Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Strategies to improve light utilization in solar fuel synthesis

Abstract

The synthesis of fuels using sunlight offers a promising sustainable solution for chemical energy storage, but inefficient utilization of the solar spectrum limits its commercial viability. Apart from fundamental improvements to (photo)catalyst materials, solar fuel production systems can also be designed to improve solar energy utilization by integrating complementary technologies that more efficiently utilize the solar spectrum. Here we review recent progress on emerging complementary approaches to better modify, enhance or distribute solar energy for sunlight-to-fuel conversion, including advanced light management, integrated thermal approaches and solar concentrators. These strategies can improve the efficiency and production rates of existing photo(electro)chemical systems and, therefore, the overall economics of solar fuel production. More broadly, the approaches highlight the necessary collaboration between materials science and engineering to help drive the adoption of a sustainable energy economy using existing technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Solar energy conversion technologies.
Fig. 2: Solar-to-hydrogen conversion efficiencies (\(\eta _{{\mathrm{H}}_2}\)) for selected water-splitting systems.
Fig. 3: Light management for hybrid systems.
Fig. 4: Photon wavelength manipulation using up- and downconversion for photo(electro)chemical systems.
Fig. 5: Solar concentrator and thermal-related approaches.
Fig. 6: Systems combining solar thermal approaches and photo(electro)chemical processes.

Similar content being viewed by others

References

  1. Kim, J. H., Hansora, D., Sharma, P., Jang, J.-W. & Lee, J. S. Toward practical solar hydrogen production—an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019).

    Article  Google Scholar 

  2. Shaner, M. R., Atwater, H. A., Lewis, N. S. & McFarland, E. W. A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy Environ. Sci. 9, 2354–2371 (2016).

    Article  Google Scholar 

  3. McKone, J. R., Lewis, N. S. & Gray, H. B. Will solar-driven water-splitting devices see the light of day? Chem. Mater. 26, 407–414 (2014).

    Article  Google Scholar 

  4. Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).

    Article  Google Scholar 

  5. Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016).

    Article  Google Scholar 

  6. Würfel, P. Thermodynamic limitations to solar energy conversion. Physica E 14, 18–26 (2002). Study reporting the thermodynamic analysis and entropy-limited ideal maximum efficiency of the solar energy conversion process

    Article  Google Scholar 

  7. Huang, X., Han, S., Huang, W. & Liu, X. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42, 173–201 (2013).

    Article  Google Scholar 

  8. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  Google Scholar 

  9. Wang, Q. & Domen, K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2019).

    Article  Google Scholar 

  10. Wang, Y. et al. Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chem. Rev. 118, 5201–5241 (2018).

    Article  Google Scholar 

  11. De Vos, A. Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D: Appl. Phys. 13, 839–846 (1980).

    Article  Google Scholar 

  12. Hu, S., Xiang, C., Haussener, S., Berger, A. D. & Lewis, N. S. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 2984–2993 (2013).

    Article  Google Scholar 

  13. Pan, L. et al. Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nat. Catal. 1, 412–420 (2018).

    Article  Google Scholar 

  14. Kobayashi, H. et al. Development of highly efficient CuIn0.5Ga0.5Se2-based photocathode and application to overall solar driven water splitting. Energy Environ. Sci. 11, 3003–3009 (2018).

    Article  Google Scholar 

  15. Cheng, W.-H. et al. Monolithic photoelectrochemical device for direct water splitting with 19% efficiency. ACS Energy Lett. 3, 1795–1800 (2018).

    Article  Google Scholar 

  16. Bolton, J. R., Strickler, S. J. & Connolly, J. S. Limiting and realizable efficiencies of solar photolysis of water. Nature 316, 495–500 (1985).

    Article  Google Scholar 

  17. Mojiri, A., Taylor, R., Thomsen, E. & Rosengarten, G. Spectral beam splitting for efficient conversion of solar energy—a review. Renew. Sust. Energy Rev. 28, 654–663 (2013).

    Article  Google Scholar 

  18. Acar, C. & Dincer, I. Enhanced generation of hydrogen, power, and heat with a novel integrated photoelectrochemical system. Int. J. Hydrog. Energy 45, 34666–3467 (2020).

    Article  Google Scholar 

  19. Qiu, Y. et al. Efficient solar-driven water splitting by nanocone BiVO4–perovskite tandem cells. Sci. Adv. 2, e1501764 (2016).

    Article  Google Scholar 

  20. Skoplaki, E. & Palyvos, J. A. On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol. Energy 83, 614–624 (2009).

    Article  Google Scholar 

  21. Imenes, A. G., Buie, D. & McKenzie, D. The design of broadband, wide-angle interference filters for solar concentrating systems. Sol. Energy Mater. Sol. Cells 90, 1579–1606 (2006).

    Article  Google Scholar 

  22. Na, S.-I. et al. Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography. Adv. Funct. Mater. 18, 3956–3963 (2008).

    Article  Google Scholar 

  23. Zeng, L. et al. Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector. Appl. Phys. Lett. 93, 221105 (2008).

    Article  Google Scholar 

  24. Mokkapati, S. & Catchpole, K. R. Nanophotonic light trapping in solar cells. J. Appl. Phys. 112, 101101 (2012).

    Article  Google Scholar 

  25. Shi, X. et al. Unassisted photoelectrochemical water splitting exceeding 7% solar-to-hydrogen conversion efficiency using photon recycling. Nat. Commun. 7, 11943 (2016). Light management enhanced photocurrent generation for photoelectrochemical water splitting using a distributed Bragg reflector

    Article  Google Scholar 

  26. Rao, A. & Friend, R. H. Harnessing singlet exciton fission to break the Shockley–Queisser limit. Nat. Rev. Mater. 2, 17063 (2017).

    Article  Google Scholar 

  27. Smith, M. B. & Michl, J. Singlet fission. Chem. Rev. 110, 6891–6936 (2010).

    Article  Google Scholar 

  28. Tayebjee, M. J., Rao, A. & Schmidt, T. All-optical augmentation of solar cells using a combination of up- and downconversion. J. Photon. Energy 8, 022007 (2018). A detailed study on the effects of up- and downconversion on the theoretical maximum efficiency of solar cells

    Article  Google Scholar 

  29. Tayebjee, M. J. Y., Gray-Weale, A. A. & Schmidt, T. W. Thermodynamic limit of exciton fission solar cell efficiency. J. Phys. Chem. Lett. 3, 2749–2754 (2012).

    Article  Google Scholar 

  30. Hovel, H. J., Hodgson, R. T. & Woodall, J. M. The effect of fluorescent wavelength shifting on solar cell spectral response. Sol. Energy Mater. 2, 19–29 (1979).

    Article  Google Scholar 

  31. Wen, S. et al. Future and challenges for hybrid upconversion nanosystems. Nat. Photon. 13, 828–838 (2019).

    Article  Google Scholar 

  32. Rahaman, M. et al. Selective CO production from aqueous CO2 using a Cu96In4 catalyst and its integration into a bias-free solar perovskite–BiVO4 tandem device. Energy Environ. Sci. 13, 3536–3543 (2020).

    Article  Google Scholar 

  33. Choi, D., Nam, S. K., Kim, K. & Moon, J. H. Enhanced photoelectrochemical water splitting through bismuth vanadate with a photon upconversion luminescent reflector. Angew. Chem. Int. Ed. 58, 6891–6895 (2019). A demonstration of combined up- and downconversion to increase the efficiency of photoelectrochemical water splitting.

    Article  Google Scholar 

  34. Trupke, T., Green, M. & Würfel, P. Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 92, 4117–4122 (2002).

    Article  Google Scholar 

  35. Zhang, M. et al. Improving hematite’s solar water splitting efficiency by incorporating rare-earth upconversion nanomaterials. J. Phys. Chem. Lett. 3, 3188–3192 (2012).

    Article  Google Scholar 

  36. Wang, X. et al. Dye-sensitized lanthanide-doped upconversion nanoparticles. Chem. Soc. Rev. 46, 4150–4167 (2017).

    Article  Google Scholar 

  37. Singh-Rachford, T. N. & Castellano, F. N. Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254, 2560–2573 (2010).

    Article  Google Scholar 

  38. Gholizadeh, E. M. et al. Photochemical upconversion of near-infrared light from below the silicon bandgap. Nat. Photon. 14, 585–590 (2020).

    Article  Google Scholar 

  39. Kim, J.-H. & Kim, J.-H. Encapsulated triplet–triplet annihilation-based upconversion in the aqueous phase for sub-band-gap semiconductor photocatalysis. J. Am. Chem. Soc. 134, 17478–17481 (2012).

    Article  Google Scholar 

  40. Kroupa, D. M., Roh, J. Y., Milstein, T. J., Creutz, S. E. & Gamelin, D. R. Quantum-cutting ytterbium-doped CsPb(Cl1 – xBrx)3 perovskite thin films with photoluminescence quantum yields over 190%. ACS Energy Lett. 3, 2390–2395 (2018).

    Article  Google Scholar 

  41. Romero, M. & Steinfeld, A. Concentrating solar thermal power and thermochemical fuels. Energy Environ. Sci. 5, 9234–9245 (2012).

    Article  Google Scholar 

  42. Fraas, L. M. & Partain, L. D. Solar Cells and Their Applications 2nd edn (Wiley, 2010).

  43. Green, M. A. & Bremner, S. P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 16, 23–34 (2017).

    Article  Google Scholar 

  44. Jia, J. et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 7, 13237 (2016). A record demonstration of \({{{\boldsymbol{\eta}}_{{\mathbf{H}}_{\bf 2}}}}\) efficiency achieved by solar PV–electrolysis under 42 suns concentrated irradiation

    Article  Google Scholar 

  45. Geisz, J. F. et al. Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat. Energy 5, 326–335 (2020).

    Article  Google Scholar 

  46. Rodriguez, C. A., Modestino, M. A., Psaltis, D. & Moser, C. Design and cost considerations for practical solar–hydrogen generators. Energy Environ. Sci. 7, 3828–3835 (2014).

    Article  Google Scholar 

  47. Holmes-Gentle, I., Tembhurne, S., Suter, C. & Haussener, S. Dynamic system modeling of thermally-integrated concentrated PV–electrolysis. Int. J. Hydrog. Energy 46, 10666–10681 (2021).

    Article  Google Scholar 

  48. Khan, M., Shankiti, I., Ziani, A., Wehbe, N. & Idriss, H. A stable integrated photoelectrochemical reactor for H2 production from water attains a solar‐to‐hydrogen efficiency of 18% at 15 suns and 13% at 207 suns. Angew. Chem. Int. Ed. 59, 14802–14808 (2020).

    Article  Google Scholar 

  49. Uekert, T., Pichler, C. M., Schubert, T. & Reisner, E. Solar-driven reforming of solid waste for a sustainable future. Nat. Sustain. 4, 383–391 (2021).

    Article  Google Scholar 

  50. Castedo, A., Casanovas, A., Angurell, I., Soler, L. & Llorca, J. Effect of temperature on the gas-phase photocatalytic H2 generation using microreactors under UVA and sunlight irradiation. Fuel 222, 327–333 (2018).

    Article  Google Scholar 

  51. Castedo, A., Uriz, I., Soler, L., Gandía, L. M. & Llorca, J. Kinetic analysis and CFD simulations of the photocatalytic production of hydrogen in silicone microreactors from water–ethanol mixtures. Appl. Catal. B 203, 210–217 (2017).

    Article  Google Scholar 

  52. Wei, Q. et al. Direct solar photocatalytic hydrogen generation with CPC photoreactors: system development. Sol. Energy 153, 215–223 (2017). A demonstration of a scalable photocatalytic hydrogen production system under concentrated solar irradiation from compound parabolic collectors

    Article  Google Scholar 

  53. Apostoleris, H., Stefancich, M. & Chiesa, M. Tracking-integrated systems for concentrating photovoltaics. Nat. Energy 1, 16018 (2016).

    Article  Google Scholar 

  54. Chueh, W. C. et al. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 330, 1797–1801 (2010). A demonstration of two-step, solar-driven thermochemical production of fuels

    Article  Google Scholar 

  55. Steinfeld, A. Solar thermochemical production of hydrogen––a review. Sol. Energy 78, 603–615 (2005).

    Article  Google Scholar 

  56. Muhich, C. L. et al. Efficient generation of H2 by splitting water with an isothermal redox cycle. Science 341, 540–542 (2013).

    Article  Google Scholar 

  57. Lapp, J., Davidson, J. H. & Lipiński, W. Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery. Energy 37, 591–600 (2012).

    Article  Google Scholar 

  58. Ermanoski, I., Siegel, N. P. & Stechel, E. B. A new reactor concept for efficient solar-thermochemical fuel production. J. Sol. Energy Eng. 135, 031002 (2013).

    Article  Google Scholar 

  59. Lin, M. & Haussener, S. Solar fuel processing efficiency for ceria redox cycling using alternative oxygen partial pressure reduction methods. Energy 88, 667–679 (2015).

    Article  Google Scholar 

  60. Gálvez, M. E., Loutzenhiser, P. G., Hischier, I. & Steinfeld, A. CO2 splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions: thermodynamic analysis. Energy Fuels 22, 3544–3550 (2008).

    Article  Google Scholar 

  61. Scheffe, J. R. & Steinfeld, A. Thermodynamic analysis of cerium-based oxides for solar thermochemical fuel production. Energy Fuels 26, 1928–1936 (2012).

    Article  Google Scholar 

  62. Qu, W., Hong, H. & Jin, H. A spectral splitting solar concentrator for cascading solar energy utilization by integrating photovoltaics and solar thermal fuel. Appl. Energy 248, 162–173 (2019).

    Article  Google Scholar 

  63. Fang, J. et al. Thermodynamic evaluation of a concentrated photochemical–photovoltaic–thermochemical (CP-PV-T) system in the full-spectrum solar energy utilization. Appl. Energy 279, 115778 (2020).

    Article  Google Scholar 

  64. Kolm, H. H. Solar-Battery Power Source Quarterly Progress Report Solid State Research (MIT Lincoln Laboratory, 1965).

  65. Wang, Y., Liu, H. & Zhu, J. Solar thermophotovoltaics: progress, challenges, and opportunities. APL Mater. 7, 080906 (2019).

    Article  Google Scholar 

  66. Harder, N.-P. & Würfel, P. Theoretical limits of thermophotovoltaic solar energy conversion. Semicond. Sci. Technol. 18, S151–S157 (2003).

    Article  Google Scholar 

  67. Rabady, R. I. & Kenaan, B. Power spectral shaping for hydrogen production from silicon based hybrid thermo-photovoltaic water electrolysis. Energy 133, 1–8 (2017).

    Article  Google Scholar 

  68. Omair, Z. et al. Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering. Proc. Natl Acad. Sci. USA 116, 15356–15361 (2019).

    Article  Google Scholar 

  69. Urbain, F. et al. Influence of the operating temperature on the performance of silicon based photoelectrochemical devices for water splitting. Mater. Sci. Semicond. Process. 42, 142–146 (2016).

    Article  Google Scholar 

  70. Haussener, S., Hu, S., Xiang, C., Weber, A. Z. & Lewis, N. S. Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 3605–3618 (2013).

    Article  Google Scholar 

  71. Tembhurne, S., Nandjou, F. & Haussener, S. A thermally synergistic photo-electrochemical hydrogen generator operating under concentrated solar irradiation. Nat. Energy 4, 399–407 (2019). Study representing an efficient photoelectrochemical device under concentrated irradiation with thermal integration.

    Article  Google Scholar 

  72. Hisatomi, T., Minegishi, T. & Domen, K. Kinetic assessment and numerical modeling of photocatalytic water splitting toward efficient solar hydrogen production. Bull. Chem. Soc. Jpn. 85, 647–655 (2012).

    Article  Google Scholar 

  73. van de Krol, R. & Parkinson, B. A. Perspectives on the photoelectrochemical storage of solar energy. MRS Energy Sustain. 4, E13 (2017).

    Article  Google Scholar 

  74. Licht, S. Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach. Adv. Mater. 23, 5592–5612 (2011).

    Article  Google Scholar 

  75. Licht, S. Solar water splitting to generate hydrogen fuel—a photothermal electrochemical analysis. Int. J. Hydrog. Energy 30, 459–470 (2005).

    Article  Google Scholar 

  76. Licht, S. STEP (Solar Thermal Electrochemical Photo) generation of energetic molecules: a solar chemical process to end anthropogenic global warming. J. Phys. Chem. C 113, 16283–16292 (2009).

    Article  Google Scholar 

  77. Licht, S., Halperin, L., Kalina, M., Zidman, M. & Halperin, N. Electrochemical potential tuned solar water splitting. Chem. Commun. 24, 3006–3007 (2003).

    Article  Google Scholar 

  78. Licht, S., Cui, B. & Wang, B. STEP carbon capture—the barium advantage. J. CO2 Util. 2, 58–63 (2013).

  79. Mulla, R. & Dunnill, C. W. Powering the hydrogen economy from waste heat: a review of heat-to-hydrogen concepts. ChemSusChem 12, 3882–3895 (2019).

    Article  Google Scholar 

  80. Zhang, Y. et al. Thermal energy harvesting using pyroelectric–electrochemical coupling in ferroelectric materials. Joule 4, 301–309 (2020).

    Article  Google Scholar 

  81. Sebald, G., Guyomar, D. & Agbossou, A. On thermoelectric and pyroelectric energy harvesting. Smart Mater. Struct. 18, 125006 (2009).

    Article  Google Scholar 

  82. Xu, X. et al. Pyro-catalytic hydrogen evolution by Ba0.7Sr0.3TiO3 nanoparticles: harvesting cold–hot alternation energy near room-temperature. Energy Environ. Sci. 11, 2198–2207 (2018).

    Article  Google Scholar 

  83. Li, J.-F., Liu, W.-S., Zhao, L.-D. & Zhou, M. High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2, 152–158 (2010).

    Article  Google Scholar 

  84. Zhao, L. et al. An earth-abundant and multifunctional Ni nanosheets array as electrocatalysts and heat absorption layer integrated thermoelectric device for overall water splitting. Nano Energy 56, 563–570 (2019).

    Article  Google Scholar 

  85. Shin, S.-M., Jung, J.-Y., Park, M.-J., Song, J.-W. & Lee, J.-H. Catalyst-free hydrogen evolution of Si photocathode by thermovoltage-driven solar water splitting. J. Power Sources 279, 151–156 (2015).

    Article  Google Scholar 

  86. Kang, Y. et al. An integrated thermoelectric-assisted photoelectrochemical system to boost water splitting. Sci. Bull. 65, 1163–1169 (2020). Report integrating a thermoelectric generator in a photoelectrochemical system for full solar spectrum utilization and enhanced hydrogen production

    Article  Google Scholar 

  87. Chen, J. Thermodynamic analysis of a solar-driven thermoelectric generator. J. Appl. Phys. 79, 2717–2721 (1996).

    Article  Google Scholar 

  88. Yang, D. & Yin, H. Energy conversion efficiency of a novel hybrid solar system for photovoltaic, thermoelectric, and heat utilization. IEEE Trans. Energy Convers. 26, 662–670 (2011).

    Article  Google Scholar 

  89. Tomeš, P., Suter, C., Trottmann, M., Steinfeld, A. & Weidenkaff, A. Thermoelectric oxide modules tested in a solar cavity–receiver. J. Mater. Res. 26, 1975–1982 (2011).

    Article  Google Scholar 

  90. Kraemer, D. et al. Concentrating solar thermoelectric generators with a peak efficiency of 7.4%. Nat. Energy 1, 16153 (2016). Study highlighting that the efficiency of thermoelectric modules can be enhanced by utilizing concentrated solar light.

    Article  Google Scholar 

  91. Li, D., Xuan, Y., Li, Q. & Hong, H. Exergy and energy analysis of photovoltaic–thermoelectric hybrid systems. Energy 126, 343–351 (2017).

    Article  Google Scholar 

  92. Pinaud, B. A. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013).

    Article  Google Scholar 

  93. Leelachaikul, P. et al. Perfluorooctanol-based liquid membranes for H2/O2 separation. Sep. Purif. Technol. 122, 431–439 (2014).

    Article  Google Scholar 

  94. Andersson, J. & Grönkvist, S. Large-scale storage of hydrogen. Int. J. Hydrog. Energy 44, 11901–11919 (2019).

    Article  Google Scholar 

  95. Lau, V. W.-h et al. Dark photocatalysis: storage of solar energy in carbon nitride for time-delayed hydrogen generation. Angew. Chem. Int. Ed. 56, 510–514 (2017).

    Article  Google Scholar 

  96. Pornrungroj, C. et al. Bifunctional perovskite–BiVO4 tandem devices for uninterrupted solar and electrocatalytic water splitting cycles. Adv. Funct. Mater. 31, 2008182 (2021).

    Article  Google Scholar 

  97. Bellos, E. & Tzivanidis, C. Energy and financial analysis of a solar driven thermoelectric generator. J. Clean. Prod. 264, 121534 (2020).

    Article  Google Scholar 

  98. Higashi, T. et al. Transparent Ta3N5 photoanodes for efficient oxygen evolution toward the development of tandem cells. Angew. Chem. Int. Ed. 58, 2300–2304 (2019).

    Article  Google Scholar 

  99. Luo, J. et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345, 1593–1596 (2014).

    Article  Google Scholar 

  100. Schüttauf, J.-W. et al. Solar-to-hydrogen production at 14.2% efficiency with silicon photovoltaics and earth-abundant electrocatalysts. J. Electrochem. Soc. 163, F1177–F1181 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Pichler and V. Andrei of the University of Cambridge and W. Hofer from OMV for helpful discussions. This work was supported by an EU Marie Skłodowska-Curie Individual Fellowship (GAN 793996 to Q.W.), the JSPS Leading Initiative for Excellent Young Researchers (to Q.W.), the Cambridge Trust (Cambridge Thai Foundation Award to C.P.), a Trinity–Henry Barlow Scholarship (to C.P.), an NSERC Postdoctoral Fellowship (to S.L.) and the OMV Group (to E.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Reisner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Energy thanks Timothy Schmidt, Christina Scheu and the other, anonymous, reviewer for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Website: www-reisner.ch.cam.ac.uk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Pornrungroj, C., Linley, S. et al. Strategies to improve light utilization in solar fuel synthesis. Nat Energy 7, 13–24 (2022). https://doi.org/10.1038/s41560-021-00919-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-021-00919-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing