Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Global targets that reveal the social–ecological interdependencies of sustainable development

Abstract

We are approaching a reckoning point in 2020 for global targets that better articulate the interconnections between biodiversity, ecosystem services and sustainable development. The Convention on Biological Diversity’s (CBD’s) post-2020 global biodiversity framework and targets will be developed as we enter the last decade to meet the Sustainable Development Goals (SDGs) and targets. Despite recent findings of unprecedented declines in biodiversity and ecosystem services and their negative impacts on SDGs, these declines remain largely unaccounted for in the SDG’s upcoming ‘decade of action’. We use a social–ecological systems framework to develop four recommendations for targets that capture the interdependencies between biodiversity, ecosystem services and sustainable development. These recommendations, which are primarily aimed at the CBD post-2020 process, include moving from separate social and ecological targets to social–ecological targets that: account for (1) the support system role of biodiversity and (2) ecosystem services in sustainable development. We further propose target advances that (3) capture social–ecological feedbacks reinforcing unsustainable outcomes, and (4) reveal indirect feedbacks hidden by current target systems. By making these social–ecological interdependencies explicit, it is possible to create coherent systems of global targets that account for the complex role of biodiversity and ecosystem services in sustainable development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A complex SES approach to the analysis of social–ecological interdependencies and feedbacks between biodiversity, ecosystem services and sustainable development.
Fig. 2: Goal clusters which summarize the findings of the IPBES global assessment on the consequences of biodiversity and ecosystem service trends for SDG achievement.

Similar content being viewed by others

References

  1. Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    PubMed  Google Scholar 

  2. Anderson, C. B. et al. Determining nature’s contributions to achieve the sustainable development goals. Sustain. Sci. 14, 543–547 (2019).

    Google Scholar 

  3. Wood, S. L. R. et al. Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosyst. Serv. 29, 70–82 (2018).

    Google Scholar 

  4. Report of the Secretary-General on SDG Progress 2019 (United Nations, 2019).

  5. Le Blanc, D. Towards integration at last? The Sustainable Development Goals as a network of targets. Sustain. Dev. 23, 176–187 (2015).

    Google Scholar 

  6. Transforming our World: the 2030 Agenda for Sustainable Development (United Nations, 2015).

  7. McGowan, P. J. K., Stewart, G. B., Long, G. & Grainger, M. J. An imperfect vision of indivisibility in the Sustainable Development Goals. Nat. Sustain. 2, 43–45 (2019).

    Google Scholar 

  8. Nilsson, M., Griggs, D. & Visbeck, M. Policy: Map the interactions between sustainable development goals. Nature 534, 320–322 (2016).

    PubMed  Google Scholar 

  9. Barbier, E. B. & Burgess, J. C. The Sustainable Development Goals and the systems approach to sustainability. Economics 11, 2017–28 (2017).

    Google Scholar 

  10. Nilsson, M. et al. Mapping interactions between the sustainable development goals: lessons learned and ways forward. Sustain. Sci. 13, 1489–1503 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. Nerini, F. F. et al. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat. Energy 3, 10–15 (2018).

    Google Scholar 

  12. Schlüter, M. et al. Capturing emergent phenomena in social-ecological systems: an analytical framework. Ecol. Soc. 24, 11 (2019).

    Google Scholar 

  13. Preiser, R., Biggs, R., De Vos, A. & Folke, C. Social-ecological systems as complex adaptive systems: organizing principles for advancing research methods and approaches. Ecol. Soc. 23, 46 (2018).

    Google Scholar 

  14. Fischer, J. et al. Advancing sustainability through mainstreaming a social-ecological systems perspective. Curr. Opin. Environ. Sustain. 14, 144–149 (2015).

    Google Scholar 

  15. Leslie, H. M. et al. Operationalizing the social-ecological systems framework to assess sustainability. Proc. Natl Acad. Sci. USA 112, 5979–5984 (2015).

    CAS  PubMed  Google Scholar 

  16. Reyers, B., Folke, C., Moore, M.-L., Biggs, R. & Galaz, V. Social-ecological systems insights for navigating the dynamics of the Anthropocene. Annu. Rev. Environ. Resour. 43, 267–289 (2018).

    Google Scholar 

  17. Reyers, B., Stafford-Smith, M., Erb, K. H., Scholes, R. J. & Selomane, O. Essential variables help to focus Sustainable Development Goals monitoring. Curr. Opin. Environ. Sustain. 26–27, 97–105 (2017).

    Google Scholar 

  18. Selomane, O., Reyers, B., Biggs, R. & Hamann, M. Harnessing insights from social-ecological systems research for monitoring sustainable development. Sustainability 11, 1190 (2019).

    Google Scholar 

  19. Carpenter, S. R. et al. Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proc. Natl Acad. Sci. USA 106, 1305–1312 (2009).

    CAS  PubMed  Google Scholar 

  20. Berkes, F. Environmental governance for the Anthropocene? Social-ecological systems, resilience, and collaborative learning. Sustainability 9, 1232 (2017).

    Google Scholar 

  21. Leach, M. et al. Equity and sustainability in the Anthropocene: a social–ecological systems perspective on their intertwined futures. Glob. Sustain. 1, e13 (2018).

    Google Scholar 

  22. Blythe, J., Nash, K., Yates, J. & Cumming, G. Feedbacks as a bridging concept for advancing transdisciplinary sustainability research. Curr. Opin. Environ. Sustain. 26–27, 114–119 (2017).

    Google Scholar 

  23. Takeuchi, K., Ichikawa, K. & Elmqvist, T. Satoyama landscape as social-ecological system: historical changes and future perspective. Curr. Opin. Environ. Sustain. 19, 30–39 (2016).

    Google Scholar 

  24. Lafuite, A.-S. & Loreau, M. Time-delayed biodiversity feedbacks and the sustainability of social-ecological systems. Ecol. Model. 351, 96–108 (2017).

    Google Scholar 

  25. Daw, T. M. et al. Evaluating taboo trade-offs in ecosystems services and human well-being. Proc. Natl Acad. Sci. USA 112, 6949–6954 (2015).

    CAS  PubMed  Google Scholar 

  26. Liu, J. G. et al. Framing sustainability in a telecoupled world. Ecol. Soc. 18, 26 (2013).

    CAS  Google Scholar 

  27. Biggs, R. et al. Toward principles for enhancing the resilience of ecosystem services. Annu. Rev. Environ. Resour. 37, 421–448 (2012).

    Google Scholar 

  28. Haider, L. J., Boonstra, W. J., Peterson, G. D. & Schlüter, M. Traps and sustainable development in rural areas: a review. World Dev. 101, 311–321 (2019).

    Google Scholar 

  29. Lade, S. J., Haider, L. J., Engstrom, G. & Schluter, M. Resilience offers escape from trapped thinking on poverty alleviation. Sci. Adv. 3, e1603043 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. Rocha, J. C., Peterson, G., Bodin, O. & Levin, S. Cascading regime shifts within and across scales. Science 362, 1379–1383 (2018).

    CAS  PubMed  Google Scholar 

  31. Synes, N. W. et al. Coupled land use and ecological models reveal emergence and feedbacks in socio-ecological systems. Ecography 42, 814–825 (2019).

    Google Scholar 

  32. Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).

    Google Scholar 

  33. Díaz, S. et al. The IPBES Conceptual Framework - connecting nature and people. Curr. Opin. Environ. Sustain. 14, 1–16 (2015).

    Google Scholar 

  34. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    PubMed  Google Scholar 

  35. Mace, G. M. et al. Approaches to defining a planetary boundary for biodiversity. Glob. Environ. Change-Hum. Policy Dimens. 28, 289–297 (2014).

    Google Scholar 

  36. Smith, D. C. et al. Implementing marine ecosystem-based management: lessons from Australia. ICES J. Mar. Sci. 74, 1990–2003 (2017).

    Google Scholar 

  37. Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    CAS  PubMed  Google Scholar 

  38. Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    CAS  PubMed  Google Scholar 

  39. Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    CAS  PubMed  Google Scholar 

  40. Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390 (2019).

    CAS  PubMed  Google Scholar 

  41. Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).

    PubMed  Google Scholar 

  42. Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).

    CAS  PubMed  Google Scholar 

  43. Samhouri, J. F. et al. Sea sick? Setting targets to assess ocean health and ecosystem services. Ecosphere 3, 41 (2012).

    Google Scholar 

  44. Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS  PubMed  Google Scholar 

  45. McAlpine, C. A. et al. Forest loss and Borneo’s climate. Environ. Res. Lett. 13, 044009 (2018).

    Google Scholar 

  46. Prevedello, J. A., Winck, G. R., Weber, M. M., Nichols, E. & Sinervo, B. Impacts of forestation and deforestation on local temperature across the globe. PLoS ONE 14, e0213368 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Arkema, K. K. et al. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Change 3, 913–918 (2013).

    Google Scholar 

  48. Nel, J. L. et al. Natural hazards in a changing world: a case for ecosystem-based management. PLoS ONE 9, e95942 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Howard, J. et al. Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ. 15, 42–50 (2017).

    Google Scholar 

  50. Guerry, A. D. et al. Natural capital and ecosystem services informing decisions: from promise to practice. Proc. Natl Acad. Sci. USA 112, 7348–7355 (2015).

    CAS  PubMed  Google Scholar 

  51. Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).

    CAS  PubMed  Google Scholar 

  52. Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    CAS  PubMed  Google Scholar 

  53. Garbach, K. et al. Examining multi-functionality for crop yield and ecosystem services in five systems of agroecological intensification. Int. J. Agric. Sustain. 15, 11–28 (2017).

    Google Scholar 

  54. Wood, S. A. et al. Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends Ecol. Evol. 30, 531–539 (2015).

    PubMed  Google Scholar 

  55. Schreckenberg, K., Mace, G. & Poudyal, M. Ecosystem Services and Poverty Alleviation: Trade-offs and Governance (Routledge, 2018).

  56. Whitmee, S. et al. Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation–Lancet Commission on planetary health. Lancet 386, 1973–2028 (2015).

    PubMed  Google Scholar 

  57. Buckley, R. C. & Brough, P. Economic value of parks via human mental health: an analytical framework. Front. Ecol. Evol. 5, 16 (2017).

    Google Scholar 

  58. Elmqvist, T. et al. Urban Planet: Knowledge towards Sustainable Cities (Cambridge Univ. Press, 2018).

  59. Reyers, B. et al. Getting the measure of ecosystem services: a social–ecological approach. Front. Ecol. Environ. 11, 268–273 (2013).

    Google Scholar 

  60. Daskin, J. H. & Pringle, R. M. Warfare and wildlife declines in Africa’s protected areas. Nature 553, 328–332 (2018).

    CAS  PubMed  Google Scholar 

  61. von Uexkull, N., Croicu, M., Fjelde, H. & Buhaug, H. Civil conflict sensitivity to growing-season drought. Proc. Natl Acad. Sci. USA 113, 12391–12396 (2016).

    Google Scholar 

  62. Moss, A., Jensen, E. & Gusset, M. Impact of a global biodiversity education campaign on zoo and aquarium visitors. Front. Ecol. Environ. 15, 243–247 (2017).

    Google Scholar 

  63. Rustad, S. A. & Binningsbo, H. M. A price worth fighting for? Natural resources and conflict recurrence. J. Peace Res. 49, 531–546 (2012).

    Google Scholar 

  64. Linke, A. M., Witmer, F. D. W., O’Loughlin, J., McCabe, J. T. & Tir, J. The consequences of relocating in response to drought: human mobility and conflict in contemporary Kenya. Environ. Res. Lett. 13, 094014 (2018).

    Google Scholar 

  65. Burrows, K. & Kinney, P. Exploring the climate change, migration and conflict nexus. Int. J. Environ. Res. Public Health 13, 443 (2016).

    PubMed  PubMed Central  Google Scholar 

  66. Global Gender and Development Outlook (United Nations Environment Programme, 2016).

  67. Harper, S., Grubb, C., Stiles, M. & Sumaila, U. R. Contributions by women to fisheries economies: insights from five maritime countries. Coast. Manag. 45, 91–106 (2017).

    Google Scholar 

  68. Cole, S. M. et al. Postharvest fish losses and unequal gender relations: drivers of the social-ecological trap in the Barotse Floodplain fishery, Zambia. Ecol. Soc. 23, 18 (2018).

    Google Scholar 

  69. Martin-Lopez, B., Gomez-Baggethun, E., Garcia-Llorente, M. & Montes, C. Trade-offs across value-domains in ecosystem services assessment. Ecol. Indic. 37, 220–228 (2014).

    Google Scholar 

  70. Carpenter, S. R. & Bennett, E. M. Reconsideration of the planetary boundary for phosphorus. Environ. Res. Lett. 6, 014009 (2011).

    Google Scholar 

  71. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS  PubMed  Google Scholar 

  72. Keys, P. W., Wang-Erlandsson, L. & Gordon, L. J. Megacity precipitationsheds reveal tele-connected water security challenges. PLoS ONE 13, e0194311 (2018).

    PubMed  PubMed Central  Google Scholar 

  73. Dakos, V. et al. Ecosystem tipping points in an evolving world. Nat. Ecol. Evol. 3, 355–362 (2019).

    PubMed  Google Scholar 

  74. Pardini, R., Bueno, Ad. A., Gardner, T. A., Prado, P. I. & Metzger, J. P. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5, e13666 (2010).

    PubMed  PubMed Central  Google Scholar 

  75. Rocha, J. C., Peterson, G., Bodin, Ö. & Levin, S. Cascading regime shifts within and across scales. Science 362, 1379–1383 (2018).

    CAS  PubMed  Google Scholar 

  76. Oosterbroek, B., de Kraker, J., Huynen, M. & Martens, P. Assessing ecosystem impacts on health: a tool review. Ecosyst. Serv. 17, 237–254 (2016).

    Google Scholar 

  77. Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).

    PubMed  Google Scholar 

  78. Pereira, L. & Drimie, S. Governance arrangements for the future food system: addressing complexity in South Africa. Environ.: Sci. Policy Sustain. Dev. 58, 18–31 (2016).

    Google Scholar 

  79. Ericksen, P. J. Conceptualizing food systems for global environmental change research. Glob. Environ. Change 18, 234–245 (2008).

    Google Scholar 

  80. Lade, S. J., Haider, L. J., Engström, G. & Schlüter, M. Resilience offers escape from trapped thinking on poverty alleviation. Sci. Adv. 3, e1603043 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    CAS  PubMed  Google Scholar 

  82. Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    CAS  PubMed  Google Scholar 

  83. Beck, M. W., Claassen, A. H. & Hundt, P. J. Environmental and livelihood impacts of dams: common lessons across development gradients that challenge sustainability. Int. J. River Basin Manag. 10, 73–92 (2012).

    Google Scholar 

  84. Botelho, A., Ferreira, P., Lima, F., Pinto, L. M. C. & Sousa, S. Assessment of the environmental impacts associated with hydropower. Renew. Sustain. Energy Rev. 70, 896–904 (2017).

    Google Scholar 

  85. Barber, C. P., Cochrane, M. A., Souza, C. M. & Laurance, W. F. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 177, 203–209 (2014).

    Google Scholar 

  86. Benitez-Lopez, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Conserv. 143, 1307–1316 (2010).

    Google Scholar 

  87. Driscoll, D. A. et al. A biodiversity-crisis hierarchy to evaluate and refine conservation indicators. Nat. Ecol. Evol. 2, 775–781 (2018).

    PubMed  Google Scholar 

  88. Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

    CAS  PubMed  Google Scholar 

  89. Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

    CAS  PubMed  Google Scholar 

  90. D’Odorico, P. et al. Global virtual water trade and the hydrological cycle: patterns, drivers, and socio-environmental impacts. Environ. Res. Lett. 14, 053001 (2019).

    Google Scholar 

  91. Crona, B. I. et al. Masked, diluted and drowned out: how global seafood trade weakens signals from marine ecosystems. Fish Fish. 17, 1175–1182 (2016).

    Google Scholar 

  92. Galaz, V. et al. Tax havens and global environmental degradation. Nat. Ecol. Evol. 2, 1352–1357 (2018).

    PubMed  Google Scholar 

  93. Folke, C. et al. Transnational corporations and the challenge of biosphere stewardship. Nat. Ecol. Evol. 3, 1396–1403 (2019).

    PubMed  Google Scholar 

  94. United Nations Secretary-General Progress towards the Sustainable Development Goals: Report of the Secretary-General (UN, 2018).

  95. Stafford-Smith, M. et al. Integration: the key to implementing the Sustainable Development Goals. Sustain. Sci. 12, 911–919 (2017).

    PubMed  Google Scholar 

  96. Abson, D. J. et al. Leverage points for sustainability transformation. Ambio 46, 30–39 (2017).

    PubMed  Google Scholar 

  97. Sachs, J. D. et al. Six Transformations to achieve the Sustainable Development Goals. Nat. Sustain. 2, 805–814 (2019).

    Google Scholar 

  98. Arkema, K. K. et al. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature. Proc. Natl Acad. Sci. USA 112, 7390–7395 (2015).

    CAS  PubMed  Google Scholar 

  99. Eakin, H. et al. Identifying attributes of food system sustainability: emerging themes and consensus. Agric. Hum. Values 34, 757–773 (2017).

    Google Scholar 

  100. Biggs, R., Schlüter, M. & Schoon, M. L. Principles for Building Resilience: Sustaining Ecosystem Services in Social-Ecological Systems (Cambridge Univ. Press, 2015).

Download references

Acknowledgements

We are grateful to have been part of the Global Assessment of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) where the initial ideas for this Perspective were born.

Author information

Authors and Affiliations

Authors

Contributions

B.R. and E.R.S. contributed equally to this work as co-lead authors.

Corresponding author

Correspondence to Belinda Reyers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyers, B., Selig, E.R. Global targets that reveal the social–ecological interdependencies of sustainable development. Nat Ecol Evol 4, 1011–1019 (2020). https://doi.org/10.1038/s41559-020-1230-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-1230-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing