Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SOX7 regulates MAPK/ERK-BIM mediated apoptosis in cancer cells

Abstract

Apoptosis of cancer cells occurs by a complex gene regulatory network. Here we showed that SOX7 was significantly downregulated in different cancer types, especially in lung and breast cancers. Low expression of SOX7 was associated with advantage stage of cancer with shorter overall survival. Cancer cells with loss of SOX7 promoted cell survival and colony formation, suppressed cellular apoptosis and produced a drug resistant phenotype against a variety of chemo/targeting therapeutic agents. Mechanistically, SOX7 induced cellular apoptosis through upregulation of genes associated with both P38 and apoptotic signaling pathway, as well as preventing the proteasome mediated degradation of pro-apoptotic protein BIM. Treatment of either a proteasome inhibitor MG132 or bortezomib, or with a p-ERK/MEK inhibitor U0126 attenuate the SOX7 promoted BIM degradation. We identified Panobinostat, an FDA approved pan-HDAC inhibitor, could elevate and restore SOX7 expression in SOX7 silenced lung cancer cells. Taken together, these data revealed an unappreciated role of SOX7 in regulation of cellular apoptosis through control of MAPK/ERK-BIM signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.

    Article  CAS  Google Scholar 

  2. Kohno T, Nakaoku T, Tsuta K, Tsuchihara K, Matsumoto S, Yoh K, et al. Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer. Transl Lung Cancer Res. 2015;4:156–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S, et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18:378–81.

    Article  CAS  Google Scholar 

  4. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.

    Article  CAS  Google Scholar 

  5. Gettinger S, Rizvi NA, Chow LQ, Borghaei H, Brahmer J, Ready N, et al. Nivolumab monotherapy for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol. 2016;34:2980–7.

    Article  CAS  Google Scholar 

  6. Shojaee S, Nana-Sinkam P. Recent advances in the management of non-small cell lung cancer. F1000Res. 2017;6:2110.

    Article  Google Scholar 

  7. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. Drug resistance in cancer: an overview. Cancers. 2014;6:1769–92.

    Article  CAS  Google Scholar 

  8. Rueff J, Rodrigues AS. Cancer drug resistance: a brief overview from a genetic viewpoint. Methods Mol Biol. 2016;1395:1–18.

    Article  CAS  Google Scholar 

  9. Dong C, Wilhelm D, Koopman P. Sox genes and cancer. Cytogenet Genome Res. 2004;105:442–7.

    Article  CAS  Google Scholar 

  10. Rajgara RF, Lala-Tabbert N, Marchildon F, Lamarche É, MacDonald JK, Scott DA, et al. SOX7 is required for muscle satellite cell development and maintenance. Stem Cell Rep. 2017;9:1139–51.

    Article  CAS  Google Scholar 

  11. Lilly AJ, Mazan A, Scott DA, Lacaud G, Kouskoff V. SOX7 expression is critically required in FLK1-expressing cells for vasculogenesis and angiogenesis during mouse embryonic development. Mech Dev. 2017;146:31–41.

    Article  CAS  Google Scholar 

  12. Kanki Y, Nakaki R, Shimamura T, Matsunaga T, Yamamizu K, Katayama S, et al. Dynamically and epigenetically coordinated GATA/ETS/SOX transcription factor expression is indispensable for endothelial cell differentiation. Nucleic Acids Res. 2017;45:4344–58.

    Article  CAS  Google Scholar 

  13. Stovall DB, Cao P, Sui G. SOX7: from a developmental regulator to an emerging tumor suppressor. Histol Histopathol. 2014;29:439–45.

    CAS  PubMed  Google Scholar 

  14. Afouda BA, Lynch AT, de Paiva Alves E, Hoppler S. Genome-wide transcriptomics analysis of genes regulated by GATA4, 5 and 6 during cardiomyogenesis in Xenopus laevis. Data in Brief. 2018;17:559–63.

    Article  Google Scholar 

  15. Kim IK, Kim K, Lee E, Oh DS, Park CS, Park S, et al. Sox7 promotes high-grade glioma by increasing VEGFR2-mediated vascular abnormality. J Exp Med. 2018;215:963–83.

    Article  CAS  Google Scholar 

  16. Zhou Y, Williams J, Smallwood PM, Nathans J. Sox7, Sox17, and Sox18 cooperatively regulate vascular development in the mouse retina. PLoS ONE. 2015;10:e0143650.

    Article  Google Scholar 

  17. Stovall DB, Wan M, Miller LD, Cao P, Maglic D, Zhang Q, et al. The regulation of SOX7 and its tumor suppressive role in breast cancer. Am J Pathol. 2013;183:1645–53.

    Article  CAS  Google Scholar 

  18. Wang D, Cao Q, Qu M, Xiao Z, Zhang M, Di S. MicroRNA-616 promotes the growth and metastasis of non-small cell lung cancer by targeting SOX7. Oncol Rep. 2017;38:2078–86.

    Article  CAS  Google Scholar 

  19. Oh KY, Hong KO, Huh YS, Lee JI, Hong SD. Decreased expression of SOX7 induces cell proliferation and invasion and correlates with poor prognosis in oral squamous cell carcinoma. J Oral Pathol Med. 2017;46:752–8.

    Article  CAS  Google Scholar 

  20. Han L, Wang W, Ding W, Zhang L. MiR‐9 is involved in TGF‐β1‐induced lung cancer cell invasion and adhesion by targeting SOX7. J Cell Mol Med. 2017;21:2000–8.

    Article  CAS  Google Scholar 

  21. Einolf HJ, Lin W, Won CS, Wang L, Gu H, Chun DY, et al. Physiologically based pharmacokinetic model predictions of panobinostat (LBH589) as a victim and perpetrator of drug-drug interactions. Drug Metab Dispos. 2017;45:1304–16.

    Article  CAS  Google Scholar 

  22. Zhang Y, Huang S, Dong W, Li L, Feng Y, Pan L, et al. SOX7, down-regulated in colorectal cancer, induces apoptosis and inhibits proliferation of colorectal cancer cells. Cancer Lett. 2009;277:29–37.

    Article  CAS  Google Scholar 

  23. Hayano T, Garg M, Yin D, Sudo M, Kawamata N, Shi S, et al. SOX7 is down-regulated in lung cancer. J Exp Clin Cancer Res. 2013;32:17.

    Article  CAS  Google Scholar 

  24. Stovall DB, Cao P, Sui G. SOX7: From a developmental regulator to an emerging tumor suppressor. Histol Histopathol. 2014;29:439.

    CAS  PubMed  Google Scholar 

  25. Liu H, Mastriani E, Yan Z-Q, Yin S-Y, Zeng Z, Wang H, et al. SOX7 co-regulates Wnt/β-catenin signaling with Axin-2: both expressed at low levels in breast cancer. Sci Rep. 2016;6:srep26136.

    Article  Google Scholar 

  26. Fan R, He H, Yao W, Zhu Y, Zhou X, Gui M, et al. SOX7 Suppresses Wnt Signaling by Disrupting beta-Catenin/BCL9 Interaction. DNA Cell Biol. 2018;37:126–32.

    Article  CAS  Google Scholar 

  27. Yan L, Ma J, Zhu Y, Zan J, Wang Z, Ling L, et al. miR-24-3p promotes cell migration and proliferation in lung cancer by targeting SOX7. J Cell Biochem. 2018;119:3989–98.

    Article  CAS  Google Scholar 

  28. Guo L, Zhong D, Lau S, Liu X, Dong X-Y, Sun X, et al. Sox7 is an independent checkpoint for β-catenin function in prostate and colon epithelial cells. Mol Cancer Res. 2008;6:1421–30.

    Article  CAS  Google Scholar 

  29. Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta. 2013;1833:3481–98.

    Article  CAS  Google Scholar 

  30. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75:50–83.

    Article  CAS  Google Scholar 

  31. Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature. 1997;386:296–9.

    Article  CAS  Google Scholar 

  32. Hishida T, Nozaki Y, Nakachi Y, Mizuno Y, Iseki H, Katano M, et al. Sirt1, p53, and p38(MAPK) are crucial regulators of detrimental phenotypes of embryonic stem cells with Max expression ablation. Stem Cells. 2012;30:1634–44.

    Article  CAS  Google Scholar 

  33. Gurtner A, Starace G, Norelli G, Piaggio G, Sacchi A, Bossi G. Mutant p53-induced up-regulation of mitogen-activated protein kinase kinase 3 contributes to gain of function. J Biol Chem. 2010;285:14160–9.

    Article  CAS  Google Scholar 

  34. Meunier I, Lenaers G, Bocquet B, Baudoin C, Piro-Megy C, Cubizolle A, et al. A dominant mutation in MAPKAPK3, an actor of p38 signaling pathway, causes a new retinal dystrophy involving Bruch's membrane and retinal pigment epithelium. Hum Mol Genet. 2016;25:916–26.

    Article  CAS  Google Scholar 

  35. Sahay B, Patsey RL, Eggers CH, Salazar JC, Radolf JD, Sellati TJ. CD14 signaling restrains chronic inflammation through induction of p38-MAPK/SOCS-dependent tolerance. PLoS Pathog. 2009;5:e1000687.

    Article  Google Scholar 

  36. Jiang Q, Li F, Shi K, Wu P, An J, Yang Y, et al. ATF4 activation by the p38MAPK-eIF4E axis mediates apoptosis and autophagy induced by selenite in Jurkat cells. FEBS Lett. 2013;587:2420–9.

    Article  CAS  Google Scholar 

  37. Maytin EV, Ubeda M, Lin JC, Habener JF. Stress-inducible transcription factor CHOP/gadd153 induces apoptosis in mammalian cells via p38 kinase-dependent and -independent mechanisms. Exp Cell Res. 2001;267:193–204.

    Article  CAS  Google Scholar 

  38. Zhang Z, Kobayashi S, Borczuk AC, Leidner RS, Laframboise T, Levine AD, et al. Dual specificity phosphatase 6 (DUSP6) is an ETS-regulated negative feedback mediator of oncogenic ERK signaling in lung cancer cells. Carcinogenesis. 2010;31:577–86.

    Article  Google Scholar 

  39. Luciano F, Jacquel A, Colosetti P, Herrant M, Cagnol S, Pages G, et al. Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function. Oncogene. 2003;22:6785–93.

    Article  CAS  Google Scholar 

  40. Ewings KE, Wiggins CM, Cook SJ. Bim and the pro-survival Bcl-2 proteins: opposites attract, ERK repels. Cell Cycle. 2007;6:2236–40.

    Article  CAS  Google Scholar 

  41. Montero J, Sarosiek KA, DeAngelo JD, Maertens O, Ryan J, Ercan D, et al. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell. 2015;160:977–89.

    Article  CAS  Google Scholar 

  42. Faber AC, Corcoran RB, Ebi H, Sequist LV, Waltman BA, Chung E, et al. BIM expression in treatment-naive cancers predicts responsiveness to kinase inhibitors. Cancer Disco. 2011;1:352–65.

    Article  CAS  Google Scholar 

  43. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362:2380–8.

    Article  CAS  Google Scholar 

  44. Lenassi M, Plemenitaš A. The role of p38 MAP kinase in cancer cell apoptosis. Radiol. Oncol. 2006;40:51–6.

    CAS  Google Scholar 

  45. Kidger AM, Keyse SM. The regulation of oncogenic Ras/ERK signalling by dual-specificity mitogen activated protein kinase phosphatases (MKPs). Semin Cell Dev Biol. 2016;50:125–32.

    Article  CAS  Google Scholar 

  46. Brown JA, Ferrando A. Glucocorticoid resistance in acute lymphoblastic leukemia: BIM finally. Cancer Cell. 2018;34:869–71.

    Article  CAS  Google Scholar 

  47. Jing D, Huang Y, Liu X, Sia KCS, Zhang JC, Tai X, et al. Lymphocyte-specific chromatin accessibility pre-determines glucocorticoid resistance in acute lymphoblastic leukemia. Cancer Cell. 2018;34:906–21, e908.

    Article  CAS  Google Scholar 

  48. Chakraborty AR, Robey RW, Luchenko VL, Zhan Z, Piekarz RL, Gillet JP, et al. MAPK pathway activation leads to Bim loss and histone deacetylase inhibitor resistance: rationale to combine romidepsin with an MEK inhibitor. Blood. 2013;121:4115–25.

    Article  CAS  Google Scholar 

  49. Ng KP, Hillmer AM, Chuah CT, Juan WC, Ko TK, Teo AS, et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med. 2012;18:521–8.

    Article  CAS  Google Scholar 

  50. Cragg MS, Kuroda J, Puthalakath H, Huang DC, Strasser A. Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics. PLoS Med. 2007;4:1681–9. discussion 1690.

    Article  CAS  Google Scholar 

  51. Man CH, Fung TK, Wan H, Cher CY, Fan A, Ng N, et al. Suppression of SOX7 by DNA methylation and its tumor suppressor function in acute myeloid leukemia. Blood. 2015;125:3928–36.

    Article  CAS  Google Scholar 

  52. Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 2007;1:19–25.

    Article  CAS  Google Scholar 

  53. Scuto A, Kirschbaum M, Kowolik C, Kretzner L, Juhasz A, Atadja P, et al. The novel histone deacetylase inhibitor, LBH589, induces expression of DNA damage response genes and apoptosis in Ph- acute lymphoblastic leukemia cells. Blood. 2008;111:5093–5100.

    Article  CAS  Google Scholar 

  54. Barton K, Hiener B, Winckelmann A, Rasmussen TA, Shao W, Byth K, et al. Broad activation of latent HIV-1 in vivo. Nat Commun. 2016;7:12731.

    Article  Google Scholar 

  55. Ding LW, Sun QY, Lin DC, Chien W, Hattori N, Dong XM, et al. LNK (SH2B3): paradoxical effects in ovarian cancer. Oncogene. 2015;34:1463–74.

    Article  CAS  Google Scholar 

  56. Yoon NK, Maresh EL, Shen D, Elshimali Y, Apple S, Horvath S, et al. Higher levels of GATA3 predict better survival in women with breast cancer. Hum Pathol. 2010;41:1794–801.

    Article  CAS  Google Scholar 

  57. Mah V, Marquez D, Alavi M, Maresh EL, Zhang L, Yoon N, et al. Expression levels of estrogen receptor beta in conjunction with aromatase predict survival in non-small cell lung cancer. Lung Cancer. 2011;74:318–25.

    Article  Google Scholar 

  58. Sun QY, Ding LW, Xiao JF, Chien W, Lim SL, Hattori N, et al. SETDB1 accelerates tumourigenesis by regulating the WNT signalling pathway. J Pathol. 2015;235:559–70.

    Article  CAS  Google Scholar 

  59. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research was supported by the National Research Foundation Singapore under the Singapore Translational Research (STaR) Investigator Award (NMRC/STaR/0021/2014) and administered by the Singapore Ministry of Health’s National Medical Research Council (NMRC), the NMRC Centre Grant awarded to National University Cancer Institute of Singapore, the National Research Foundation Singapore, the Singapore Ministry of Education under its Research Centers of Excellence initiatives and RNA Biology Center at the Cancer Science Institute of Singapore (NUS, as part of funding under the Singapore Ministry of Education’s Tier 3 grants, grant number MOE2014-T3–1–006). This research was also supported by the Tower Cancer Research Foundation Michele and Ted Kaplan Family Senior Investigator Grant and Department of Defense USAMRMC (Proposal Number BM160010, Award Number W81XWH-17–1–0093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Wen Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, QY., Ding, LW., Johnson, K. et al. SOX7 regulates MAPK/ERK-BIM mediated apoptosis in cancer cells. Oncogene 38, 6196–6210 (2019). https://doi.org/10.1038/s41388-019-0865-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0865-8

This article is cited by

Search

Quick links