2 trial of blinatumomab followed by pomp (prednisone, vincristine, methotrexate, 6-mercaptopurine) maintenance in elderly patients with newly diagnosed Philadelphia chromosome negative B-cell acute lymphoblastic leukemia. Blood. 2018;132:33.

    Article  Google Scholar 

  57. Stelljes M, Raffel S, Wäsch R, Scholl S, Kondakci M, Rank A, et al. First results of an open label phase II study to evaluate the efficacy and safety of inotuzumab ozogamicin for induction therapy followed by a conventional chemotherapy based consolidation and maintenance therapy in patients aged 56 years and older with acute lymphoblastic leukemia (INITIAL-1 trial). Blood. 2020;136:12–13.

    Article  Google Scholar 

  58. Gokbuget N, Dombret H, Ribera JM, Fielding AK, Advani A, Bassan R, et al. International reference analysis of outcomes in adults with B-precursor Ph-negative relapsed/refractory acute lymphoblastic leukemia. Haematologica. 2016;101:1524–33.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Fielding AK, Richards SM, Chopra R, Lazarus HM, Litzow MR, Buck G, et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood. 2007;109:944–50.

    Article  CAS  PubMed  Google Scholar 

  60. Kantarjian H, Thomas D, Jorgensen J, Kebriaei P, Jabbour E, Rytting M, et al. Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer. 2013;119:2728–36.

    Article  CAS  PubMed  Google Scholar 

  61. DeAngelo DJ, Stock W, Stein AS, Shustov A, Liedtke M, Schiffer CA, et al. Inotuzumab ozogamicin in adults with relapsed or refractory CD22-positive acute lymphoblastic leukemia: a phase 1/2 study. Blood Adv. 2017;1:1167–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jabbour E, Ravandi F, Kebriaei P, Huang X, Short NJ, Thomas D, et al. Salvage chemoimmunotherapy with inotuzumab ozogamicin combined with mini-hyper-CVD for patients with relapsed or refractory philadelphia chromosome-negative acute lymphoblastic leukemia: a phase 2 clinical trial. JAMA Oncol. 2018;4:230–4.

    Article  PubMed  Google Scholar 

  63. Jabbour E, Sasaki K, Ravandi F, Huang X, Short NJ, Khouri M, et al. Chemoimmunotherapy with inotuzumab ozogamicin combined with mini-hyper-CVD, with or without blinatumomab, is highly effective in patients with Philadelphia chromosome-negative acute lymphoblastic leukemia in first salvage. Cancer. 2018;124:4044–55.

    Article  CAS  PubMed  Google Scholar 

  64. Sasaki K, Kantarjian HM, Ravandi F, Short NJ, Kebriaei P, Huang X, et al. Long-term follow-up of the combination of low-intensity chemotherapy plus inotuzumab ozogamicin with or without blinatumomab in patients with relapsed-refractory Philadelphia chromosome-negative acute lymphoblastic leukemia: a phase 2 trial. Blood. 2020;136:40–42.

    Google Scholar 

  65. Zhao J, Song Y, Liu D. Clinical trials of dual-target CAR T cells, donor-derived CAR T cells, and universal CAR T cells for acute lymphoid leukemia. J Hematol Oncol. 2019;12:17.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Grupp SA, Maude SL, Rives S, Baruchel A, Boyer MW, Bittencourt H, et al. Updated analysis of the efficacy and safety of tisagenlecleucel in pediatric and young adult patients with relapsed/refractory (r/r) acute lymphoblastic leukemia. Blood. 2018;132:895.

    Article  Google Scholar 

  67. Schultz LM, Baggott C, Prabhu S, Pacenta H, Phillips CL, Rossoff J, et al. Disease burden impacts outcomes in pediatric and young adult b-cell acute lymphoblastic leukemia after commercial tisagenlecleucel: results from the pediatric real world car consortium (PRWCC). Blood. 2020;136:14–15.

    Article  Google Scholar 

  68. Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378:449–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Benjamin R, Graham C, Yallop D, Jozwik A, Mirci-Danicar OC, Lucchini G, et al. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet. 2020;396:1885–94.

    Article  CAS  PubMed  Google Scholar 

  70. Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24:20–28.

    Article  CAS  PubMed  Google Scholar 

  71. Amrolia PJ, Wynn R, Hough RE, Vora A, Bonney D, Veys P, et al. Phase I study of AUTO3, a bicistronic chimeric antigen receptor (CAR) T-cell therapy targeting CD19 and CD22, in pediatric patients with relapsed/refractory B-cell acute lymphoblastic leukemia (r/r B-ALL): amelia study. Blood. 2019;134:2620.

    Article  Google Scholar 

  72. Schultz LM, Muffly LS, Spiegel JY, Ramakrishna S, Hossain N, Baggott C, et al. Phase I trial using CD19/CD22 bispecific CAR T cells in pediatric and adult acute lymphoblastic leukemia (ALL). Blood. 2019;134:744.

    Article  Google Scholar 

  73. Geng H, Brennan S, Milne TA, Chen WY, Li Y, Hurtz C, et al. Integrative epigenomic analysis identifies biomarkers and therapeutic targets in adult B-acute lymphoblastic leukemia. Cancer Discov. 2012;2:1004–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Alford SE, Kothari A, Loeff FC, Eichhorn JM, Sakurikar N, Goselink HM, et al. BH3 inhibitor sensitivity and Bcl-2 dependence in primary acute lymphoblastic leukemia cells. Cancer Res. 2015;75:1366–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Frismantas V, Dobay MP, Rinaldi A, Tchinda J, Dunn SH, Kunz J, et al. Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. Blood. 2017;129:e26–e37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lacayo NJ, Pullarkat VA, Stock W, Jabbour E, Bajel A, Rubnitz J, et al. Safety and efficacy of venetoclax in combination with navitoclax in adult and pediatric relapsed/refractory acute lymphoblastic leukemia and lymphoblastic lymphoma. Blood. 2019;134:285.

    Article  Google Scholar 

  77. Jain N, Klisovic RB, Stock W, Ungar D, Zeidan AM, Atallah E, et al. Interim data from a phase 1 study evaluating pyrrolobenzodiazepine-based antibody drug conjugate ADCT-402 (loncastuximab tesirine) targeting CD19 for relapsed or refractory B-cell acute lymphoblastic leukemia. Blood. 2017;130:1321.

    Google Scholar 

  78. Duell J, Dittrich M, Bedke T, Mueller T, Eisele F, Rosenwald A, et al. Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL. Leukemia. 2017;31:2181–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang ES, Altman JK, Pettit K, De Botton S, Walter RP, Fenaux P, et al. Preliminary data on a phase 1/2A first in human study of the menin-KMT2A (MLL) inhibitor KO-539 in patients with relapsed or refractory acute myeloid leukemia. Blood. 2020;136:7–8.

    Article  Google Scholar 

  80. DeAngelo DJ, Yu D, Johnson JL, Coutre SE, Stone RM, Stopeck AT, et al. Nelarabine induces complete remissions in adults with relapsed or refractory T-lineage acute lymphoblastic leukemia or lymphoblastic lymphoma: cancer and leukemia group B study 19801. Blood. 2007;109:5136–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gokbuget N, Basara N, Baurmann H, Beck J, Bruggemann M, Diedrich H, et al. High single-drug activity of nelarabine in relapsed T-lymphoblastic leukemia/lymphoma offers curative option with subsequent stem cell transplantation. Blood. 2011;118:3504–11.

    Article  PubMed  CAS  Google Scholar 

  82. Berg SL, Blaney SM, Devidas M, Lampkin TA, Murgo A, Bernstein M, et al. Phase II study of nelarabine (compound 506U78) in children and young adults with refractory T-cell malignancies: a report from the Children’s Oncology Group. J Clin Oncol. 2005;23:3376–82.

    Article  CAS  PubMed  Google Scholar 

  83. Dunsmore KP, Winter SS, Devidas M, Wood BL, Esiashvili N, Chen Z, et al. Children’s oncology group AALL0434: a phase III randomized clinical trial testing nelarabine in newly diagnosed T-cell acute lymphoblastic leukemia. J Clin Oncol. 2020;38:3282–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Abaza Y, H MK, Faderl S, Jabbour E, Jain N, Thomas D, et al. Hyper-CVAD plus nelarabine in newly diagnosed adult T-cell acute lymphoblastic leukemia and T-lymphoblastic lymphoma. Am J Hematol. 2018;93:91–99.

    Article  CAS  PubMed  Google Scholar 

  85. Morita K, Kantarjian HM, Fang H, Ravandi F, Jain N, Konopleva M, et al. Outcome of patients with T-cell acute lymphoblastic leukemia/lymphoma with early T-cell precursor-like immunophenotype with strong CD5 expression. Blood. 2020;136:38–40.

    Article  Google Scholar 

  86. Dunsmore KP, Winter S, Devidas M, Wood BL, Esiashvili N, Eisenberg N, et al. COG AALL0434: a randomized trial testing nelarabine in newly diagnosed t-cell malignancy. J Clin Oncol. 2018;36:10500–10500.

    Article  Google Scholar 

  87. Jain N, Lamb AV, O’Brien S, Ravandi F, Konopleva M, Jabbour E, et al. Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype. Blood. 2016;127:1863–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bond J, Graux C, Lhermitte L, Lara D, Cluzeau T, Leguay T, et al. Early response-based therapy stratification improves survival in adult early thymic precursor acute lymphoblastic leukemia: a group for research on adult acute lymphoblastic leukemia study. J Clin Oncol. 2017;35:2683–91.

    Article  CAS  PubMed  Google Scholar 

  89. Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10:147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Neumann M, Heesch S, Schlee C, Schwartz S, Gokbuget N, Hoelzer D, et al. Whole-exome sequencing in adult ETP-ALL reveals a high rate of DNMT3A mutations. Blood. 2013;121:4749–52.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481:157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Morita K, Jain N, Kantarjian H, Takahashi K, Fang H, Konopleva M, et al. Outcome of T-cell acute lymphoblastic leukemia/lymphoma: focus on near-ETP phenotype & differential impact of nelarabine. Am J Hematol. 2021;96:589–98.

  93. Chonghaile TN, Roderick JE, Glenfield C, Ryan J, Sallan SE, Silverman LB, et al. Maturation stage of T-cell acute lymphoblastic leukemia determines BCL-2 versus BCL-XL dependence and sensitivity to ABT-199. Cancer Discov. 2014;4:1074–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xinxin WSL, L Gao, Z Yuan, K Wu, L Liu, L Luo et al. Clinical safety and efficacy study of TruUCARâ„¢ GC027: the first-in-human, universal CAR-T therapy for adult relapsed/refractory T-cell acute lymphoblastic leukemia (r/r T-ALL). American association for cancer research (AACR) virtual annual meeting.

  95. Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet. 2020;395:1146–62.

    Article  CAS  PubMed  Google Scholar 

  96. DeAngelo DJ, Stevenson KE, Dahlberg SE, Silverman LB, Couban S, Supko JG, et al. Long-term outcome of a pediatric-inspired regimen used for adults aged 18–50 years with newly diagnosed acute lymphoblastic leukemia. Leukemia. 2015;29:526–34.

    Article  CAS  PubMed  Google Scholar 

  97. Gökbuget N, Beck J, Brandt K, Brüggemann M, Burmeister T, Diedrich H, et al. Significant improvement of outcome in adolescents and young adults (AYAs) aged 15–35 years with acute lymphoblastic leukemia (ALL) with a pediatric derived adult ALL protocol; results of 1529 AYAs in 2 consecutive trials of the German multicenter study group for adult ALL (GMALL). Blood. 2013;122:839.

    Article  Google Scholar 

  98. Hayakawa F, Sakura T, Yujiri T, Kondo E, Fujimaki K, Sasaki O, et al. Markedly improved outcomes and acceptable toxicity in adolescents and young adults with acute lymphoblastic leukemia following treatment with a pediatric protocol: a phase II study by the Japan Adult Leukemia Study Group. Blood cancer J. 2014;4:e252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hough R, Rowntree C, Goulden N, Mitchell C, Moorman A, Wade R, et al. Efficacy and toxicity of a paediatric protocol in teenagers and young adults with Philadelphia chromosome negative acute lymphoblastic leukaemia: results from UKALL 2003. Br J Haematol. 2016;172:439–51.

    Article  CAS  PubMed  Google Scholar 

  100. Huguet F, Leguay T, Raffoux E, Thomas X, Beldjord K, Delabesse E, et al. Pediatric-inspired therapy in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia: the GRAALL-2003 study. J Clin Oncol. 2009;27:911–8.

    Article  CAS  PubMed  Google Scholar 

  101. Ribera JM, Oriol A, Sanz MA, Tormo M, Fernandez-Abellan P, del Potro E, et al. Comparison of the results of the treatment of adolescents and young adults with standard-risk acute lymphoblastic leukemia with the Programa Espanol de Tratamiento en Hematologia pediatric-based protocol ALL-96. J Clin Oncol. 2008;26:1843–9.

    Article  CAS  PubMed  Google Scholar 

  102. Storring JM, Minden MD, Kao S, Gupta V, Schuh AC, Schimmer AD, et al. Treatment of adults with BCR-ABL negative acute lymphoblastic leukaemia with a modified paediatric regimen. Br J Haematol. 2009;146:76–85.

    Article  PubMed  Google Scholar 

  103. Toft N, Birgens H, Abrahamsson J, Griskevicius L, Hallbook H, Heyman M, et al. Results of NOPHO ALL2008 treatment for patients aged 1–45 years with acute lymphoblastic leukemia. Leukemia. 2018;32:606–15.

    Article  CAS  PubMed  Google Scholar 

  104. Rytting ME, Thomas DA, O’Brien SM, Ravandi-Kashani F, Jabbour EJ, Franklin AR, et al. Augmented Berlin–Frankfurt–Munster therapy in adolescents and young adults (AYAs) with acute lymphoblastic leukemia (ALL). Cancer. 2014;120:3660–8.

    Article  CAS  PubMed  Google Scholar 

  105. Stock W, Luger SM, Advani AS, Yin J, Harvey RC, Mullighan CG, et al. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia: results of CALGB 10403. Blood. 2019;133:1548–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines JG, Peters ST, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10:125–34.

    Article  CAS  Google Scholar 

  107. Jain N, Roberts KG, Jabbour E, Patel K, Eterovic AK, Chen K, et al. Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults. Blood. 2017;129:572–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Roberts KG, Gu Z, Payne-Turner D, McCastlain K, Harvey RC, Chen IM, et al. High frequency and poor outcome of philadelphia chromosome-like acute lymphoblastic leukemia in adults. J Clin Oncol. 2017;35:394–401.

    Article  PubMed  Google Scholar 

  109. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453:110–4.

    Article  CAS  PubMed  Google Scholar 

  110. Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371:1005–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Tran TH, Loh ML. Ph-like acute lymphoblastic leukemia. Hematology. 2016;2016:561–6.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Tasian SK, Loh ML, Hunger SP. Philadelphia chromosome–like acute lymphoblastic leukemia. Blood. 2017;130:2064–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tran TH, Loh ML. Ph-like acute lymphoblastic leukemia. Hematol/Educ Program Am Soc Hematol Am Soc Hematol Educ Program. 2016;2016:561–6.

    Article  Google Scholar 

  114. Kim S-K, Knight DA, Jones LR, Vervoort S, Ng AP, Seymour JF, et al. JAK2 is dispensable for maintenance of JAK2 mutant B-cell acute lymphoblastic leukemias. Genes Dev. 2018;32:849–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jain N, Jabbour EJ, McKay PZ, Ravandi F, Takahashi K, Kadia T, et al. Ruxolitinib or dasatinib in combination with chemotherapy for patients with relapsed/refractory philadelphia (Ph)-like acute lymphoblastic leukemia: a phase I-II trial. Blood. 2017;130:1322–1322.

    Google Scholar 

  116. Jabbour E, O’Brien S, Ravandi F, Kantarjian H. Monoclonal antibodies in acute lymphoblastic leukemia. Blood. 2015;125:4010–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Thomas DA, O’Brien S, Faderl S, Garcia-Manero G, Ferrajoli A, Wierda W, et al. Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor B-lineage acute lymphoblastic leukemia. J Clin Oncol. 2010;28:3880–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Maury S, Chevret S, Thomas X, Heim D, Leguay T, Huguet F, et al. Rituximab in B-lineage adult acute lymphoblastic leukemia. N Engl J Med. 2016;375:1044–53.

    Article  CAS  PubMed  Google Scholar 

  119. Maloney DG. Anti-CD20 antibody therapy for B-cell lymphomas. N Engl J Med. 2012;366:2008–16.

    Article  CAS  PubMed  Google Scholar 

  120. Jabbour E, Richard-Carpentier G, Sasaki Y, Konopleva M, Patel K, Roberts K, et al. Hyper-CVAD regimen in combination with ofatumumab as frontline therapy for adults with Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia: a single-arm, phase 2 trial. Lancet Haematol. 2020;7:e523–e533.

    Article  PubMed  Google Scholar 

  121. Patel B, Rai L, Buck G, Richards SM, Mortuza Y, Mitchell W, et al. Minimal residual disease is a significant predictor of treatment failure in non T-lineage adult acute lymphoblastic leukaemia: final results of the international trial UKALL XII/ECOG2993. Br J Haematol. 2010;148:80–89.

