Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vibration-driven reaction of CO2 on Cu surfaces via Eley–Rideal-type mechanism

Abstract

Understanding gas–surface reaction dynamics, such as the rupture and formation of bonds in vibrationally and translationally excited (‘hot’) molecules, is important to provide mechanistic insight into heterogeneous catalytic processes. Although it has been established that such excitation can affect the reactions occurring via dissociative mechanisms, for associative mechanisms—in which the gas-phase reactant collides directly with a surface-adsorbed species—only translational excitation has been observed to affect reactivity. Here we report a bond-formation reaction that is driven by the vibrational energy of reactant molecules and occurs via an (associative) Eley–Rideal-type mechanism, in which the reaction takes place in a single collision. Hot CO2 in a molecular beam is found to react with pre-adsorbed hydrogen atoms directly on cold Cu(111) and Cu(100) surfaces to form formate adspecies. The vibrational energy of CO2 is more effective at promoting the reaction than translational energy, the reaction rate is independent of the surface temperature and the experimental results are consistent with density functional theory calculations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Four prototypes of thermal non-equilibrium gas–surface reaction.
Fig. 2: Formation of formate by a CO2 beam colliding with Ha/Cu(111) at various CO2 exposures (collision numbers of CO2 per Cu atom: [CO2]/Cu atom) traced by IRAS and TPD.
Fig. 3: Effects of Tsurf, Etrans and \({\bar{\boldsymbol E}}_{{\mathrm{vib}}}\) on P0 for formate formation with an incident angle of θi = 0° on Cu(111) and Cu(100).
Fig. 4: Effect of normal component of the translational energy En of CO2 on P0 for formate formation on Cu(111) at 180 K.
Fig. 5: Reaction pathway of the E–R-type mechanism for CO2 hydrogenation to form formate on Cu(111).

Similar content being viewed by others

Data availability

All results are reported in the main paper and Supplementary Information, and all data are available from the authors upon reasonable request.

References

  1. Polanyi, J. C. Some concepts in reaction dynamics. Acc. Chem. Res. 5, 161–168 (1972).

    Article  CAS  Google Scholar 

  2. Lee, Y. T. Molecular beam studies of elementary chemical processes. Science 236, 793–798 (1987).

    Article  CAS  Google Scholar 

  3. Liu, K. Vibrational control of bimolecular reactions with methane by mode, bond and stereo selectivity. Annu. Rev. Phys. Chem. 67, 91–111 (2016).

    Article  CAS  Google Scholar 

  4. Kleyn, A. W. Molecular beams and chemical dynamics at surfaces. Chem. Soc. Rev. 32, 87–95 (2003).

    Article  CAS  Google Scholar 

  5. Gross, A. et al. in The Chemical Physics of Solid Surfaces Vol. 11 (ed. Woodruff, D. P.) 1–378 (Elsevier, 2003).

  6. Michelsen, H. A., Rettner, C. T. & Auerbach, D. J. in Surface Reactions (ed. Madix, R. J.) 185–237 (Springer, 1994).

  7. Hayden, B. E. in Dynamics of Gas–Surface Interactions (eds Rettner, C. T. & Ashfold, M. N. R.) 137–170 (The Royal Society of Chemistry, 1991).

  8. Rettner, C. T. Dynamics of the direct reaction of hydrogen atoms adsorbed on Cu(111) with hydrogen atoms incident from the gas phase. Phys. Rev. Lett. 69, 383–386 (1992).

    Article  CAS  Google Scholar 

  9. Juurlink, L. B. F., Killelea, D. R. & Utz, A. L. State-resolved probes of methane dissociation dynamics. Prog. Surf. Sci. 84, 69–134 (2009).

    Article  CAS  Google Scholar 

  10. Díaz, C. et al. Chemically accurate simulation of a prototypical surface reaction: H2 dissociation on Cu(111). Science 326, 832–834 (2009).

    Article  Google Scholar 

  11. Nattino, F. et al. Ab initio molecular dynamics calculations versus quantum-state-resolved experiments on CHD3 + Pt(111): new insights into a prototypical gas–surface reaction. J. Phys. Chem. Lett. 5, 1294–1299 (2014).

