Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

p53/BNIP3-dependent mitophagy limits glycolytic shift in radioresistant cancer

Abstract

The role of p53 in genotoxic therapy-induced metabolic shift in cancers is not yet known. In this study, we investigated the role of p53 in the glycolytic shift in head and neck squamous cell carcinoma cell lines following irradiation. Isogenic p53-null radioresistant cancer cells established through cumulative irradiation showed decreased oxygen consumption and increased glycolysis with compromised mitochondria, corresponding with their enhanced sensitivity to drugs that target glycolysis. In contrast, radioresistant cancer cells with wild-type p53 preserved their primary metabolic profile with intact mitophagic processes and maintained their mitochondrial integrity. Moreover, we identified a previously unappreciated link between p53 and mitophagy, which limited the glycolytic shift through the BNIP3-dependent clearance of abnormal mitochondria. Thus, drugs targeting glycolysis could be used as an alternative strategy for overcoming radioresistant cancers, and the p53 status could be used as a biomarker for selecting participants for clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vousden KH, Ryan KM. p53 and metabolism. Nat Rev Cancer. 2009;9:691–700.

    Article  CAS  Google Scholar 

  2. Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol. 2015;16:393–405.

    Article  CAS  Google Scholar 

  3. Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D’Amelio M, et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 2008;10:676–687.

    Article  CAS  Google Scholar 

  4. Muller PA, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014;25:304–317.

    Article  CAS  Google Scholar 

  5. Zhang C, Liu J, Liang Y, Wu R, Zhao Y, Hong X, et al. Tumour-associated mutant p53 drives the Warburg effect. Nat Commun. 2013;4:2935.

    Article  Google Scholar 

  6. Rajeshkumar NV, Dutta P, Yabuuchi S, de Wilde RF, Martinez GV, Le A, et al. Therapeutic targeting of the warburg effect in pancreatic cancer relies on an absence of p53 function. Cancer Res. 2015;75:3355–3364.

    Article  CAS  Google Scholar 

  7. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–1033.

    Article  Google Scholar 

  8. Mims J, Bansal N, Bharadwaj MS, Chen X, Molina AJ, Tsang AW, et al. Energy metabolism in a matched model of radiation resistance for head and neck squamous cell cancer. Radiat Res. 2015;183:291–304.

    Article  CAS  Google Scholar 

  9. Skinner HD, Sandulache VC, Ow TJ, Meyn RE, Yordy JS, Beadle BM, et al. TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence. Clin Cancer Res. 2012;18:290–300.

    Article  CAS  Google Scholar 

  10. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, et al. p53 regulates mitochondrial respiration. Science. 2006;312:1650–1653.

    Article  CAS  Google Scholar 

  11. Zhang C, Lin M, Wu R, Wang X, Yang B, Levine AJ, et al. Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc Natl Acad Sci USA. 2011;108:16259–16264.

    Article  CAS  Google Scholar 

  12. Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 2010;330:1340–1344.

    Article  CAS  Google Scholar 

  13. Hoshino A, Ariyoshi M, Okawa Y, Kaimoto S, Uchihashi M, Fukai K, et al. Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic beta-cell function in diabetes. Proc Natl Acad Sci USA. 2014;111:3116–3121.

    Article  CAS  Google Scholar 

  14. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11:325–337.

    Article  CAS  Google Scholar 

  15. Palikaras K, Lionaki E, Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol. 2018;20:1013–1022.

    Article  CAS  Google Scholar 

  16. Hamacher-Brady A, Brady NR. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol life Sci: CMLS. 2016;73:775–795.

    Article  CAS  Google Scholar 

  17. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12:9–14.

    Article  CAS  Google Scholar 

  18. Bernardini JP, Lazarou M, Dewson G. Parkin and mitophagy in cancer. Oncogene. 2017;36:1315–1327.

    Article  CAS  Google Scholar 

  19. Lu H, Li G, Liu L, Feng L, Wang X, Jin H. Regulation and function of mitophagy in development and cancer. Autophagy. 2013;9:1720–1736.

    Article  CAS  Google Scholar 

  20. Bansal N, Mims J, Kuremsky JG, Olex AL, Zhao W, Yin L, et al. Broad phenotypic changes associated with gain of radiation resistance in head and neck squamous cell cancer. Antioxid & Redox Signal. 2014;21:221–236.

    Article  CAS  Google Scholar 

  21. Zhang J, Shen L, Sun LQ. The regulation of radiosensitivity by p53 and its acetylation. Cancer Lett. 2015;363:108–118.

    Article  CAS  Google Scholar 

  22. Vokes EE, Weichselbaum RR, Lippman SM, Hong WK. Head and neck cancer. New Engl J Med. 1993;328:184–194.

    Article  CAS  Google Scholar 

  23. Lambrecht M, Dirix P, Van den Bogaert W, Nuyts S. Incidence of isolated regional recurrence after definitive (chemo-) radiotherapy for head and neck squamous cell carcinoma. Radiother Oncol: J Eur Soc Ther Radiol Oncol. 2009;93:498–502.

    Article  Google Scholar 

  24. Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest. 2013;123:3678–3684.

    Article  CAS  Google Scholar 

  25. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21:297–308.

    Article  CAS  Google Scholar 

  26. Vyas S, Zaganjor E, Haigis MC. Mitochondria and cancer. Cell. 2016;166:555–566.

    Article  CAS  Google Scholar 

  27. Sancho P, Burgos-Ramos E, Tavera A, Bou Kheir T, Jagust P, Schoenhals M, et al. MYC/PGC-1alpha balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab. 2015;22:590–605.

    Article  CAS  Google Scholar 

  28. Maes H, Van Eygen S, Krysko DV, Vandenabeele P, Nys K, Rillaerts K, et al. BNIP3 supports melanoma cell migration and vasculogenic mimicry by orchestrating the actin cytoskeleton. Cell Death Dis. 2014;5:e1127.

    Article  CAS  Google Scholar 

  29. Wauer T, Simicek M, Schubert A, Komander D. Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature. 2015;524:370–374.

    Article  CAS  Google Scholar 

  30. Mauro-Lizcano M, Esteban-Martinez L, Seco E, Serrano-Puebla A, Garcia-Ledo L, Figueiredo-Pereira C, et al. New method to assess mitophagy flux by flow cytometry. Autophagy. 2015;11:833–843.

    Article  CAS  Google Scholar 

  31. Hollville E, Carroll RG, Cullen SP, Martin SJ. Bcl-2 family proteins participate in mitochondrial quality control by regulating Parkin/PINK1-dependent mitophagy. Mol Cell. 2014;55:451–466.

    Article  CAS  Google Scholar 

  32. Zhang T, Xue L, Li L, Tang C, Wan Z, Wang R, et al. BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy. J Biol Chem. 2016;291:21616–21629.

    Article  CAS  Google Scholar 

  33. Lee Y, Lee HY, Hanna RA, Gustafsson AB. Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am J Physiol Heart Circ Physiol. 2011;301:H1924–1931.

    Article  CAS  Google Scholar 

  34. Li GB, Zhang HW, Fu RQ, Hu XY, Liu L, Li YN, et al. Mitochondrial fission and mitophagy depend on cofilin-mediated actin depolymerization activity at the mitochondrial fission site. Oncogene. 2018;37:1485–1502.

    Article  CAS  Google Scholar 

  35. Yan C, Luo L, Guo CY, Goto S, Urata Y, Shao JH, et al. Doxorubicin-induced mitophagy contributes to drug resistance in cancer stem cells from HCT8 human colorectal cancer cells. Cancer Lett. 2017;388:34–42.

    Article  CAS  Google Scholar 

  36. Wu HM, Jiang ZF, Ding PS, Shao LJ, Liu RY. Hypoxia-induced autophagy mediates cisplatin resistance in lung cancer cells. Sci Rep. 2015;5:12291.

    Article  CAS  Google Scholar 

  37. Tang L, Wei F, Wu Y, He Y, Shi L, Xiong F, et al. Role of metabolism in cancer cell radioresistance and radiosensitization methods. J Exp & Clin Cancer Res: CR. 2018;37:87.

    Article  Google Scholar 

  38. Toyama EQ, Herzig S, Courchet J, Lewis TL Jr., Loson OC, et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science. 2016;351:275–281.

    Article  CAS  Google Scholar 

  39. Liu K, Li F, Han H, Chen Y, Mao Z, Luo J, et al. Parkin regulates the activity of pyruvate kinase M2. J Biol Chem. 2016;291:10307–10317.

    Article  CAS  Google Scholar 

  40. Gustafsson AB. Bnip3 as a dual regulator of mitochondrial turnover and cell death in the myocardium. Pediatr Cardiol. 2011;32:267–274.

    Article  Google Scholar 

  41. Tracy K, Macleod KF. Regulation of mitochondrial integrity, autophagy and cell survival by BNIP3. Autophagy. 2007;3:616–619.

    Article  CAS  Google Scholar 

  42. Villa E, Proics E, Rubio-Patino C, Obba S, Zunino B, Bossowski JP, et al. Parkin-independent mitophagy controls chemotherapeutic response in cancer cells. Cell Rep. 2017;20:2846–2859.

    Article  CAS  Google Scholar 

  43. Lall R, Ganapathy S, Yang M, Xiao S, Xu T, Su H, et al. Low-dose radiation exposure induces a HIF-1-mediated adaptive and protective metabolic response. Cell Death Differ. 2014;21:836–844.

    Article  CAS  Google Scholar 

  44. Chourasia AH, Tracy K, Frankenberger C, Boland ML, Sharifi MN, Drake LE, et al. Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis. EMBO Rep. 2015;16:1145–1163.

    Article  CAS  Google Scholar 

  45. Guo K, Searfoss G, Krolikowski D, Pagnoni M, Franks C, Clark K, et al. Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ. 2001;8:367–376.

    Article  CAS  Google Scholar 

  46. Feng X, Liu X, Zhang W, Xiao W. p53 directly suppresses BNIP3 expression to protect against hypoxia-induced cell death. Embo J. 2011;30:3397–3415.

    Article  CAS  Google Scholar 

  47. Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov. 2011;10:671–684.

    Article  Google Scholar 

  48. Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G. Metabolic targets for cancer therapy. Nat Rev Drug Discov. 2013;12:829–846.

    Article  CAS  Google Scholar 

  49. Chang HW, Nam HY, Kim HJ, Moon SY, Kim MR, Lee M, et al. Effect of beta-catenin silencing in overcoming radioresistance of head and neck cancer cells by antagonizing the effects of AMPK on Ku70/Ku80. Head Neck. 2016;38(Suppl 1):E1909–1917.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future planning (2018R1A2A1A05020064, 2014R1A1A1003484, 2015R1A2A2A01003235), the Ministry of Education (2018R1D1A1B07042783), MRC grant funded by the Korean government (MSIT) (2018R1A5A2020732), the Global High-tech Biomedicine Technology Development Program of the NRF & Korea Health Industry Development Institute (KHIDI) (MSIP&MOHW) (2015M3D6A1065364), and the Asan Institute for Life Science (2017-073).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seong Who Kim or Sang Yoon Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, H.W., Kim, M.R., Lee, H.J. et al. p53/BNIP3-dependent mitophagy limits glycolytic shift in radioresistant cancer. Oncogene 38, 3729–3742 (2019). https://doi.org/10.1038/s41388-019-0697-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0697-6

This article is cited by

Search

Quick links