Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics and Genomics

Genetic and epigenetic regulation of the NRF2-KEAP1 pathway in human lung cancer

Abstract

Electrophilic and oxidative stress is caused when homeostatic mechanisms are disrupted. A major defense mechanism involves the activation of the nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor encoded by the NFE2L2 gene, which can accelerate the detoxification of electrophilic carcinogens and prevent cancer and on the other hand in certain exposure contexts may exacerbate the carcinogenic process. NRF2-target genes activated under these conditions can be used as biomarkers of stress signalling, while activation of NRF2 can also reveal the epigenetic mechanisms that modulate NFE2L2 expression. Epigenetic mechanisms that regulate NFE2L2 and the gene for its adaptor protein KEAP1 include DNA methylation, histone modifications and microRNA. Understanding the activation of the NRF2-KEAP1 signalling pathway in human lung cancer, its epigenetic regulation and its role in oncogenesis is the subject of this review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regulation of NRF2 Expression Under Different Conditions.
Fig. 2: Regulation of KEAP1 and NRF2.
Fig. 3: Percentage of KEAP1, NFE2L2 and CUL3 somatic mutations across the different lung cancer subtypes.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Snezhkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS, et al. ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev. 2019;2019:6175804.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24:R453–R62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Inter Aging. 2018;13:757–72.

    Article  CAS  Google Scholar 

  4. Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, et al. Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Front Physiol. 2020;11:1–21.

    Article  Google Scholar 

  5. Sakanyan V. Reactive chemicals and electrophilic stress in cancer: a minireview. High Throughput. 2018;7:12.

    Article  PubMed Central  CAS  Google Scholar 

  6. Kobayashi A, Kang M-I, Watai Y, Tong KI, Shibata T, Uchida K, et al. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol Cell Biol. 2006;26:221–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Holland R, Fishbein JC. Chemistry of the cysteine sensors in Kelch-like ECH-associated protein 1. Antioxid Redox Signal. 2010;13:1749–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Magesh S, Chen Y, Hu L. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Med Res Rev. 2012;32:687–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Canning P, Sorrell FJ, Bullock AN. Structural basis of Keap1 interactions with Nrf2. Free Radic Biol Med. 2015;88:101–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tkachev VO, Menshchikova EB, Zenkov NK. Mechanism of the Nrf2/Keap1/ARE signaling system. Biochemistry. 2011;76:407–22.

    CAS  PubMed  Google Scholar 

  11. Dinkova-Kostova AT, Holtzclaw WD, Kensler TW. The role of Keap1 in cellular protective responses. Chem Res Toxicol. 2005;18:1779–91.

    Article  CAS  PubMed  Google Scholar 

  12. Dinkova-Kostova AT, Kostov RV, Canning P. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants. Arch Biochem Biophys. 2017;617:84–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ogura T, Tong KI, Mio K, Maruyama Y, Kurokawa H, Sato C, et al. Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains. Proc Natl Acad Sci USA. 2010;107:2842–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236:313–22.

    Article  CAS  PubMed  Google Scholar 

  15. Kansanen E, Kuosmanen SM, Leinonen H, Levonen A-L. The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1:45–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Robledinos-Anton N, Fernandez-Gines R, Manda G, Cuadrado A. Activators and inhibitors of NRF2: a review of their potential for clinical development. Oxid Med Cell Longev. 2019;2019:9372182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Unoki T, Akiyama M, Kumagai Y. Nrf2 activation and its coordination with the protective defense systems in response to electrophilic stress. Int J Mol Sci. 2020;21:545.

    Article  CAS  PubMed Central  Google Scholar 

  18. Taguchi K, Yamamoto M. The KEAP1-NRF2 system in cancer. Front Oncol. 2017;7:85.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kubo E, Chhunchha B, Singh P, Sasaki H, Singh DP. Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress. Sci Rep. 2017;7:14130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Shen T, Jiang T, Long M, Chen J, Ren DM, Wong PK, et al. A curcumin derivative that inhibits vinyl carbamate-induced lung carcinogenesis via activation of the Nrf2 protective response. Antioxid Redox Signal. 2015;23:651–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang H, Shih A, Rinna A, Forman HJ. Exacerbation of tobacco smoke mediated apoptosis by resveratrol: an unexpected consequence of its antioxidant action. Int J Biochem Cell Biol. 2011;43:1059–64.

    Article  CAS  PubMed  Google Scholar 

  22. Bakulski KM, Dou J, Lin N, London SJ, Colacino JA. DNA methylation signature of smoking in lung cancer is enriched for exposure signatures in newborn and adult blood. Sci Rep. 2019;9:4576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nafstad P, Håheim LL, Oftedal B, Gram F, Holme I, Hjermann I, et al. Lung cancer and air pollution: a 27 year follow up of 16 209 Norwegian men. Thorax. 2003;58:1071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fajersztajn L, Veras M, Barrozo LV, Saldiva P. Air pollution: a potentially modifiable risk factor for lung cancer. Nat Rev Cancer. 2013;13:674–8.

    Article  CAS  PubMed  Google Scholar 

  25. He M, Ichinose T, Yoshida Y, Arashidani K, Yoshida S, Takano H, et al. Urban PM2.5 exacerbates allergic inflammation in the murine lung via a TLR2/TLR4/MyD88-signaling pathway. Sci Rep. 2017;7:11027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. IARC. Diesel and gasoline engine exhausts and some nitroarenes. Lyon, France: International Agency for Research on Cancer; 2014.

  27. Stiborová M, Martínek V, Svobodová M, Šístková J, Dvořák Z, Ulrichová J, et al. Mechanisms of the different DNA adduct forming potentials of the urban air pollutants 2-nitrobenzanthrone and carcinogenic 3-nitrobenzanthrone. Chem Res Toxicol. 2010;23:1192–201.

    Article  PubMed  CAS  Google Scholar 

  28. Murray JR, Mesaros CA, Arlt VM, Seidel A, Blair IA, Penning TM. Role of human aldo-keto reductases in the metabolic activation of the carcinogenic air pollutant 3-nitrobenzanthrone. Chem Res Toxicol. 2018;31:1277–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Murray JR, de la Vega L, Hayes JD, Duan L, Penning TM. Induction of the antioxidant response by the transcription factor NRF2 increases bioactivation of the mutagenic air pollutant 3-nitrobenzanthrone in human lung cells. Chem Res Toxicol. 2019;32:2538–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Borgerding M, Klus H. Analysis of complex mixtures—cigarette smoke. Exp Toxicol Pathol. 2005;57:43–73.

    Article  CAS  PubMed  Google Scholar 

  31. Zheng F, Gonçalves FM, Abiko Y, Li H, Kumagai Y, Aschner M. Redox toxicology of environmental chemicals causing oxidative stress. Redox Biol. 2020;34:101475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tsay JJ, Tchou-Wong K-M, Greenberg AK, Pass H, Rom WN. Aryl hydrocarbon receptor and lung cancer. Anticancer Res. 2013;33:1247–56.

    PubMed  PubMed Central  Google Scholar 

  33. Noakes R. The aryl hydrocarbon receptor: a review of its role in the physiology and pathology of the integument and its relationship to the tryptophan metabolism. Int J Tryptophan Res. 2015;8:7–18.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hankinson O. The aryl hydrocarbon receptor complex. Annu Rev Pharm Toxicol. 1995;35:307–40.

    Article  CAS  Google Scholar 

  35. Nebert DW. Aryl hydrocarbon receptor (AHR): “pioneer member” of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of “sensors” of foreign and endogenous signals. Prog Lipid Res. 2017;67:38–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, et al. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med. 2015;88:108–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Penning TM. Human aldo-keto reductases and the metabolic activation of polycyclic aromatic hydrocarbons. Chem Res Toxicol. 2014;27:1901–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Burczynski ME, Lin HK, Penning TM. Isoform-specific induction of a human aldo-keto reductase by polycyclic aromatic hydrocarbons (PAHs), electrophiles, and oxidative stress: implications for the alternative pathway of PAH activation catalyzed by human dihydrodiol dehydrogenase. Cancer Res. 1999;59:607–14.

    CAS  PubMed  Google Scholar 

  39. MacLeod AK, Acosta-Jimenez L, Coates PJ, McMahon M, Carey FA, Honda T, et al. Aldo-keto reductases are biomarkers of NRF2 activity and are co-ordinately overexpressed in non-small cell lung cancer. Br J cancer. 2016;115:1530–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Penning TM, Lerman C. Genomics of smoking exposure and cessation: lessons for cancer prevention and treatment. Cancer Prev Res. 2008;1:80.

    Article  CAS  Google Scholar 

  41. Sridhar S, Schembri F, Zeskind J, Shah V, Gustafson AM, Steiling K, et al. Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium. BMC Genomics. 2008;9:259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Thai P, Statt S, Chen CH, Liang E, Campbell C, Wu R. Characterization of a novel long noncoding RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer cell lines. Am J Respir Cell Mol Biol. 2013;49:204–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hofman J, Malcekova B, Skarka A, Novotna E, Wsol V. Anthracycline resistance mediated by reductive metabolism in cancer cells: the role of aldo-keto reductase 1C3. Toxicol Appl Pharmacol. 2014;278:238–48.

    Article  CAS  PubMed  Google Scholar 

  44. Deng HB, Parekh HK, Chow KC, Simpkins H. Increased expression of dihydrodiol dehydrogenase induces resistance to cisplatin in human ovarian carcinoma cells*. J Biol Chem. 2002;277:15035–43.

    Article  CAS  PubMed  Google Scholar 

  45. Chen J, Solomides C, Simpkins F, Simpkins H. The role of Nrf2 and ATF2 in resistance to platinum-based chemotherapy. Cancer Chemother Pharmacol. 2017;79:369–80.

    Article  CAS  PubMed  Google Scholar 

  46. Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO, et al. Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med. 2006;3:e420.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Wang X-J, Sun Z, Villeneuve N, Zhang S, Zhao F, Li Y, et al. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis. 2008;29:1235–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Frank R, Scheffler M, Merkelbach-Bruse S, Ihle MA, Kron A, Rauer M, et al. Clinical and pathological characteristics of KEAP1- and NFE2L2-mutated non-small cell lung carcinoma (NSCLC). Clin Cancer Res. 2018;24:3087–96.

    Article  CAS  PubMed  Google Scholar 

  49. Tian Y, Wu K, Liu Q, Han N, Zhang L, Chu Q, et al. Modification of platinum sensitivity by KEAP1/NRF2 signals in non-small cell lung cancer. J Hematol Oncol. 2016;9:83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Banas K, Rivera-Torres N, Bialk P, Yoo B-C, Kmiec EB. Temporal analyses of CRISPR-directed gene editing on NRF2, a clinically relevant human gene involved in chemoresistance. bioRxiv. 2019:799676. https://doi.org/10.1101/799676.

  51. Bialk P, Wang Y, Banas K, Kmiec EB. Functional gene knockout of NRF2 increases chemosensitivity of human lung cancer A549 cells in vitro and in a xenograft mouse model. Mol Ther Oncol. 2018;11:75–89.

    Article  CAS  Google Scholar 

  52. Ohta T, Iijima K, Miyamoto M, Nakahara I, Tanaka H, Ohtsuji M, et al. Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res. 2008;68:1303.

    Article  CAS  PubMed  Google Scholar 

  53. Chaudhuri AA, Chabon JJ, Lovejoy AF, Newman AM, Stehr H, Azad TD, et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov. 2017;7:1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, et al. Toward a shared vision for cancer genomic data. N. Engl J Med. 2016;375:1109–12.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Padmanabhan B, Tong KI, Ohta T, Nakamura Y, Scharlock M, Ohtsuji M, et al. Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell. 2006;21:689–700.

    Article  CAS  PubMed  Google Scholar 

  56. Sasaki H, Suzuki A, Shitara M, Okuda K, Hikosaka Y, Moriyama S, et al. Keap1 mutations in lung cancer patients. Oncol Lett. 2013;6:719–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Karlsson A, Jönsson M, Lauss M, Brunnström H, Jönsson P, Borg Å, et al. Genome-wide DNA methylation analysis of lung carcinoma reveals one neuroendocrine and four adenocarcinoma epitypes associated with patient outcome. Clin Cancer Res. 2014;20:6127–40.

    Article  CAS  PubMed  Google Scholar 

  58. Hammerman PS, Lawrence MS, Voet D, Jing R, Cibulskis K, Sivachenko A, et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489:519–25.

    Article  CAS  Google Scholar 

  59. Best SA, Ding S, Kersbergen A, Dong X, Song J-Y, Xie Y, et al. Distinct initiating events underpin the immune and metabolic heterogeneity of KRAS-mutant lung adenocarcinoma. Nat Commun. 2019;10:4190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in The Cancer Genome Atlas. Cell. 2018;173:321–37.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Eaton DL, Gallagher EP. Mechanisms of aflatoxin carcinogenesis. Annu Rev Pharm Toxicol. 1994;34:135–72.

    Article  CAS  Google Scholar 

  62. Kensler TW, Wakabayashi N. Nrf2: friend or foe for chemoprevention? Carcinogenesis. 2009;31:90–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Hayes JD, McMahon M. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci. 2009;34:176–88.

    Article  CAS  PubMed  Google Scholar 

  64. Yates MS, Tran QT, Dolan PM, Osburn WO, Shin S, McCulloch CC, et al. Genetic versus chemoprotective activation of Nrf2 signaling: overlapping yet distinct gene expression profiles between Keap1 knockout and triterpenoid-treated mice. Carcinogenesis. 2009;30:1024–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Méndez I, Díaz-Muñoz M. Circadian and metabolic perspectives in the role played by NADPH in cancer. Front Endocrinol. 2018;9:93.

    Article  Google Scholar 

  66. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011;475:106–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Park S-M, Choi E-Y, Bae M, Kim S, Park JB, Yoo H, et al. Histone variant H3F3A promotes lung cancer cell migration through intronic regulation. Nat Commun. 2016;7:12914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang C, Shu L, Kong A-NT. MicroRNAs: new players in cancer prevention targeting Nrf2, oxidative stress and inflammatory pathways. Curr Pharm Rep. 2015;1:21–30.

    Article  CAS  Google Scholar 

  69. Guo Y, Yu S, Zhang C, Kong AN. Epigenetic regulation of Keap1-Nrf2 signaling. Free Radic Biol Med. 2015;88:337–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cheng D, Wu R, Guo Y, Kong A-NT. Regulation of Keap1–Nrf2 signaling: the role of epigenetics. Curr Opin Toxicol. 2016;1:134–8.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Elshaer M, ElManawy AI, Hammad A, Namani A, Wang XJ, Tang X. Integrated data analysis reveals significant associations of KEAP1 mutations with DNA methylation alterations in lung adenocarcinomas. Aging. 2020;12:7183–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang R, An J, Ji F, Jiao H, Sun H, Zhou D. Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues. Biochem. Biophys. Res Commun. 2008;373:151–4.

    Article  CAS  PubMed  Google Scholar 

  73. Solis LM, Behrens C, Dong W, Suraokar M, Ozburn NC, Moran CA, et al. Nrf2 and Keap1 abnormalities in non–small cell lung carcinoma and association with clinicopathologic features. Clin Cancer Res. 2010;16:3743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fabrizio FP, Sparaneo A, Centra F, Trombetta D, Storlazzi CT, Graziano P, et al. Methylation density pattern of KEAP1 gene in lung cancer cell lines detected by quantitative methylation specific PCR and pyrosequencing. Int J Mol Sci. 2019;20:2697–712.

    Article  CAS  PubMed Central  Google Scholar 

  75. Guo D, Wu B, Yan J, Li X, Sun H, Zhou D. A possible gene silencing mechanism: Hypermethylation of the Keap1 promoter abrogates binding of the transcription factor Sp1 in lung cancer cells. Biochem Biophys Res Commun. 2012;428:80–5.

    Article  CAS  PubMed  Google Scholar 

  76. Suzuki T, Maher J, Yamamoto M. Select heterozygous Keap1 mutations have a dominant-negative effect on wild-type Keap1 in vivo. Cancer Res. 2011;71:1700–9.

    Article  CAS  PubMed  Google Scholar 

  77. Duan F-G, Wang M-F, Cao Y-B, Dan L, Li R-Z, Fan X-X, et al. MicroRNA-421 confers paclitaxel resistance by binding to the KEAP1 3′UTR and predicts poor survival in non-small cell lung cancer. Cell Death Dis. 2019;10:821.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Taheri Z, Asadzadeh Aghdaei H, Irani S, Modarressi MH, Zahra N. Evaluation of the epigenetic demethylation of NRF2, a master transcription factor for antioxidant enzymes, in colorectal cancer. Rep Biochem Mol Biol. 2020;9:33–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Michaeloudes C, Mercado N, Clarke C, Bhavsar PK, Adcock IM, Barnes PJ, et al. Bromodomain and extraterminal proteins suppress NF-E2-related factor 2-mediated antioxidant gene expression. J Immunol. 2014;192:4913–20.

    Article  CAS  PubMed  Google Scholar 

  80. Li Z, Xu L, Tang N, Xu Y, Ye X, Shen S, et al. The polycomb group protein EZH2 inhibits lung cancer cell growth by repressing the transcription factor Nrf2. FEBS Lett. 2014;588:3000–7.

    Article  CAS  PubMed  Google Scholar 

  81. Yin Y, Liu H, Xu J, Shi D, Zhai L, Liu B, et al. miR‑144‑3p regulates the resistance of lung cancer to cisplatin by targeting Nrf2. Oncol Rep. 2018;40:3479–88.

    CAS  PubMed  Google Scholar 

  82. Fabrizio FP, Sparaneo A, Castellana S, Mazza T, Trombetta D, Graziano P, et al. 17P - REDOXI-miRNA of Keap1/Nrf2 axis in lung tumors. Ann Oncol. 2019;30:ii5.

    Article  Google Scholar 

  83. Menegon S, Columbano A, Giordano S. The dual roles of NRF2 in cancer. Trends Mol Med. 2016;22:578–93.

    Article  CAS  PubMed  Google Scholar 

  84. Telkoparan-Akillilar P, Panieri E, Cevik D, Suzen S, Saso L. Therapeutic targeting of the NRF2 signaling pathway in cancer. Molecules. 2021;26:1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liby K, Hock T, Yore MM, Suh N, Place AE, Risingsong R, et al. The synthetic triterpenoids, CDDO and CDDO-imidazolide, are potent inducers of Heme oxygenase-1 and Nrf2/ARE signaling. Cancer Res. 2005;65:4789.

    Article  CAS  PubMed  Google Scholar 

  86. Sivinski J, Zhang DD, Chapman E. Targeting NRF2 to treat cancer. Semin Cancer Biol. 2021;76:61–73.

    Article  CAS  PubMed  Google Scholar 

  87. Kitamura H, Onodera Y, Murakami S, Suzuki T, Motohashi H. IL-11 contribution to tumorigenesis in an NRF2 addiction cancer model. Oncogene. 2017;36:6315–24.

    Article  CAS  PubMed  Google Scholar 

  88. Copple IM. The Keap1–Nrf2 cell defense pathway – a promising therapeutic target? In: Hawksworth GM, editor. Advances in pharmacology. Vol. 63. New York: Academic Press; 2012. p. 43–79.

  89. Singh A, Venkannagari S, Oh KH, Zhang YQ, Rohde JM, Liu L, et al. Small molecule Inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors. ACS Chem Biol. 2016;11:3214–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT. Cancer chemoprevention mechanisms mediated through the Keap1–Nrf2 pathway. Antioxid Redox Signal. 2010;13:1713–48.

    Article  CAS  PubMed  Google Scholar 

  91. Schmidlin CJ, Shakya A, Dodson M, Chapman E, Zhang DD. The intricacies of NRF2 regulation in cancer. Semin Cancer Biol. 2021;76:110–19.

    Article  CAS  PubMed  Google Scholar 

  92. DeBlasi JM, DeNicola GM. Dissecting the crosstalk between NRF2 signaling and metabolic processes in cancer. Cancers . 2020;12:3023.

    Article  CAS  PubMed Central  Google Scholar 

  93. Inoue D, Suzuki T, Mitsuishi Y, Miki Y, Suzuki S, Sugawara S, et al. Accumulation of p62/SQSTM1 is associated with poor prognosis in patients with lung adenocarcinoma. Cancer Sci. 2012;103:760–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen W, Sun Z, Wang X-J, Jiang T, Huang Z, Fang D, et al. Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol Cell. 2009;34:663–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Baird L, Llères D, Swift S, Dinkova-Kostova AT. Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex. Proc Natl Acad Sci USA. 2013;110:15259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dayalan Naidu S, Muramatsu A, Saito R, Asami S, Honda T, Hosoya T, et al. C151 in KEAP1 is the main cysteine sensor for the cyanoenone class of NRF2 activators, irrespective of molecular size or shape. Sci Rep. 2018;8:8037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401.

    Article  PubMed  Google Scholar 

  98. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by P30-ES013508 and R01-ES029294 (awarded to TMP) from the National Institute of Environmental Health Sciences (NIEHS) at the NIH. The article represents the views of the authors and not the official views of NIH.

Author information

Authors and Affiliations

Authors

Contributions

NC: manuscript preparation, editing and review; TMP: manuscript editing and review.

Corresponding author

Correspondence to Trevor M. Penning.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Ethics approval and consent to participate

This article does not contain any studies involving human participants performed by any of the authors.

Consent for publication

Both authors give consent to publish.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camiña, N., Penning, T.M. Genetic and epigenetic regulation of the NRF2-KEAP1 pathway in human lung cancer. Br J Cancer 126, 1244–1252 (2022). https://doi.org/10.1038/s41416-021-01642-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01642-0

This article is cited by

Search

Quick links