    Article  CAS  Google Scholar 

  12. Eley, D. & Rideal, E. Parahydrogen conversion on tungsten. Nature 146, 401–402 (1940).

    Article  CAS  Google Scholar 

  13. Weinberg, W. H. Eley−Rideal surface chemistry: direct reactivity of gas phase atomic hydrogen with adsorbed species. Acc. Chem. Res. 29, 479–487 (1996).

    Article  CAS  Google Scholar 

  14. Ertl, G. in Handbook of Heterogeneous Catalysis Vol. 3 (eds Ertl, G., Knözinger, H. & Weitkamp, J.) 1462–1479 (Wiley-VCH, 2008).

  15. Nakano, H., Nakamura, I., Fujitani, T. & Nakamura, J. Structure-dependent kinetics for synthesis and decomposition of formate species over Cu(111) and Cu(110) model catalysts. J. Phys. Chem. B 105, 1355–1365 (2001).

    Article  CAS  Google Scholar 

  16. Nakamura, J., Kushida, Y., Choi, Y., Uchijima, T. & Fujitani, T. X-ray photoelectron spectroscopy and scanning tunnel microscope studies of formate species synthesized on Cu(111) surfaces. J. Vac. Sci. Technol. A 15, 1568–1571 (1997).

    Article  CAS  Google Scholar 

  17. Taylor, P. A., Rasmussen, P. B., Ovesen, C. V., Stoltze, P. & Chorkendorff, I. Formate synthesis on Cu(100). Surf. Sci. 261, 191–206 (1992).

    Article  CAS  Google Scholar 

  18. Wang, G., Morikawa, Y., Matsumoto, T. & Nakamura, J. Why is formate synthesis insensitive to copper surface structures? J. Phys. Chem. B 110, 9–11 (2006).

    Article  CAS  Google Scholar 

  19. Muttaqien, F. et al. Desorption dynamics of CO2 from formate decomposition on Cu(111). Chem. Commun. 53, 9222–9225 (2017).

    Article  CAS  Google Scholar 

  20. Sakaki, S. & Ohkubo, K. Characteristic features of carbon dioxide insertion into a copper–hydrogen bond. An ab initio MO study. Inorg. Chem. 27, 2020–2021 (1988).

    Article  CAS  Google Scholar 

  21. Bagherzadeh, S. & Mankad, N. P. Catalyst control of selectivity in CO2 reduction using a tunable heterobimetallic effect. J. Am. Chem. Soc. 137, 10898–10901 (2015).

    Article  CAS  Google Scholar 

  22. Quan, J., Kondo, T., Wang, G. & Nakamura, J. Energy transfer dynamics of formate decomposition on Cu(110). Angew. Chem. Int. Ed. 56, 3496–3500 (2017).

    Article  CAS  Google Scholar 

  23. Anger, G., Winkler, A. & Rendulic, K. D. Adsorption and desorption kinetics in the systems H2/Cu(111), H2/Cu(110) and H2/Cu(100). Surf. Sci. 220, 1–17 (1989).

    Article  CAS  Google Scholar 

  24. Fujitani, T., Nakamura, I., Ueno, S., Uchijima, T. & Nakamura, J. Methanol synthesis by hydrogenation of CO2 over a Zn-deposited Cu(111): formate intermediate. Appl. Surf. Sci. 121-122, 583–586 (1997).

    Article  Google Scholar 

  25. Nishimura, H., Yatsu, T., Fujitani, T., Uchijima, T. & Nakamura, J. Synthesis and decomposition of formate on a Cu(111) surface–kinetic analysis. J. Mol. Catal. A 155, 3–11 (2000).

    Article  CAS  Google Scholar 

  26. Lee, M. B., Yang, Q. Y. & Ceyer, S. T. Dynamics of the activated dissociative chemisorption of CH4 and implication for the pressure gap in catalysis: a molecular beam-high resolution electron energy loss study. J. Chem. Phys. 87, 2724–2741 (1987).

    Article  CAS  Google Scholar 

  27. Luntz, A. C. A simple model for associative desorption and dissociative chemisorption. J. Chem. Phys. 113, 6901–6905 (2000).

    Article  CAS  Google Scholar 

  28. Smith, R. R., Killelea, D. R., DelSesto, D. F. & Utz, A. L. Preference for vibrational over translational energy in a gas–surface reaction. Science 304, 992–995 (2004).

    Article  CAS  Google Scholar 

  29. Hundt, P. M., Jiang, B., vanReijzen, M. E., Guo, H. & Beck, R. D. Vibrationally promoted dissociation of water on Ni(111). Science 344, 504–507 (2014).

    Article  CAS  Google Scholar 

  30. Muttaqien, F. et al. CO2 adsorption on the copper surfaces: van der Waals density functional and TPD studies. J. Chem. Phys. 147, 094702 (2017).

    Article  Google Scholar 

  31. Mondal, B., Song, J., Neese, F. & Ye, S. Bio-inspired mechanistic insights into CO2 reduction. Curr. Opin. Chem. Biol. 25, 103–109 (2015).

    Article  CAS  Google Scholar 

  32. Jackson, B. & Persson, M. A quantum mechanical study of recombinative desorption of atomic hydrogen on a metal surface. J. Chem. Phys. 96, 2378–2386 (1992).

    Article  CAS  Google Scholar 

  33. Jackson, B. & Lemoine, D. Eley–Rideal reactions between H atoms on metal and graphite surfaces: the variation of reactivity with substrate. J. Chem. Phys. 114, 474–482 (2001).

    Article  Google Scholar 

  34. Casolo, S., Tantardini, G. F. & Martinazzo, R. Hydrogen recombination and dimer formation on graphite from ab initio molecular dynamics simulations. J. Phys. Chem. A 120, 5032–5040 (2016).

    Article  CAS  Google Scholar 

  35. Campbell, J. M. & Campbell, C. T. The dissociative adsorption of H2 and D2 on Cu(110): activation barriers and dynamics. Surf. Sci. 259, 1–17 (1991).

    Article  CAS  Google Scholar 

  36. Chorkendorff, I., Alstrup, I. & Ullmann, S. XPS study of chemisorption of CH4 on Ni(100). Surf. Sci. 227, 291–296 (1990).

    Article  CAS  Google Scholar 

  37. Jackson, B., Persson, M. & Kay, B. D. Quantum mechanical study of H(g) + Cl–Au(111): Eley–Rideal mechanism. J. Chem. Phys. 100, 7687–7695 (1994).

    Article  CAS  Google Scholar 

  38. Rettner, C. T. & Auerbach, D. J. Dynamics of the Eley–Rideal reaction of D atoms with H atoms adsorbed on Cu(111): vibrational and rotational state distributions of the HD product. Phys. Rev. Lett. 74, 4551–4554 (1995).

    Article  CAS  Google Scholar 

  39. Zaharia, T., Kleyn, A. W. & Gleeson, M. A. Eley–Rideal reactions with N atoms at Ru(0001): formation of NO and N2. Phys. Rev. Lett. 113, 053201 (2014).

    Article  Google Scholar 

  40. Kuipers, E. W., Vardi, A., Danon, A. & Amirav, A. Surface-molecule proton transfer: a demonstration of the Eley–Rideal mechanism. Phys. Rev. Lett. 66, 116–119 (1991).

    Article  CAS  Google Scholar 

  41. Nakamura, J., Choi, Y. & Fujitani, T. On the issue of the active site and the role of ZnO in Cu/ZnO methanol synthesis catalysts. Top. Catal. 22, 277–285 (2003).

    Article  CAS  Google Scholar 

  42. Kondo, T., Kato, H. S., Yamada, T., Yamamoto, S. & Kawai, M. Effect of the molecular structure on the gas–surface scattering studied by supersonic molecular beam. Eur. Phys. J. D 38, 129–138 (2006).

    Article  CAS  Google Scholar 

  43. Kondo, T., Kato, H. S., Bonn, M. & Kawai, M. Deposition and crystallization studies of thin amorphous solid water films on Ru(0001) and on CO-precovered Ru(0001). J. Chem. Phys. 127, 094703 (2007).

    Article  Google Scholar 

  44. Morikawa, Y., Iwata, K., Nakamura, J., Fujitani, T. & Terakura, K. Ab initio study of surface structural changes during methanol synthesis over Zn/Cu(111). Chem. Phys. Lett. 304, 91–97 (1999).

    Article  CAS  Google Scholar 

  45. Morikawa, Y., Iwata, K. & Terakura, K. Theoretical study of hydrogenation process of formate on clean and Zn deposited Cu(111) surfaces. Appl. Surf. Sci. 169-170, 11–15 (2001).

    Article  CAS  Google Scholar 

  46. Muttaqien, F., Hamamoto, Y., Inagaki, K. & Morikawa, Y. Dissociative adsorption of CO2 on flat, stepped and kinked Cu surfaces. J. Chem. Phys. 141, 034702 (2014).

    Article  Google Scholar 

  47. Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Article  Google Scholar 

  48. Thonhauser, T. et al. Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond. Phys. Rev. B 76, 125112 (2007).

    Article  Google Scholar 

  49. Román-Pérez, G. & Soler, J. M. Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys. Rev. Lett. 103, 096102 (2009).

    Article  Google Scholar 

  50. Wu, J. & Gygi, F. A simplified implementation of van der Waals density functionals for first-principles molecular dynamics applications. J. Chem. Phys. 136, 224107 (2012).

    Article  Google Scholar 

  51. Hamamoto, Y., Hamada, I., Inagaki, K. & Morikawa, Y. Self-consistent van der Waals density functional study of benzene adsorption on Si(100). Phys. Rev. B 93, 245440 (2016).

    Article  Google Scholar 

  52. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).

    Article  CAS  Google Scholar 

  53. Lide, D. R. CRC Handbook of Chemistry Physics Vol. 79 (CRC Press, Boca Raton, 1998).

  54. Mills, G., Jónsson, H. & Schenter, G. K. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf. Sci. 324, 305–337 (1995).

    Article  CAS  Google Scholar 

  55. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  56. Wilson, E. B., Decius, J. C. & Cross, P. C. Molecular Vibrations (Dover Publications, 1955).

Download references

Acknowledgements

Financial support was provided by the Advanced Catalytic Transformation Program for Carbon Utilization (ACT-C) of the Japan Science and Technology Agency (JST). The numerical calculations were performed with computer resources at the Institute for Solid State Physics (ISSP), University of Tokyo, with HPCI systems provided by Nagoya University, the University of Tokyo and Tohoku University through the HPCI System Research Project (project nos. hp130112, hp140166 and hp150201). Theoretical calculations were partly supported by Grants-in-Aid for Scientific Research on Innovative Areas 3D Active-Site Science (nos. 26105010 and 26105011) from the Japan Society for the Promotion of Science (JSPS), and the Elements Strategy Initiative for Catalysts and Batteries (ESICB) supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT). J.Q. thanks Y. Horiike and M. Kitajima for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.N. and Y.M. conceived and designed the project. J.Q., T.Kon, T.Koz., T.M. and T.I. performed experiments. J.Q., T.Kon., T.Koz., T.M., T.I. and J.N. analysed experimental results. F.M. performed calculations and data analysis, with contributions from Y.H., K.I. and I.H. J.N. supervised experiments. Y.M. supervised calculations. J.Q., F.M., T.Kon., I.H., Y.M. and J.N. wrote the manuscript. All authors contributed to the scientific discussion and helped in writing the manuscript.

Corresponding author

Correspondence to Junji Nakamura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary methods, Supplementary Figs. 1–25, Supplementary Tables 1–4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, J., Muttaqien, F., Kondo, T. et al. Vibration-driven reaction of CO2 on Cu surfaces via Eley–Rideal-type mechanism. Nat. Chem. 11, 722–729 (2019). https://doi.org/10.1038/s41557-019-0282-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0282-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing