Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Partial EMT in head and neck cancer biology: a spectrum instead of a switch

Abstract

Our understanding of epithelial-to-mesenchymal transition (EMT) has slowly evolved from a simple two state, binary model to a multi-step, dynamic continuum of epithelial-to-mesenchymal plasticity, with metastable intermediate transition states that may drive cancer metastasis. Head and neck cancer is no exception, and in this review, we use head and neck as a case study for how partial-EMT (p-EMT) cell states may play an important role in cancer progression. In particular, we summarize recent in vitro and in vivo studies that uncover these intermediate transition states, which exhibit both epithelial and mesenchymal properties and appear to have distinct advantages in migration, survival in the bloodstream, and seeding and propagation within secondary metastatic sites. We then summarize the common and distinct regulators of p-EMT as well as methodologies for identifying this unique cellular subpopulation, with a specific emphasis on the role of cutting-edge technologies, such as single cell approaches. Finally, we propose strategies to target p-EMT cells, highlighting potential opportunities for therapeutic intervention to specifically target the process of metastasis. Thus, although significant challenges remain, including numerous gaps in current knowledge, a deeper understanding of EMT plasticity and a genuine identification of EMT as spectrum rather than a switch will be critical for improving patient diagnosis and treatment across oncology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Partial-EMT (p-EMT) cells in cancer progression.
Fig. 2: In vivo detection of partial EMT cells.
Fig. 3: Energy model of EMT transition states.
Fig. 4: Partial EMT cells at the leading edge of the tumor are prone to collective migration and CTC cluster formation with increased metastatic rate.

Similar content being viewed by others

References

  1. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168:670–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14:818–29.

    Article  CAS  PubMed  Google Scholar 

  3. Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.

    Article  CAS  PubMed  Google Scholar 

  4. Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, et al. Guidelines and definitions for research on epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2020;21:341–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. George JT, Jolly MK, Xu S, Somarelli JA, Levine H. Survival outcomes in cancer patients predicted by a partial EMT gene expression scoring metric. Cancer Res. 2017;77:6415–LP-6428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck. Cancer Cell. 2017;171:1611–1624.e24.

    CAS  Google Scholar 

  7. Jolly MK, Mani SA, Levine H. Hybrid epithelial/mesenchymal phenotype(s): the “fittest” for metastasis? Biochim Biophys Acta Rev Cancer. 2018;1870:151–7.

    Article  CAS  PubMed  Google Scholar 

  8. Polioudaki H, Agelaki S, Chiotaki R, Politaki E, Mavroudis D, Matikas A, et al. Variable expression levels of keratin and vimentin reveal differential EMT status of circulating tumor cells and correlation with clinical characteristics and outcome of patients with metastatic breast cancer. BMC Cancer. 2015;15:399.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Parikh AS, Puram SV, Faquin WC, Richmon JD, Emerick KS, Deschler DG, et al. Immunohistochemical quantification of partial-EMT in oral cavity squamous cell carcinoma primary tumors is associated with nodal metastasis. Oral Oncol. 2019;99:104458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Papadaki MA, Stoupis G, Theodoropoulos PA, Mavroudis D, Georgoulias V, Agelaki S. Circulating tumor cells with stemness and epithelial-to-mesenchymal transition features are chemoresistant and predictive of poor outcome in metastatic breast cancer. Mol Cancer Ther. 2019;18:437–47.

    Article  CAS  PubMed  Google Scholar 

  11. Fustaino V, Presutti D, Colombo T, Cardinali B, Papoff G, Brandi R, et al. Characterization of epithelial-mesenchymal transition intermediate/hybrid phenotypes associated to resistance to EGFR inhibitors in non-small cell lung cancer cell lines. Oncotarget. 2017;8:103340–63.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Saitoh M. Involvement of partial EMT in cancer progression. J Biochem. 2018;164:257–64.

    Article  CAS  PubMed  Google Scholar 

  13. Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T, Boumahdi S, et al. Identification of the tumour transition states occurring during EMT. Nature. 2018;556:463–8.

    Article  CAS  PubMed  Google Scholar 

  14. Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29:212–26.

    Article  CAS  PubMed  Google Scholar 

  15. Qi Z, Barrett T, Parikh AS, Tirosh I, Puram SV. Single-cell sequencing and its applications in head and neck cancer. Oral Oncol. 2019;99:104441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Puram SV, Parikh AS, Tirosh I. Single cell RNA-seq highlights a role for a partial EMT in head and neck cancer. Mol Cell Oncol. 2018;5:e1448244.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Stepan KO, Li MM, Kang SY, Puram SV. Molecular margins in head and neck cancer: current techniques and future directions. Oral Oncol. 2020;110:104893.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol. 1982;95:333–9.

    Article  CAS  PubMed  Google Scholar 

  19. Viebahn C. Epithelio-mesenchymal transformation during formation of the mesoderm in the mammalian embryo. Acta Anat. 1995;154:79–97.

    Article  CAS  PubMed  Google Scholar 

  20. Tucker GC, Duband JL, Dufour S, Thiery JP. Cell-adhesion and substrate-adhesion molecules: their instructive roles in neural crest cell migration. Development. 1988;103:81–94.

    Article  CAS  PubMed  Google Scholar 

  21. Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, et al. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol. 1991;113:173–85.

    Article  CAS  PubMed  Google Scholar 

  22. Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature. 1998;392:190–3.

    Article  CAS  PubMed  Google Scholar 

  23. Tomson AM, Scholma J, Meijer B, Koning JG, de Jong KM, van der Werf M. Adhesion properties, intermediate filaments and malignant behaviour of head and neck squamous cell carcinoma cells in vitro. Clin Exp Metastasis. 1996;14:501–11.

    Article  CAS  PubMed  Google Scholar 

  24. Birchmeier C, Birchmeier W, Brand-Saberi B. Epithelial-mesenchymal transitions in cancer progression. Acta Anat. 1996;156:217–26.

    Article  CAS  PubMed  Google Scholar 

  25. Langley RR, Fidler IJ. The seed and soil hypothesis revisited - the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer. 2011;128:2527–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jung AR, Jung C-H, Noh JK, Lee YC, Eun Y-G. Epithelial-mesenchymal transition gene signature is associated with prognosis and tumor microenvironment in head and neck squamous cell carcinoma. Sci Rep. 2020;10:3652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wan Y, Liu H, Zhang M, Huang Z, Zhou H, Zhu Y, et al. Prognostic value of epithelial-mesenchymal transition-inducing transcription factors in head and neck squamous cell carcinoma: a meta-analysis. Head Neck. 2020;42:1067–76.

    Article  PubMed  Google Scholar 

  28. Nijkamp MM, Span PN, Hoogsteen IJ, van der Kogel AJ, Kaanders JHAM, Bussink J. Expression of E-cadherin and vimentin correlates with metastasis formation in head and neck squamous cell carcinoma patients. Radiother Oncol.2011;99:344–8.

    Article  CAS  PubMed  Google Scholar 

  29. Nguyen PT, Kudo Y, Yoshida M, Kamata N, Ogawa I, Takata T. N-cadherin expression is involved in malignant behavior of head and neck cancer in relation to epithelial-mesenchymal transition. Histol Histopathol. 2011;26:147–56.

    CAS  PubMed  Google Scholar 

  30. Zidar N, Boštjančič E, Gale N, Kojc N, Poljak M, Glavač D, et al. Down-regulation of microRNAs of the miR-200 family and miR-205, and an altered expression of classic and desmosomal cadherins in spindle cell carcinoma of the head and neck-hallmark of epithelial-mesenchymal transition. Hum Pathol. 2011;42:482–8.

    Article  CAS  PubMed  Google Scholar 

  31. De Cecco L, Nicolau M, Giannoccaro M, Daidone MG, Bossi P, Locati L, et al. Head and neck cancer subtypes with biological and clinical relevance: meta-analysis of gene-expression data. Oncotarget. 2015;6:9627–42.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chui MH. Insights into cancer metastasis from a clinicopathologic perspective: epithelial-mesenchymal transition is not a necessary step. Int J Cancer. 2013;132:1487–95.

    Article  CAS  PubMed  Google Scholar 

  33. Craene BD, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13:97–110.

    Article  PubMed  CAS  Google Scholar 

  34. Brabletz T. To differentiate or not — routes towards metastasis. Nat Rev Cancer. 2012;12:425–36.

    Article  CAS  PubMed  Google Scholar 

  35. Ocaña OH, Córcoles R, Fabra Á, Moreno-Bueno G, Acloque H, Vega S, et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell. 2012;22:709–24.

    Article  PubMed  CAS  Google Scholar 

  36. Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E. Localised and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol. 2009;11:1287–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Panchy N, Azeredo-Tseng C, Luo M, Randall N, Hong T. Integrative transcriptomic analysis reveals a multiphasic epithelial–mesenchymal spectrum in cancer and non-tumorigenic cells. Front Oncol. 2020;9:1479.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang J, Tian X-J, Zhang H, Teng Y, Li R, Bai F, et al. TGF-β-induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. Sci Signal. 2014;7:ra91.

    Article  PubMed  CAS  Google Scholar 

  39. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, et al. EMT and dissemination precede pancreatic tumor formation. Cell 2012;148:349–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ruscetti M, Quach B, Dadashian EL, Mulholland DJ, Wu H. Tracking and functional characterization of epithelial-mesenchymal transition and mesenchymal tumor cells during prostate cancer metastasis. Cancer Res. 2015;75:2749–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kröger C, Afeyan A, Mraz J, Eaton EN, Reinhardt F, Khodor YL, et al. Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. PNAS. 2019;116:7353–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Dijk D, van, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, et al. Recovering gene interactions from single-cell data using data diffusion. Cell. 2018;174:716–e27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. The Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–82.

    Article  CAS  Google Scholar 

  44. Kim JM, Kim HJ, Koo BS, Rha KS, Yoon Y-H. Expression of matrix metalloproteinase-12 is correlated with extracapsular spread of tumor from nodes with metastasis in head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol. 2013;270:1137–42.

    Article  PubMed  Google Scholar 

  45. Lee W-Y, Shin D-Y, Kim HJ, Ko Y-H, Kim S, Jeong H-S. Prognostic significance of epithelial-mesenchymal transition of extracapsular spread tumors in lymph node metastases of head and neck cancer. Ann Surg Oncol. 2014;21:1904–11.

    Article  PubMed  Google Scholar 

  46. Tada H, Takahashi H, Ida S, Nagata Y, Chikamatsu K. Epithelial-mesenchymal transition status of circulating tumor cells is associated with tumor relapse in head and neck squamous cell carcinoma. Anticancer Res. 2020;40:3559–64.

    Article  CAS  PubMed  Google Scholar 

  47. Ji AL, Rubin AJ, Thrane K, Jiang S, Reynolds DL, Meyers RM, et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell. 2020;182:497–514.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bocci F, Tripathi SC, Vilchez Mercedes SA, George JT, Casabar JP, Wong PK, et al. NRF2 activates a partial epithelial-mesenchymal transition and is maximally present in a hybrid epithelial/mesenchymal phenotype. Integr Biol. 2019;11:251–63.

    Article  Google Scholar 

  49. Godin L, Balsat C, Van Eycke Y-R, Allard J, Royer C, Remmelink M, et al. A novel approach for quantifying cancer cells showing hybrid epithelial/mesenchymal states in large series of tissue samples: towards a new prognostic marker. Cancers. 2020;12:906.

  50. Cho S-J, Kakar S. Tumor budding in colorectal carcinoma: translating a morphologic score into clinically meaningful results. Arch Pathol Lab Med. 2018;142:952–7.

    Article  PubMed  Google Scholar 

  51. Liang F, Cao W, Wang Y, Li L, Zhang G, Wang Z. The prognostic value of tumor budding in invasive breast cancer. Pathol Res Pract. 2013;209:269–75.

    Article  PubMed  Google Scholar 

  52. Şirin AH, Sökmen S, Ünlü SM, Ellidokuz H, Sarioğlu S. The prognostic value of tumor budding in patients who had surgery for rectal cancer with and without neoadjuvant therapy. Tech Coloproctol. 2019;23:333–42.

    Article  PubMed  Google Scholar 

  53. Kohler I, Bronsert P, Timme S, Werner M, Brabletz T, Hopt UT, et al. Detailed analysis of epithelial-mesenchymal transition and tumor budding identifies predictors of long-term survival in pancreatic ductal adenocarcinoma. J Gastroenterol Hepatol. 2015;30:78–84.

    Article  CAS  PubMed  Google Scholar 

  54. Campbell K, Rossi F, Adams J, Pitsidianaki I, Barriga FM, Garcia-Gerique L, et al. Collective cell migration and metastases induced by an epithelial-to-mesenchymal transition in Drosophila intestinal tumors. Nat Commun. 2019;10:2311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Aiello NM, Maddipati R, Norgard RJ, Balli D, Li J, Yuan S, et al. EMT subtype influences epithelial plasticity and mode of cell migration. Dev Cell. 2018;45:681–.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014;158:1110–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Amintas S, Bedel A, Moreau-Gaudry F, Boutin J, Buscail L, Merlio J-P, et al. Circulating tumor cell clusters: united we stand divided we fall. Int J Mol Sci. 2020;21:2653.

    Article  CAS  PubMed Central  Google Scholar 

  58. Hou J-M, Krebs M, Ward T, Sloane R, Priest L, Hughes A, et al. Circulating tumor cells as a window on metastasis biology in lung cancer. Am J Pathol. 2011;178:989–96.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Joosse SA, Gorges TM, Pantel K. Biology, detection, and clinical implications of circulating tumor cells. EMBO Mol Med. 2015;7:1–11.

    Article  CAS  PubMed  Google Scholar 

  60. Hou J-M, Krebs MG, Lancashire L, Sloane R, Backen A, Swain RK, et al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J Clin Oncol. 2012;30:525–32.

    Article  PubMed  Google Scholar 

  61. Lecharpentier A, Vielh P, Perez-Moreno P, Planchard D, Soria JC, Farace F. Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. Br J Cancer. 2011;105:1338–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull J, et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res. 2011;9:997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339:580–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu S, Liu S, Liu Z, Huang J, Pu X, Li J, et al. Classification of circulating tumor cells by epithelial-mesenchymal transition markers. PLoS One. 2015;10:e0123976.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Huang RY-J, Wong MK, Tan TZ, Kuay KT, Ng AHC, Chung VY, et al. An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis. 2013;4:e915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Biddle A, Gammon L, Liang X, Costea DE, Mackenzie IC. Phenotypic plasticity determines cancer stem cell therapeutic resistance in oral squamous cell carcinoma. EBioMedicine. 2016;4:138–45.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Jolly MK, Boareto M, Debeb BG, Aceto N, Farach-Carson MC, Woodward WA, et al. Inflammatory breast cancer: a model for investigating cluster-based dissemination. NPJ Breast Cancer. 2017;3:21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Strauss R, Li Z-Y, Liu Y, Beyer I, Persson J, Sova P, et al. Analysis of epithelial and mesenchymal markers in ovarian cancer reveals phenotypic heterogeneity and plasticity. PLoS One. 2011;6:e16186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jolly MK, Huang B, Lu M, Mani SA, Levine H, Ben-Jacob E. Towards elucidating the connection between epithelial-mesenchymal transitions and stemness. J R Soc Interface. 2014;11:20140962.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10:717–28.

    Article  CAS  PubMed  Google Scholar 

  71. Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16:225–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Scheel C, Weinberg RA. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol. 2012;22:396–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell . 2008;133:704–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell. 2012;22:725–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Celià-Terrassa T, Meca-Cortés O, Mateo F, Martínez de Paz A, Rubio N, Arnal-Estapé A, et al. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J Clin Invest. 2012;122:1849–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Grosse-Wilde A, d’Hérouël AF, McIntosh E, Ertaylan G, Skupin A, Kuestner RE, et al. Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival. PLOS One. 2015;10:e0126522.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Latil M, Nassar D, Beck B, Boumahdi S, Wang L, Brisebarre A, et al. Cell-type-specific chromatin states differentially prime squamous cell carcinoma tumor-initiating cells for epithelial to mesenchymal transition. Cell Stem Cell. 2017;20:191–204.e5.

    Article  CAS  PubMed  Google Scholar 

  78. Zaravinos A. The regulatory role of MicroRNAs in EMT and cancer. J Oncol. 2015;2015:1–13.

    Article  Google Scholar 

  79. Sánchez-Tilló E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, et al. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci. 2012;69:3429–56.

    Article  PubMed  CAS  Google Scholar 

  80. Dohadwala M, Wang G, Heinrich E, Luo J, Lau O, Shih H, et al. The role of ZEB1 in the inflammation-induced promotion of EMT in HNSCC. Otolaryngol–Head Neck Surg. 2010;142:753–9.

    Article  PubMed  Google Scholar 

  81. Kojc N, Zidar N, Gale N, Poljak M, Fujs Komloš K, Cardesa A, et al. Transcription factors Snail, Slug, Twist, and SIP1 in spindle cell carcinoma of the head and neck. Virchows Arch. 2009;454:549–55.

    Article  CAS  PubMed  Google Scholar 

  82. Dhasarathy A, Phadke D, Mav D, Shah RR, Wade PA. The transcription factors snail and slug activate the transforming growth factor-beta signaling pathway in breast cancer. PLOS One. 2011;6:e26514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cai J, Xia L, Li J, Ni S, Song H, Wu X. Tumor-associated macrophages derived TGF-β‒induced epithelial to mesenchymal transition in colorectal cancer cells through smad2,3-4/snail signaling pathway. Cancer Res Treat. 2019;51:252–66.

    Article  CAS  PubMed  Google Scholar 

  84. Horiguchi K, Shirakihara T, Nakano A, Imamura T, Miyazono K, Saitoh M. Role of ras signaling in the induction of snail by transforming growth factor-β. J Biol Chem. 2009;284:245–53.

    Article  CAS  PubMed  Google Scholar 

  85. Medici D, Hay ED, Olsen BR. Snail and slug promote epithelial-mesenchymal transition through β-catenin–T-cell factor-4-dependent expression of transforming growth factor-β3. Mol Biol Cell. 2008;19:4875–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xiong H-G, Li H, Xiao Y, Yang Q-C, Yang L-L, Chen L, et al. Long noncoding RNA MYOSLID promotes invasion and metastasis by modulating the partial epithelial-mesenchymal transition program in head and neck squamous cell carcinoma. J Exp Clin Cancer Res. 2019;38:278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kaelin WG, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30:393–402.

    Article  CAS  PubMed  Google Scholar 

  88. Chen S, Chen X, Li W, Shan T, Lin WR, Ma J, et al. Conversion of epithelial-to-mesenchymal transition to mesenchymal-to-epithelial transition is mediated by oxygen concentration in pancreatic cancer cells. Oncol Lett. 2018;15:7144–52.

    PubMed  PubMed Central  Google Scholar 

  89. Zhang H, Akman HO, Smith ELP, Zhao J, Murphy-Ullrich JE, Batuman OA. Cellular response to hypoxia involves signaling via Smad proteins. Blood. 2003;101:2253–60.

    Article  CAS  PubMed  Google Scholar 

  90. McMahon S, Charbonneau M, Grandmont S, Richard DE, Dubois CM. Transforming growth factor beta1 induces hypoxia-inducible factor-1 stabilization through selective inhibition of PHD2 expression. J Biol Chem. 2006;281:24171–81.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang L, Huang G, Li X, Zhang Y, Jiang Y, Shen J, et al. Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor −1[alpha] in hepatocellular carcinoma. BMC Cancer. 2013;13:108.

  92. Storci G, Sansone P, Mari S, D’Uva G, Tavolari S, Guarnieri T, et al. TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype. J Cell Physiol. 2010;225:682–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Deng S, Chen H, Ye Z, Deng S, Zhu S, Zeng Z, et al. Hypoxia-induced LncRNA-BX111 promotes metastasis and progression of pancreatic cancer through regulating ZEB1 transcription. Oncogene. 2018;37:5811–28.

    Article  CAS  PubMed  Google Scholar 

  94. Evans AJ, Russell RC, Roche O, Burry TN, Fish JE, Chow VWK, et al. VHL promotes E2 box-dependent E-cadherin transcription by HIF-mediated regulation of SIP1 and snail. Mol Cell Biol. 2007;27:157–69.

    Article  CAS  PubMed  Google Scholar 

  95. Kisoda S, Shao W, Fujiwara N, Mouri Y, Tsunematsu T, Jin S, et al. Prognostic value of partial EMT-related genes in head and neck squamous cell carcinoma by a bioinformatic analysis. Oral Dis. 2020;26:1149–1156. https://doi.org/10.1111/odi.13351.

    Article  Google Scholar 

  96. Qi Z, Liu Y, Mints M, Mullins R, Sample R, Law T, et al. Single-cell deconvolution of head and neck squamous cell carcinoma. Cancers. 2021;13:1230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Karaosmanoğlu O, Banerjee S, Sivas H. Identification of biomarkers associated with partial epithelial to mesenchymal transition in the secretome of slug over-expressing hepatocellular carcinoma cells. Cell Oncol. 2018;41:439–53.

    Article  CAS  Google Scholar 

  98. Tretbar S, Krausbeck P, Müller A, Friedrich M, Vaxevanis C, Bukur J, et al. TGF-β inducible epithelial-to-mesenchymal transition in renal cell carcinoma. Oncotarget. 2019;10:1507–24.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Hugo HJ, Wafai R, Blick T, Thompson EW, Newgreen DF. Staurosporine augments EGF-mediated EMT in PMC42-LA cells through actin depolymerisation, focal contact size reduction and Snail1 induction – a model for cross-modulation. BMC Cancer. 2009;9:235.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Kurimoto R, Iwasawa S, Ebata T, Ishiwata T, Sekine I, Tada Y. et al. Drug resistance originating from a TGF-β/FGF-2-driven epithelial-to-mesenchymal transition and its reversion in human lung adenocarcinoma cell lines harboring an EGFR mutation. Int J Oncol. 2016;48:1825–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Devarajan E, Song Y-H, Krishnappa S, Alt E. Epithelial–mesenchymal transition in breast cancer lines is mediated through PDGF-D released by tissue-resident stem cells. Int J Cancer. 2012;131:1023–31.

    Article  CAS  PubMed  Google Scholar 

  102. Suárez-Causado A, Caballero-Díaz D, Bertrán E, Roncero C, Addante A, García-Álvaro M, et al. HGF/c-Met signaling promotes liver progenitor cell migration and invasion by an epithelial–mesenchymal transition-independent, phosphatidyl inositol-3 kinase-dependent pathway in an in vitro model. Biochimica et Biophysica Acta Mol Cell Res. 2015;1853:2453–63.

    Article  CAS  Google Scholar 

  103. Wang R, Li H, Guo X, Wang Z, Liang S, Dang C. IGF-I induces epithelial-to-mesenchymal transition via the IGF-IR-Src-MicroRNA-30a-E-cadherin pathway in nasopharyngeal carcinoma cells. Oncol Res. 2016;24:225–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Miao J-W, Liu L-J, Huang J. Interleukin-6-induced epithelial-mesenchymal transition through signal transducer and activator of transcription 3 in human cervical carcinoma. Int J Oncol. 2014;45:165–76.

    Article  CAS  PubMed  Google Scholar 

  105. Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  CAS  PubMed  Google Scholar 

  106. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.

    Article  CAS  PubMed  Google Scholar 

  107. Xu W, Yang Z, Lu N. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adh Migr. 2015;9:317–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti Apar K, Batra SK. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012;16:15–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Harb J, Lin P-J, Hao J. Recent development of wnt signaling pathway inhibitors for cancer therapeutics. Curr Oncol Rep. 2019;21:12.

    Article  PubMed  Google Scholar 

  110. Espinoza I, Miele L. Notch inhibitors for cancer treatment. Pharmacol Therapeutics. 2013;139:95–110.

    Article  CAS  Google Scholar 

  111. Simpson A, Petnga W, Macaulay VM, Weyer-Czernilofsky U, Bogenrieder T. Insulin-like growth factor (IGF) pathway targeting in cancer: role of the IGF axis and opportunities for future combination studies. Target Oncol. 2017;12:571–97.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009;19:156–72.

    Article  CAS  PubMed  Google Scholar 

  113. Ivanović V, Demajo M, Krtolica K, Krajnović M, Konstantinović M, Baltić V, et al. Elevated plasma TGF-beta1 levels correlate with decreased survival of metastatic breast cancer patients. Clin Chim Acta. 2006;371:191–3.

    Article  PubMed  CAS  Google Scholar 

  114. Li J, Shen C, Wang X, Lai Y, Zhou K, Li P, et al. Prognostic value of TGF-β in lung cancer: systematic review and meta-analysis. BMC Cancer. 2019;19:691.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Ciftci R, Tas F, Kilic L, Vatansever S, Karabulut S. Clinical significance of serum transforming growth factor beta 1 (TGFB1) level in breast cancer. JCO. 2014;32:e11526–e11526.

    Article  Google Scholar 

  116. Subbalakshmi AR, Kundnani D, Biswas K, Ghosh A, Hanash SM, Tripathi SC, et al. NFATc acts as a non-canonical phenotypic stability factor for a hybrid epithelial/mesenchymal phenotype. Front Oncol. 2020;10:553342.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bhatia S, Monkman J, Toh AKL, Nagaraj SH, Thompson EW. Targeting epithelial-mesenchymal plasticity in cancer: clinical and preclinical advances in therapy and monitoring. Biochem J. 2017;474:3269–306.

    Article  CAS  PubMed  Google Scholar 

  118. Jolly MK, Celià-Terrassa T. Dynamics of phenotypic heterogeneity associated with EMT and stemness during cancer progression. J Clin Med. 2019;8:1542.

  119. Bhatia S, Wang P, Toh A, Thompson EW. New insights into the role of phenotypic plasticity and EMT in driving cancer progression. Front Mol Biosci. 2020;7:71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Williams ED, Gao D, Redfern A, Thompson EW. Controversies around epithelial–mesenchymal plasticity in cancer metastasis. Nat Rev Cancer. 2019;19:716–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Karacosta LG, Anchang B, Ignatiadis N, Kimmey SC, Benson JA, Shrager JB, et al. Mapping lung cancer epithelial-mesenchymal transition states and trajectories with single-cell resolution. Nat Commun. 2019;10:5587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gonzalez VD, Samusik N, Chen TJ, Savig ES, Aghaeepour N, Quigley DA, et al. Commonly occurring cell subsets in high-grade serous ovarian tumors identified by single-cell mass cytometry. Cell Rep. 2018;22:1875–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kinker GS, Greenwald AC, Tal R, Orlova Z, Cuoco MS, McFarland JM, et al. Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nat Genet. 2020;52:1208–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019;37:773–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sha Y, Wang S, Zhou P, Nie Q. Inference and multiscale model of epithelial-to-mesenchymal transition via single-cell transcriptomic data. Nucleic Acids Res. 2020;48:9505–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. He P, Qiu K, Jia Y. Modeling of mesenchymal hybrid epithelial state and phenotypic transitions in EMT and MET processes of cancer cells. Sci Rep. 2018;8:14323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Burger GA, Danen EHJ, Beltman JB. Deciphering epithelial–mesenchymal transition regulatory networks in cancer through computational approaches. Front Oncol. 2017;7:162.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Jolly MK, Tripathi SC, Somarelli JA, Hanash SM, Levine H. Epithelial/mesenchymal plasticity: how have quantitative mathematical models helped improve our understanding? Mol Oncol. 2017;11:739–54.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was graciously supported by an NIH/NCI K08CA237732 as well as the Cancer Research Foundation: P20-0563, Doris Duke Foundation, American Cancer Society, V Foundation: V2019-005, and the Washington University Dean’s Scholars Program (SVP). This work was also supported by the National Institute of Deafness and Other Communication Disorders (T32DC000022) (TFB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidharth V. Puram.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, A., Barrett, T.F., Paolini, R. et al. Partial EMT in head and neck cancer biology: a spectrum instead of a switch. Oncogene 40, 5049–5065 (2021). https://doi.org/10.1038/s41388-021-01868-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01868-5

This article is cited by

Search

Quick links