Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced antitumor immune response in melanoma tumor model by anti-PD-1 small interference RNA encapsulated in nanoliposomes

Abstract

Programmed cell death protein-1 (PD-1), as an immune checkpoint molecule, attenuates T-cell activity and induces T-cell exhaustion. Although siRNA has a great potential in cancer immunotherapy, its delivery to target cells is the main limitation of using siRNA. This study aimed to prepare a liposomal formulation as a siRNA carrier to silence PD-1 expression in T cells and investigate it’s in vivo antitumor efficacy. The liposomal siRNA was prepared and characterized by size, zeta potential, and biodistribution. Following that, the uptake assay and mRNA silencing were evaluated in vitro at mRNA and protein levels. siRNA-PD-1 (siPD-1)-loaded liposome nanoparticles were injected into B16F0 tumor-bearing mice to evaluate tumor growth, tumor-infiltrating lymphocytes, and survival rate. Liposomal siPD-1 efficiently silenced PD-1 mRNA expression in T cells (P < 0.0001), and siPD-1-loaded liposomal nanoparticles enhanced the infiltration of T-helper 1 (Th 1) and cytotoxic T lymphocytes into the tumor tissue (P < 0.0001). Liposome-PD-1 siRNA monotherapy and PD-1 siRNA-Doxil (liposomal doxorubicin) combination therapy improved the survival significantly, compared to the control treatment (P < 0.001). Overall, these findings suggest that immunotherapy with siPD-1-loaded liposomes by enhancing T-cell-mediated antitumor immune responses could be considered as a promising strategy for the treatment of melanoma cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stability of liposome in several time points.
Fig. 2: siRNA uptake with lipofectamine and liposome.
Fig. 3: PD-1 protein and mRNA silencing by Anti-PD-1 siRNA.
Fig. 4: In vivo biodistribution of PD-1 siRNA liposome in B16F0 tumor-bearing mice.
Fig. 5: Flow cytometry analysis of tumor-infiltrated lymphocytes.
Fig. 6: Efficacy of PD-1 siRNA on B16F0 melanoma tumor.

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Mullen CA, Schreiber H. Tumor growth and evasion of immune destruction: UV-induced tumors as a model. Surv immunologic Res. 1985;4:264–70.

    Article  CAS  Google Scholar 

  2. Sharma P, Shen Y, Wen S, Yamada S, Jungbluth AA, Gnjatic S, et al. CD8 tumor-infiltrating lymphocytes are predictive of survival in muscle-invasive urothelial carcinoma. Proc Natl Acad Sci USA. 2007;104:3967–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. He X, Xu C. PD-1: a driver or passenger of T cell exhaustion? Mol Cell. 2020;77:930–1.

    Article  CAS  PubMed  Google Scholar 

  4. Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018;6:8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1:405–13.

    Article  CAS  PubMed  Google Scholar 

  6. Konstantinidou M, Zarganes-Tzitzikas T, Magiera-Mularz K, Holak TA, Domling A. Immune checkpoint PD-1/PD-L1: is there life beyond antibodies? Angew Chem. 2018;57:4840–8.

    Article  CAS  Google Scholar 

  7. Buchbinder EI, Desai ACTLA-4. and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39:98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubat T, Yagita H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. 1996;8:765–72.

    Article  CAS  PubMed  Google Scholar 

  9. Bertucci F, Finetti P, Mamessier E, Pantaleo MA, Astolfi A, Ostrowski J, et al. PDL1 expression is an independent prognostic factor in localized GIST. Oncoimmunology. 2015;4:e1002729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Sponaas A-M, Moharrami NN, Feyzi E, Standal T, Rustad EH, Waage A, et al. PDL1 expression on plasma and dendritic cells in myeloma bone marrow suggests benefit of targeted anti PD1-PDL1 therapy. PLoS ONE. 2015;10:e0139867.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kamphorst AO, Pillai RN, Yang S, Nasti TH, Akondy RS, Wieland A, et al. Proliferation of PD-1 + CD8 T cells in peripheral blood after PD-1–targeted therapy in lung cancer patients. Proc Natl Acad Sci USA. 2017;114:4993–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blank C, Mackensen A. Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother. 2007;56:739–45.

    Article  PubMed  Google Scholar 

  13. Patnaik A, Kang SP, Rasco D, Papadopoulos KP, Elassaiss-Schaap J, Beeram M, et al. Phase I study of pembrolizumab (MK-3475; anti–PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res. 2015;21:4286–93.

    Article  CAS  PubMed  Google Scholar 

  14. Falchook GS, Leidner R, Stankevich E, Piening B, Bifulco C, Lowy I, et al. Responses of metastatic basal cell and cutaneous squamous cell carcinomas to anti-PD1 monoclonal antibody REGN2810. J Immunother Cancer. 2016;4:1–5.

    Article  PubMed Central  Google Scholar 

  15. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004;432:173.

    Article  CAS  PubMed  Google Scholar 

  16. Jagani H, Rao JV, Palanimuthu VR, Hariharapura RC, Gang S. A nanoformulation of siRNA and its role in cancer therapy: in vitro and in vivo evaluation. Cell Mol Biol Lett. 2013;18:120.

    Article  CAS  PubMed  Google Scholar 

  17. Burnett JC, Rossi JJ, Tiemann K. Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J. 2011;6:1130–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8:129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dominska M, Dykxhoorn DM. Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci. 2010;123:1183–9.

    Article  CAS  PubMed  Google Scholar 

  20. Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev. 2014;66:110–6.

    Article  CAS  PubMed  Google Scholar 

  21. Tsermentseli SK, Kontogiannopoulos KN, Papageorgiou VP, Assimopoulou AN. Comparative study of PEGylated and conventional liposomes as carriers for shikonin. Fluids. 2018;3:36.

    Article  CAS  Google Scholar 

  22. Howard FB, Levin IW. Lipid vesicle aggregation induced by cooling. Int J Mol Sci. 2010;11:754–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7:653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Tropical J Pharm Res. 2013;12:265–73.

    Google Scholar 

  25. Mirzaaghasi A, Han Y, Ahn S-H, Choi C, Park J-H. Biodistribution and pharmacokinectics of liposomes and exosomes in a mouse model of sepsis. Pharmaceutics 2021;13:427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koning GA, Storm G. Targeted drug delivery systems for the intracellular delivery of macromolecular drugs. Drug Discov Today. 2003;8:482–3.

    Article  PubMed  Google Scholar 

  27. Metselaar JM, Storm G. Liposomes in the treatment of inflammatory disorders. Expert Opin Drug Deliv. 2005;2:465–76.

    Article  CAS  PubMed  Google Scholar 

  28. Faisal SM, Chen J-w, McDonough SP, et al. Y-F. Immunostimulatory and antigen delivery properties of liposomes made up of total polar lipids from non-pathogenic bacteria leads to efficient induction of both innate and adaptive immune responses. Vaccine. 2011;29:2381–91.

    Article  CAS  PubMed  Google Scholar 

  29. Stecher C, Battin C, Leitner J, Zettl M, Grabmeier-Pfistershammer K, Höller C, et al. PD-1 blockade promotes emerging checkpoint inhibitors in enhancing T cell responses to allogeneic dendritic cells. Front Immunol. 2017;8:572.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Petersen RP, Campa MJ, Sperlazza J, Conlon D, Joshi MB, Harpole DH Jr, et al. Tumor infiltrating Foxp3+ regulatory T‐cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 2006;107:2866–72.

    Article  PubMed  Google Scholar 

  31. Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology. 2007;132:2328–39.

    Article  PubMed  Google Scholar 

  32. Cai J, Wang D, Zhang G, Guo X. The role of PD-1/PD-L1 axis in Treg development and function: implications for cancer immunotherapy. OncoTargets Ther. 2019;12:8437.

    Article  CAS  Google Scholar 

  33. Wang C, Yi T, Qin L, Maldonado RA, von Andrian UH, Kulkarni S, et al. Rapamycin-treated human endothelial cells preferentially activate allogeneic regulatory T cells. J Clin Investig. 2013;123:1677–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoshida K, Okamoto M, Sasaki J, Kuroda C, Ishida H, Ueda K, et al. Anti-PD-1 antibody decreases tumour-infiltrating regulatory T cells. BMC Cancer. 2020;20:1–10.

    Article  CAS  Google Scholar 

  35. Hu J, Sun C, Bernatchez C, Xia X, Hwu P, Dotti G, et al. T-cell homing therapy for reducing regulatory T cells and preserving effector T-cell function in large solid tumors. Clin Cancer Res. 2018;24:2920–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De La Cruz LM, Nocera NF, Czerniecki BJ. Restoring anti-oncodriver Th1 responses with dendritic cell vaccines in HER2/neu-positive breast cancer: progress and potential. Immunotherapy. 2016;8:1219–32.

    Article  CAS  Google Scholar 

  37. Liudahl SM, Coussens L. To help or to harm: dynamic roles of CD4+ T helper cells in solid tumor microenvironments. In Immunology: Immunotoxicology, Immunopathology, and Immunotherapy. Elsevier. 2017;1:97-116. https://doi.org/10.1016/B978-0-12-809819-6.00008-3.

  38. Nie X, Chen W, Zhu Y, Huang B, Yu W, Wu Z, et al. B7-DC (PD-L2) costimulation of CD4+ T-helper 1 response via RGMb. Cell Mol Immunol. 2018;15:888–97.

    Article  CAS  PubMed  Google Scholar 

  39. Yamamura M, Modlin RL, Ohmen JD, Moy RL. Local expression of antiinflammatory cytokines in cancer. J Clin Investig. 1993;91:1005–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oshikawa K, Yanagisawa K, Ohno S, Tominaga S-I, Sugiyama Y. Expression of ST2 in helper T lymphocytes of malignant pleural effusions. Am J Respiratory Crit Care Med. 2002;165:1005–9.

    Article  Google Scholar 

  41. Chen Y-M, Yang W-K, Whang-Peng J, Tsai C-M, Perng R-P. An analysis of cytokine status in the serum and effusions of patients with tuberculous and lung cancer. Lung Cancer. 2001;31:25–30.

    Article  CAS  PubMed  Google Scholar 

  42. Chtanova T, Mackay CR. T cell effector subsets: extending the Th1/Th2 paradigm. Adv Immunol. 2001;78:233–66.

  43. Park JY, Jang MJ, Chung YH, Kim KY, Kim SS, Lee WB, et al. Doxorubicin enhances CD4+ T-cell immune responses by inducing expression of CD40 ligand and 4-1BB. Int Immunopharmacol. 2009;9:1530–9.

    Article  CAS  PubMed  Google Scholar 

  44. Raskov H, Orhan A, Christensen JP, Gögenur I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br J Cancer. 2020;124:359–67.

  45. Inozume T, Hanada K-i, Wang QJ, Ahmadzadeh M, Wunderlich JR, Rosenberg SA, et al. Selection of CD8+ PD-1+ lymphocytes in fresh human melanomas enriches for tumor-reactive T-cells. J Immunother. 2010;33:956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wedekind MF, Wagner LM, Cripe TP. Immunotherapy for osteosarcoma: where do we go from here? Pediatr Blood Cancer. 2018;65:e27227.

    Article  PubMed  Google Scholar 

  47. Maimela NR, Liu S, Zhang Y. Fates of CD8+ T cells in tumor microenvironment. Computat Struct Biotechnol J. 2019;17:1–13.

    Article  CAS  Google Scholar 

  48. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12:298–306.

    Article  CAS  PubMed  Google Scholar 

  49. Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E, et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J Clin Investig. 2014;124:2246–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li C, Han X. Melanoma cancer immunotherapy using PD-L1 siRNA and imatinib promotes cancer-immunity cycle. Pharm Res. 2020;37:1–10.

    Article  CAS  Google Scholar 

  51. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Morris K, Castanotto D, Al-Kadhimi Z, Jensen M, Rossi J, Cooper LJ. Enhancing siRNA effects in T cells for adoptive immunotherapy. Hematology. 2005;10:461–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We are thankful for the financial support from the Nanotechnology Research, Mashhad University of medical sciences, Mashhad, Iran (grant number: 971960). We would also like to thank Dr. Amir Abbas Momtazi-Borojeni, a post-doctoral researcher of Iran’s National Elites Foundation at the Mashhad University of Medical Sciences, for the final scientific polishing and edition of the present paper.

Author information

Authors and Affiliations

Authors

Contributions

MB conceived the presented idea, wrote the manuscript, performed the experiments, and analyzed data. He also designed the study. FM assisted with measurements. ARN gave consultation. MS gave consultation with the model preparation. HNA helped with the edition of manuscript. AS contributed to sample preparation. MM assisted with measurements. JTA helped with his laboratory facilities. MM supervised the study and gavec onsultation with the writing of the manuscript. MRJ supervised the project and financially supported the study.

Corresponding authors

Correspondence to Mojgan Mohammadi or Mahmoud Reza Jaafari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barati, M., Mirzavi, F., Nikpoor, A.R. et al. Enhanced antitumor immune response in melanoma tumor model by anti-PD-1 small interference RNA encapsulated in nanoliposomes. Cancer Gene Ther 29, 814–824 (2022). https://doi.org/10.1038/s41417-021-00367-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00367-9

This article is cited by

Search

Quick links