Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of the silica-rubber interface on the mechanical, viscoelastic, and tribological behaviors of filled styrene-butadiene rubber vulcanizates

Abstract

In this research, the effects of the surface modification of silica by low-molecular-weight hydroxyl-terminated polybutadiene (HTPB) are compared with those of bis(3-triethoxysilylpropyl)tetrasulfide (TESPT) on the mechanical, viscoelastic, and tribological properties of styrene-butadiene rubber (SBR) vulcanizates. Both modifiers have the ability to make covalent bonds with the rubber matrix, but with different interfacial characteristics controlling the final properties. The results displayed improvements in the tribological behavior of both modified silica-filled vulcanizates over pristine silica- and carbon black-filled vulcanizates. However, the HTPB modification method, despite providing a finer dispersion of the silica in the rubber, did not result in better tribological properties for the vulcanizates compared with those of the TESPT modification method. It was discussed that the HTPB modifier did not enhance tribological properties, especially abrasion resistance, as much as the TESPT modifier did because of the soft and flexible interface that was created in the presence of the HTPB modifier, in contrast to the rigid interface in the presence of TESPT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gent AN, Walter JD. Pneumatic tire. Ohio: The University of Akron, Mechanical Engineering Faculty Research; 2006.

    Google Scholar 

  2. Persson BN. Theory of rubber friction and contact mechanics. J Chem Phys. 2001;115:3840–61.

    CAS  Google Scholar 

  3. Persson BN. On the theory of rubber friction. Surf Sci. 1998;401:445–54.

    CAS  Google Scholar 

  4. Friedrich K. Friction and wear of polymer composites. Netherlands: Elsevier; 2012.

    Google Scholar 

  5. Zhang S-W. Tribology of elastomers. Netherlands: Elsevier; 2004.

    Google Scholar 

  6. Grosch K. Abrasion of rubber and its relation to tire wear. Rubber Chem Technol. 1992;65:78–106.

    CAS  Google Scholar 

  7. Pourhossaini M-R, Razzaghi-Kashani M. Effect of silica particle size on chain dynamics and frictional properties of styrene butadiene rubber nano and micro composites. Polymer 2014;55:2279–84.

    CAS  Google Scholar 

  8. Schallamach A. A theory of dynamic rubber friction. Wear 1963;6:375–82.

    Google Scholar 

  9. Schallamach A. Friction and abrasion of rubber. Wear 1958;1:384–417.

    Google Scholar 

  10. Klüppel M, Heinrich G. Rubber friction on self-affine road tracks. Rubber Chem Technol. 2000;73:578–606.

    Google Scholar 

  11. Fritzsche J, Klüppel M. Structural dynamics and interfacial properties of filler-reinforced elastomers. J Phys Condens Matter. 2010;23:035104.

    PubMed  Google Scholar 

  12. Stöckelhuber K, Wießner S, Das A, Heinrich G. Filler flocculation in polymers–a simplified model derived from thermodynamics and game theory. Soft Matter 2017;13:3701–9.

    PubMed  Google Scholar 

  13. Sugimoto S, Inutsuka M, Kawaguchi D, Tanaka K. The effect of interfacial dynamics on the bulk mechanical properties of rubber composites. Polym J. 2020;52:217–23.

    CAS  Google Scholar 

  14. Morita H, Toda M, Honda T. Analysis of the end-segment distribution of a polymer at the interface of filler-filled material. Polym J. 2016;48:451–5.

    CAS  Google Scholar 

  15. Stockelhuber K, Svistkov A, Pelevin A, Heinrich G. Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites. Macromolecules 2011;44:4366–81.

    Google Scholar 

  16. Fröhlich J, Niedermeier W, Luginsland H-D. The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos Part A Appl Sci Manuf. 2005;36:449–60.

    Google Scholar 

  17. Alimardani M, Razzaghi-Kashani M, Karimi R, Mahtabani A. Contribution of mechanical engagement and energetic interaction in reinforcement of SBR-silane–treated silica composites. Rubber Chem Technol. 2016;89:292–305.

    CAS  Google Scholar 

  18. Yue Y, Zhang H, Zhang Z, Chen Y. Polymer–filler interaction of fumed silica filled polydimethylsiloxane investigated by bound rubber. Compos Sci Technol. 2013;86:1–8.

    CAS  Google Scholar 

  19. Leblanc JL. Rubber–filler interactions and rheological properties in filled compounds. Prog Polym Sci. 2002;27:627–87.

    CAS  Google Scholar 

  20. Hosseini SM, Razzaghi-Kashani M. Vulcanization kinetics of nano-silica filled styrene butadiene rubber. Polymer 2014;55:6426–34.

    CAS  Google Scholar 

  21. Hosseini SM, Razzaghi-Kashani M. On the role of nano-silica in the kinetics of peroxide vulcanization of ethylene propylene diene rubber. Polymer 2017;133:8–19.

    CAS  Google Scholar 

  22. Hosseini SM, Razzaghi-Kashani M. Catalytic and networking effects of carbon black on the kinetics and conversion of sulfur vulcanization in styrene butadiene rubber. Soft Matter 2018;14:9194–208.

    CAS  PubMed  Google Scholar 

  23. Ramier J, Chazeau L, Gauthier C, Guy L, Bouchereau M-N. Influence of silica and its different surface treatments on the vulcanization process of silica filled SBR. Rubber Chem Technol. 2007;80:183–93.

    CAS  Google Scholar 

  24. Ramier J, Chazeau L, Gauthier C, Guy L, Bouchereau M-N. Grafting of silica during the processing of silica‐filled SBR: comparison between length and content of the silane. J Polym Sci Part B Polym Phys. 2006;44:143–52.

    CAS  Google Scholar 

  25. Ramier J, Gauthier C, Chazeau L, Stelandre L, Guy L. Payne effect in silica‐filled styrene–butadiene rubber: influence of surface treatment. J Polym Sci Part B Polym Phys. 2007;45:286–98.

    CAS  Google Scholar 

  26. Alimardani M, Razzaghi-Kashani M, Koch T. Crack growth resistance in rubber composites with controlled Interface bonding and interphase content. J Polym Res. 2019;26:47.

    Google Scholar 

  27. Suzuki N, Ito M, Yatsuyanagi F. Effects of rubber/filler interactions on deformation behavior of silica filled SBR systems. Polymer 2005;46:193–201.

    Google Scholar 

  28. Menon A, Pillai C, Jin W, Nah C. Fatigue resistance of silica‐filled natural rubber vulcanizates: comparative study of the effect of phosphorylated cardanol prepolymer and a silane coupling agent. Polym Int. 2005;54:629–35.

    CAS  Google Scholar 

  29. Hosseini SM, Torbati-Fard N, Kiyani H, Razzaghi-Kashani M. Comparative role of interface in reinforcing mechanisms of nano silica modified by silanes and liquid rubber in SBR composites. J Polym Res. 2016;23:203.

    Google Scholar 

  30. Mahtabani A, Alimardani M, Razzaghi-Kashani M. Further evidence of filler–filler mechanical engagement in rubber compounds filled with silica treated by long-chain silane. Rubber Chem Technol. 2017;90:508–20.

    CAS  Google Scholar 

  31. Pourhossaini M, Razzaghi‐Kashani M. Grafting hydroxy‐terminated polybutadiene onto nanosilica surface for styrene butadiene rubber compounds. J Appl Polym Sci. 2012;124:4721–8.

    CAS  Google Scholar 

  32. Mark JE, Erman B, Roland M. The science and technology of rubber. United States of America: Academic press; 2013.

    Google Scholar 

  33. Razzaghi-Kashani M, Behazin E, Fakhar A. Construction and evaluation of a new tribometer for polymers. Polym Test 2011;30:271–6.

    Google Scholar 

  34. Choi SS. Influence of rubber composition on change of crosslink density of rubber vulcanizates with EV cure system by thermal aging. J Appl Polym Sci. 2000;75:1378–84.

    CAS  Google Scholar 

  35. Saatchi MM, Shojaei A. Effect of carbon‐based nanoparticles on the cure characteristics and network structure of styrene–butadiene rubber vulcanizate. Polym Int. 2012;61:664–72.

    CAS  Google Scholar 

  36. Wu J, Xing W, Huang G, Li H, Tang M, Wu S, et al. Vulcanization kinetics of graphene/natural rubber nanocomposites. Polymer 2013;54:3314–23.

    CAS  Google Scholar 

  37. Jeong J-H, Moon C-W, Leonov AI, Quirk RP. Cure kinetics for silane coupled silica filled SBR compounds. Rubber Chem Technol. 2002;75:93–109.

    CAS  Google Scholar 

  38. Fukahori Y. New progress in the theory and model of carbon black reinforcement of elastomers. J Appl Polym Sci. 2005;95:60–7.

    CAS  Google Scholar 

  39. Heinrich G, Vilgis TA. Contribution of entanglements to the mechanical properties of carbon black-filled polymer networks. Macromolecules 1993;26:1109–19.

    CAS  Google Scholar 

  40. Choi S-S, Ko E. Novel test method to estimate bound rubber formation of silica-filled solution styrene-butadiene rubber compounds. Polym Test 2014;40:170–7.

    CAS  Google Scholar 

  41. Sattayanurak S, Sahakaro K, Kaewsakul W, Dierkes WK, Reuvekamp LA, Blume A, et al. Synergistic effect by high specific surface area carbon black as secondary filler in silica reinforced natural rubber tire tread compounds. Polym Test 2020;81:106173.

    CAS  Google Scholar 

  42. Yadollahi S, Ramezani M, Razzaghi-Kashani M, Bahramian A-R. Nonlinear viscoelastic dissipation in vulcanizates containing carbon black and salinized silica hybrid fillers. Rubber Chem Technol. 2018;91:537–47.

    CAS  Google Scholar 

  43. Aghajan MH, Hosseini SM, Razzaghi-Kashani M. Particle packing in bimodal size carbon black mixtures and its effect on the properties of styrene-butadiene rubber compounds. Polym Test. 2019;78:106002.

    Google Scholar 

  44. Tang Z, Zhang C, Wei Q, Weng P, Guo B. Remarkably improving performance of carbon black-filled rubber composites by incorporating MoS2 nanoplatelets. Compos Sci Technol. 2016;132:93–100.

    CAS  Google Scholar 

  45. Fragiadakis D, Bokobza L, Pissis P. Dynamics near the filler surface in natural rubber-silica nanocomposites. Polymer 2011;52:3175–82.

    CAS  Google Scholar 

  46. Meier JG, Klüppel M. Carbon black networking in elastomers monitored by dynamic mechanical and dielectric spectroscopy. Macromol Mater Eng. 2008;293:12–38.

    CAS  Google Scholar 

  47. Mujtaba A, Keller M, Ilisch S, Radusch H-J, Beiner M, Thurn-Albrecht T, et al. Detection of surface-immobilized components and their role in viscoelastic reinforcement of rubber–silica nanocomposites. ACS Macro Lett. 2014;3:481–5.

    CAS  Google Scholar 

  48. Ph.D Thesis, Enschede: University of Twente, 2009. p. 169. https://doi.org/10.3990/1.9789036528399.

  49. Tabsan N, Wirasate S, Suchiva K. Abrasion behavior of layered silicate reinforced natural rubber. Wear 2010;269:394–404.

    CAS  Google Scholar 

  50. Gent A, Pulford C. Mechanisms of rubber abrasion. J Appl Polym Sci. 1983;28:943–60.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Razzaghi-Kashani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torbati-Fard, N., Hosseini, S.M. & Razzaghi-Kashani, M. Effect of the silica-rubber interface on the mechanical, viscoelastic, and tribological behaviors of filled styrene-butadiene rubber vulcanizates. Polym J 52, 1223–1234 (2020). https://doi.org/10.1038/s41428-020-0378-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0378-x

This article is cited by

Search

Quick links