Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allogeneic haematopoietic stem cell transplantation improves outcome of adults with relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia entering remission following CD19 chimeric antigen receptor T cells

Abstract

Relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia (r/r Ph+ ALL) has an extremely poor prognosis. Chimeric antigen receptor T-cell (CART) therapy has acquired unprecedented efficacy in B-cell malignancies, but its role in the long-term survival of r/r Ph+ ALL patients is unclear. We analyzed the effect of CART on 56 adults with r/r Ph+ ALL who accepted split doses of humanized CD19-targeted CART after lymphodepleting chemotherapy. 51/56 (91.1%) achieved complete remission (CR) or CR with inadequate count recovery (CRi), including 38 patients with negative minimal residual disease (MRD) tested by bone marrow BCR-ABL1 copies. Subsequently, 30/51 CR/CRi patients accepted consolidative allogeneic haematopoietic stem cell transplantation (alloHSCT). Their outcomes were compared with those of 21/51 contemporaneous patients without alloHSCT. The 2-year overall survival (OS) and leukemia-free survival (LFS) of CR/CRi patients with alloHSCT were significantly superior to those without alloHSCT (58.9%, CI 49.8–68.0% vs. 22.7%, CI 12.7–32.7%, p = 0.005; 53.2%, CI 43.6–62.8% vs. 18.8%, CI 9.2–28.4%, p = 0.000, respectively). Multivariate analysis revealed that alloHSCT and MRD-negative post-CART were the independent prognostic factors for OS and LFS. CART therapy is highly effective for r/r Ph+ ALL patients, and consolidative alloHSCT could prolong their OS and LFS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow diagram of the patients.
Fig. 2: The persistence and quantity of CART.
Fig. 3: Survival outcome of the 51 r/r Ph+ ALL patients who achieved CR/CRi post-CART.
Fig. 4: Effect of minimal residual disease (MRD) assessed by bone marrow BCR/ABL1 levels on subgroup patients.

Similar content being viewed by others

References

  1. Moorman AV, Harrison CJ, Buck GAN, Richards SM, Secker-Walker LM, Martineau M, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood. 2007;109:3189–97.

    Article  CAS  PubMed  Google Scholar 

  2. Fielding AK, Rowe JM, Buck G, Foroni L, Gerrard G, Litzow MR, et al. UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood. 2014;123:843–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thomas DA, Faderl S, Cortes J, O’Brien S, Giles FJ, Kornblau SM, et al. Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate. Blood. 2004;103:4396–407.

    Article  CAS  PubMed  Google Scholar 

  4. Bassan R, Rossi G, Pogliani EM, Bona ED, Angelucci E, Cavattoni I, et al. Chemotherapy-phased imatinib pulses improve long-term outcome of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: Northern Italy Leukemia Group protocol 09/00. J Clin Oncol. 2010;28:3644–52.

    Article  CAS  PubMed  Google Scholar 

  5. Tanguy-Schmidt A, Rousselot P, Chalandon Y, Cayuela JM, Hayette S, Vekemans MC, et al. Long-term follow up of the imatinib GRAAPH-2003 study in newly diagnosed patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: a GRAALL study. Biol Blood Marrow Transplant. 2013;19:150–5.

    Article  CAS  PubMed  Google Scholar 

  6. Chalandon Y, Thomas X, Hayette S, Cayuela J-M, Abbal C, Huguet F, et al. Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood. 2015;125:3711–9.

    Article  CAS  PubMed  Google Scholar 

  7. Saußele S, Richter J, Hochhaus A, Mahon FX. The concept of treatment-free remission in chronic myeloid leukemia. Leukemia. 2016;30:1638–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kim DY, Joo YD, Lim SN, Kim SD, Lee JH, Lee JH, et al. Nilotinib combined with multiagent chemotherapy for newly diagnosed Philadelphia-positive acute lymphoblastic leukemia. Blood. 2015;126:746–56.

    Article  CAS  PubMed  Google Scholar 

  9. Jabbour E, Kantarjian H, Ravandi F, Thomas D, Huang XL, Faderl S. et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a single-centre, phase 2 study. Lancet Oncol. 2015;16:1547–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Soverini S, De Benedittis C, Papayannidis C, Paolini S, Venturi C, Iacobucci I, et al. Drug resistance and BCR-ABL kinase domain mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia from the imatinib to the second-generation tyrosine kinase inhibitor era: the main changes are in the type of mutations, but not in the frequency of mutation involvement. Cancer. 2014;120:1002–9.

    Article  CAS  PubMed  Google Scholar 

  11. Rambaldi A, Ribera JM, Kantarjian HM, Dombret H, Ottmann OG, Stein AS, et al. Blinatumomab compared with standard of care for the treatment of adult patients with relapsed/refractory Philadelphia chromosome–positive B-precursor acute lymphoblastic leukemia. Cancer. 2020;126:304–10.

    Article  CAS  PubMed  Google Scholar 

  12. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic Leukemia. Sci Transl Med. 2013;5:177ra38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Davila ML, Riviere L, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6:224ra25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kansagra AJ, Frey NV, Bar M, Laetsch TW, Carpenter PA, Savani BN, et al. Clinical utilization of chimeric antigen receptor T cells in B cell acute lymphoblastic leukemia: an expert opinion from the European Society for Blood and Marrow Transplantation and the American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2019;25:e76–85.

    Article  CAS  PubMed  Google Scholar 

  15. Mohty M, Gautier J, Malard F, Aljurf M, Bazarbachi A, Chabannon C. et al. CD19 chimeric antigen receptor-T cells in B-cell leukemia and lymphoma: current status and perspectives. Leukemia. 2019;33:2767–78.

    Article  PubMed  Google Scholar 

  16. Gardner R, Wu D, Cherian S, Fang M, Hanafi LA, Finney O, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood. 2016;127:2406–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu YM, Wu Z, Tan YP, Du YY, Liu Z, Ou RM, et al. Anti-CD19 chimeric antigen receptor T-cell therapy for adult Philadelphia chromosome-positive acute lymphoblastic leukemia: two case reports. Medicine. 2016;95:e5676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ. et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378:449–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang H, Li C, Yin P, Guo T, Liu L, Xia L, et al. Anti-CD19 CAR-T therapy bridging to allo-HSCT for relapsed/refractory B-cell acute lymphoblastic leukemia: an open-label pragmatic clinical trial. Am J Hematol. 2019;94:1113–22.

    Article  CAS  PubMed  Google Scholar 

  20. Pan J, Yang JF, Deng BP, Zhao XJ, Zhang X, Lin YH. et al. High efficacy and safety of low-dose CD19-directed CAR-T cell therapy in 51 refractory or relapsed B acute lymphoblastic leukemia patients. Leukemia.2017;31:2587–93.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang C, Kong PY, Li S, Chen T, Ni X, Li Y. et al. Donor-derived CAR-T Cells serve as a reduced-intensity conditioning regimen for haploidentical stem cell transplantation in treatment of relapsed/refractory acute lymphoblastic leukemia: case report and review of the literature. J Immunother.2018;41:306–11.

    Article  PubMed  Google Scholar 

  22. Litzow MR, Fielding AK, Luger SM, Paietta E, Ofran Y, Rowe JM, et al. The evolving role of chemotherapy and hematopoietic cell transplants in Ph-positive acute lymphoblastic leukemia in adults. Bone Marrow Transplant. 2017;52:1592–8.

    Article  CAS  PubMed  Google Scholar 

  23. Yang F, Zhang J, Zhang XY, Tian ML, Wang JJ, Kang LQ. et al. Delayed remission following sequential infusion of humanized CD19- and CD22-modified CAR-T cells in a patient with relapsed/refractory acute lymphoblastic leukemia and prior exposure to murine-derived CD19-directed CAR-T cells. OncoTargets Ther. 2019;12:2187–91.

    Article  CAS  Google Scholar 

  24. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. 1994 Consensus conference on acute GVHD grading. Bone Marrow Transplant. 1995;15:825–8.

    CAS  PubMed  Google Scholar 

  25. Sullivan KM, Shulman HM, Storb R, Weiden PL, Witherspoon RP, McDonald GB, et al. Chronic graft-versus-host disease in 52 patients: adverse natural course and successful treatment with combination immunosuppression. Blood. 1981;57:267–76.

    Article  CAS  PubMed  Google Scholar 

  26. McDonald GB. How I treat acute graft-versus-host disease of the gastrointestinal tract and the liver. Blood. 2016;127:1544–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Flowers MED, Martin PJ. How we treat chronic graft-versus-host disease. Blood. 2015;125:606–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, et al. Chimeric antigen receptor T-cell therapy assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15:47–62.

    Article  CAS  PubMed  Google Scholar 

  29. Eide CA, Zabriskie MS, Stevens SLS, Antelope O, Vellore NA, Than H, et al. Combining the allosteric inhibitor asciminib with ponatinib suppresses emergence of and restores efficacy against highly resistant BCR-ABL1 mutants. Cancer Cell. 2019;36:431–43.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pemovska T, Johnson E, Kontro M, Repasky GA, Chen J, Wells P, et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature. 2015;519:102–5.

    Article  CAS  PubMed  Google Scholar 

  31. Fei F, Lim M, Schmidhuber S, Moll J, Groffen J, Heisterkamp N. Treatment of human pre-B acute lymphoblastic leukemia with the Aurora kinase inhibitor PHA-739358 (Danusertib). Mol Cancer. 2012;11:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martinelli G, Boissel N, Chevallier P, Ottmann O, Gökbuget N, Topp MS. et al. Complete hematologic and molecular response in adult patients with relapsed/refractory Philadelphia chromosome-positive B-precursor acute lymphoblastic leukemia following treatment with blinatumomab: results from a phase II, single-arm, multicenter study. J Clin Oncol. 2017;35:1795–802.

    Article  CAS  PubMed  Google Scholar 

  33. Ravandi F, Jorgensen JL, Thomas DA, O’Brien S, Garris R, Faderl S, et al. Detection of MRD may predict the outcome of patients with Philadelphia chromosome–positive ALL treated with tyrosine kinase inhibitors plus chemotherapy. Blood. 2013;122:1214–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Short NJ, Jabbour E, Sasaki K, Patel K, O’Brien SM, Cortes JE, et al. Impact of complete molecular response on survival in patients with Philadelphia chromosome–positive acute lymphoblastic leukemia. Blood. 2016;128:504–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jabbour E, Short NJ, Jorgensen JL, Yilmaz M, Ravandi F, Wang SA, et al. Differential impact of minimal residual disease negativity according to the salvage status in patients with relapsed/refractory B-cell acute lymphoblastic leukemia. Cancer. 2017;123:294–302.

    Article  CAS  PubMed  Google Scholar 

  36. Gaipa G, Cazzaniga G, Valsecchi MG, Panzer-Grumayer R, Buldini B, Silvestri D, et al. Time point-dependent concordance of flow cytometry and realtime quantitative polymerase chain reaction for minimal residual disease detection in childhood acute lymphoblastic leukemia. Haematologica. 2012;97:1582–93.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Stow P, Key L, Chen X, Pan Q, Neale GA, Coustan-Smith E, et al. Clinical significance of low levels of minimal residual disease at the end of remission induction therapy in childhood acute lymphoblastic leukemia. Blood. 2010;115:4657–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hovorkova L, Zaliova M, Venn NC, Bleckmann K, Trkova M, Potuckova E. et al. Monitoring of childhood ALL using BCR-ABL1 genomic breakpoints identifies a subgroup with CML-like biology. Blood.2017;129:2771–81.

    Article  CAS  PubMed  Google Scholar 

  39. Hunger SP. CML in blast crisis: more common than we think? Blood. 2017;129:2713–4.

    Article  CAS  PubMed  Google Scholar 

  40. McClellan JS, Dove C, Gentles AJ, Ryan CE, Majeti R. Reprogramming of primary human Philadelphia chromosome-positive B cell acute lymphoblastic leukemia cells into nonleukemic macrophages. Proc Natl Acad Sci USA. 2015;112:4074–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gu B, Wu X, Chen G, Ma X, Jin Z, Tang X, et al. Haploidentical allogeneic hematopoietic stem cell transplantation compared to matched unrelated transplantation for Philadelphia chromosome-positive acute lymphoblastic leukemia. Leuk Res. 2017;59:41–6.

    Article  PubMed  Google Scholar 

  42. Wang Y, Liu QF, Xu LP, Liu KY, Zhang XH, Ma X, et al. Haploidentical versus matched-sibling transplant in adults with Philadelphia-negative high-risk acute lymphoblastic leukemia: a biologically phase III randomized study. Clin Cancer Res. 2016;22:3467–76.

    Article  CAS  PubMed  Google Scholar 

  43. Turtle CJ, Hanafi L-A, Berger C, Gooley TA, Cherian S, Hudecek M, et al. CD19 CAR-T cells of defined CD4: CD8 composition in adult B cell ALL patients. J Clin Investig. 2016;126:2123–38.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (81730003 and 81700204), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Jiangsu Medical Outstanding Talents Project (JCRCA2016002), Jiangsu Provincial Key Medical Center (YXZXA2016002), Innovation Capability Development Project of Jiangsu Province (BM2015004), and National Key R&D Program of China (2017YFA0104502, 2017ZX09304021).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: BG, XM, DPW. Collection and assembly of data: BYS, XZ. Patient care: all coauthors. Data analysis and interpretation: BG, BYS, XZ, XM, DPW. Paper writing: BG, DPW. Final approval of paper: all coauthors.

Corresponding authors

Correspondence to Xiao Ma or De-Pei Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, B., Shi, BY., Zhang, X. et al. Allogeneic haematopoietic stem cell transplantation improves outcome of adults with relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia entering remission following CD19 chimeric antigen receptor T cells. Bone Marrow Transplant 56, 91–100 (2021). https://doi.org/10.1038/s41409-020-0982-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-020-0982-6

This article is cited by

Search

Quick links