    Article  CAS  PubMed  Google Scholar 

  122. Gokbuget N, Kneba M, Raff T, Trautmann H, Bartram CR, Arnold R, et al. Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood. 2012;120:1868–76.

    Article  PubMed  CAS  Google Scholar 

  123. Beldjord K, Chevret S, Asnafi V, Huguet F, Boulland M-L, Leguay T, et al. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. Blood. 2014;123:3739–49.

    Article  CAS  PubMed  Google Scholar 

  124. Dhedin N, Huynh A, Maury S, Tabrizi R, Beldjord K, Asnafi V, et al. Role of allogeneic stem cell transplantation in adult patients with Ph-negative acute lymphoblastic leukemia. Blood. 2015;125:2486–96. quiz 2586.

    Article  CAS  PubMed  Google Scholar 

  125. Bassan R, Masciulli A, Intermesoli T, Spinelli O, Tosi M, Pavoni C, et al. Final results of northern Italy leukemia group (NILG) trial 10/07 combining pediatric-type therapy with minimal residual disease study and risk-oriented hematopoietic cell transplantation in adult acute lymphoblastic leukemia (ALL). Blood. 2016;128:176.

    Article  Google Scholar 

  126. Jabbour E, Short NJ, Jorgensen JL, Yilmaz M, Ravandi F, Wang SA, et al. Differential impact of minimal residual disease negativity according to the salvage status in patients with relapsed/refractory B-cell acute lymphoblastic leukemia. Cancer. 2017;123:294–302.

    Article  CAS  PubMed  Google Scholar 

  127. Short NJ, Jabbour E, Albitar M, de Lima M, Gore L, Jorgensen J, et al. Recommendations for the assessment and management of measurable residual disease in adults with acute lymphoblastic leukemia: a consensus of North American experts. Am J Hematol. 2019;94:257–65.

    Article  PubMed  Google Scholar 

  128. Yilmaz M, Kantarjian H, Wang X, Khoury JD, Ravandi F, Jorgensen J, et al. The early achievement of measurable residual disease negativity in the treatment of adults with Philadelphia-negative B-cell acute lymphoblastic leukemia is a strong predictor for survival. Am J Hematol. 2020;95:144–50.

    Article  CAS  PubMed  Google Scholar 

  129. Short NJ, Kantarjian HM, Patel K, Kornblau SM, Jorgensen JL, Wang SA, et al. Ultrasensitive next-generation sequencing-based measurable residual disease assessment in Philadelphia chromosome-negative acute lymphoblastic leukemia after frontline therapy: correlation with flow cytometry and impact on clinical outcomes. Blood. 2020;136:26–28.

    Article  Google Scholar 

  130. Short NJ, Jabbour E. Minimal residual disease in acute lymphoblastic leukemia: how to recognize and treat it. Curr Oncol Rep. 2017;19:6.

    Article  PubMed  Google Scholar 

  131. Terwey TH, Hemmati PG, Nagy M, Pfeifer H, Gokbuget N, Bruggemann M, et al. Comparison of chimerism and minimal residual disease monitoring for relapse prediction after allogeneic stem cell transplantation for adult acute lymphoblastic leukemia. Biol Blood Marrow Transpl. 2014;20:1522–9.

    Article  Google Scholar 

  132. Zhao XS, Liu YR, Zhu HH, Xu LP, Liu DH, Liu KY, et al. Monitoring MRD with flow cytometry: an effective method to predict relapse for ALL patients after allogeneic hematopoietic stem cell transplantation. Ann Hematol. 2012;91:183–92.

    Article  CAS  PubMed  Google Scholar 

  133. Giebel S, Marks DI, Boissel N, Baron F, Chiaretti S, Ciceri F, et al. Hematopoietic stem cell transplantation for adults with Philadelphia chromosome-negative acute lymphoblastic leukemia in first remission: a position statement of the European working group for adult acute lymphoblastic leukemia (EWALL) and the acute leukemia working party of the European society for blood and marrow transplantation (EBMT). Bone Marrow Transpl. 2019;54:798–809.

    Article  Google Scholar 

  134. Schultz KR, Pullen DJ, Sather HN, Shuster JJ, Devidas M, Borowitz MJ, et al. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the pediatric oncology group (POG) and children’s cancer group (CCG). Blood. 2007;109:926–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dombret H, Gabert J, Boiron JM, Rigal-Huguet F, Blaise D, Thomas X, et al. Outcome of treatment in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia-results of the prospective multicenter LALA-94 trial. Blood. 2002;100:2357–66.

    Article  CAS  PubMed  Google Scholar 

  136. Sala Torra O, Othus M, Williamson DW, Wood B, Kirsch I, Robins H, et al. Next-generation sequencing in adult B cell acute lymphoblastic leukemia patients. Biol Blood Marrow Transpl. 2017;23:691–6.

    Article  CAS  Google Scholar 

  137. Wood B, Wu D, Crossley B, Dai Y, Williamson D, Gawad C, et al. Measurable residual disease detection by high-throughput sequencing improves risk stratification for pediatric B-ALL. Blood. 2018;131:1350–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Pulsipher MA, Carlson C, Langholz B, Wall DA, Schultz KR, Bunin N, et al. IgH-V(D)J NGS-MRD measurement pre- and early post-allotransplant defines very low- and very high-risk ALL patients. Blood. 2015;125:3501–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Muffly LS, Sundaram V, Chen C, Yurkiewicz I, Kuo E, Burnash S, et al. Monitoring measurable residual disease using peripheral blood in acute lymphoblastic leukemia: results of a prospective, observational study. Blood. 2020;136:22–23.

    Article  Google Scholar 

  140. Chalandon Y, Rousselot P, Cayuela J-M, Thomas X, Clappier E, Havelange V, et al. Nilotinib combined with lower-intensity chemotherapy for front-line treatment of younger adults with Ph-positive acute lymphoblastic leukemia: interim analysis of the GRAAPH-2014 trial. Eur Hematol Assoc. 2018;2:410.

    Google Scholar 

  141. Sancho JM, Ribera JM, Xicoy B, Morgades M, Oriol A, Tormo M, et al. Results of the PETHEMA ALL-96 trial in elderly patients with Philadelphia chromosome-negative acute lymphoblastic leukemia. Eur J Haematol. 2007;78:102–10.

    CAS  PubMed  Google Scholar 

  142. Goekbuget N, Leguay T, Hunault M, Al-Nawakil C, Chevallier P, Dombret H, et al. First European chemotherapy schedule for elderly patients with acute lymphoblastic leukemia: promising remission rate and feasible moderate dose intensity consolidation. Blood. 2008;112:304–304.

    Article  Google Scholar 

  143. Hunault-Berger M, Leguay T, Thomas X, Legrand O, Huguet F, Bonmati C, et al. A randomized study of pegylated liposomal doxorubicin versus continuous-infusion doxorubicin in elderly patients with acute lymphoblastic leukemia: the GRAALL-SA1 study. Haematologica. 2011;96:245–52.

    Article  CAS  PubMed  Google Scholar 

  144. Goekbuget N, Beck J, Brueggemann M, Burmeister T, Buss EC, Frickhofen N, et al. Moderate intensive chemotherapy including CNS-prophylaxis with liposomal cytarabine is feasible and effective in older patients with Ph-negative acute lymphoblastic leukemia (ALL): results of a prospective trial from the german multicenter study group for adult ALL (GMALL). Blood. 2012;120:1493–1493.

    Article  Google Scholar 

  145. Ribera JM, Garcia O, Oriol A, Gil C, Montesinos P, Bernal T, et al. Feasibility and results of subtype-oriented protocols in older adults and fit elderly patients with acute lymphoblastic leukemia: results of three prospective parallel trials from the PETHEMA group. Leuk Res. 2016;41:12–20.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by an MD Anderson Cancer Center Support Grant (CA016672) and SPORE. NJS is supported by the K12 Paul Calabresi Clinical Oncology Scholar Award and the American Society of Hematology Junior Faculty Scholar Award in Clinical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Jabbour.

Ethics declarations

Conflict of interest

NJS has served as a consultant for Takeda Oncology and AstraZeneca, reports receiving research grants from Takeda Oncology and Astellas Pharma Inc., and has received honoraria from Amgen. EJ has research grants with Amgen, AbbVie, Spectrum, BMS, Takeda Oncology, Pfizer, and Adaptive.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Short, N.J., Kantarjian, H. & Jabbour, E. Optimizing the treatment of acute lymphoblastic leukemia in younger and older adults: new drugs and evolving paradigms. Leukemia 35, 3044–3058 (2021). https://doi.org/10.1038/s41375-021-01277-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01277-3

This article is cited by

Search

Quick links