Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Thermoelectric cooling materials

Abstract

Solid-state thermoelectric devices can directly convert electricity into cooling or enable heat pumping through the Peltier effect. The commercialization of thermoelectric cooling technology has been built on the Bi2Te3 alloys, which have had no rival for the past six decades around room temperature. With the discovery and development of more promising materials, it is possible to reshape thermoelectric cooling technology. Here we review the current status of, and future outlook for, thermoelectric cooling materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thermoelectric cooling performance.
Fig. 2: Thermoelectric cooling materials.

Similar content being viewed by others

References

  1. Peltier, J. C. Nouvelles expériences sur la caloricité des courants électrique. Ann. Chim. Phys. 56, 371–386 (1834).

    Google Scholar 

  2. Altenkirch, E. Elektrothermische Kälteerzeugung und reversible elektrische Heizung. Phys. Z. 12, 920–924 (1911).

    Google Scholar 

  3. White, W. Some experiments with Peltier effect. Electr. Eng. 70, 589–591 (1951).

    Google Scholar 

  4. Goldsmid, H. J. & Douglas, R. W. The use of semiconductors in thermoelectric refrigeration. Br. J. Appl. Phys. 5, 386–390 (1954).

    Google Scholar 

  5. Sinani, S. S. & Gordiakova, G. N. Solid solution Bi2Te3–Bi2Se3 as a material for thermoelements. Sov. Phys. Tech. Phys. 1, 2318–2319 (1956).

    Google Scholar 

  6. Ioffe, A. F. Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, 1957).

  7. Hempstead, C. & Worthington, W. Encyclopedia of 20th-century Technology (Routledge, 2005).

  8. Stockholm, J. G. in CRC Handbook of Thermoelectrics Ch. 54 (CRC, 1995).

  9. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    CAS  Google Scholar 

  10. Zhao, D. & Tan, G. A review of thermoelectric cooling: materials, modeling and applications. Appl. Therm. Eng. 66, 15–24 (2014).

    CAS  Google Scholar 

  11. Ziabari, A., Zebarjadi, M., Vashaee, D. & Shakouri, A. Nanoscale solid-state cooling: a review. Rep. Prog. Phys. 79, 095901 (2016).

    Google Scholar 

  12. Goldsmid, H. J. Thermoelectric Refrigeration (Springer, 1964).

  13. Goldsmid, H. J. Electronic Refrigeration (Pion, 1986).

  14. Stockholm, J. G. Current state of Peltier cooling. In 16th International Conf. Thermoelectrics 37–46 (IEEE, 1997).

  15. Bansal, P. & Martin, A. Comparative study of vapour compression, thermoelectric and absorption refrigerators. Int. J. Energy Res. 24, 93–107 (2000).

    CAS  Google Scholar 

  16. Riffat, S. B. & Qiu, G. Q. Comparative investigation of thermoelectric air-conditioners versus vapour compression and absorption air-conditioners. Appl. Therm. Eng. 24, 1979–1993 (2004).

    Google Scholar 

  17. Gao, M. & Rowe, D. Experimental evaluation of prototype thermoelectric domestic-refrigerators. Appl. Energy 83, 133–152 (2006).

    Google Scholar 

  18. Iordanishvili, E. K. & Stilbans, L. S. Thermoelectric microcoolers. Sov. Phys. Tech. Phys. 1, 928–939 (1956).

    Google Scholar 

  19. MacDonald, D. K. C., Mooser, E., Pearson, W. B., Templeton, I. M. & Woods, S. B. On the possibility of thermoelectric refrigeration at very low temperatures. Phil. Mag. 4, 433–446 (1959).

    Google Scholar 

  20. Mahan, G., Sales, B. & Sharp, J. Thermoelectric materials: new approaches to an old problem. Phys. Today 50, 42–47 (1997).

    CAS  Google Scholar 

  21. Ishiwata, S. et al. Extremely high electron mobility in a phonon-glass semimetal. Nat. Mater. 12, 512–517 (2013).

    CAS  Google Scholar 

  22. Mao, J. et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 365, 495–498 (2019).

    CAS  Google Scholar 

  23. Pan, Y. et al. Mg3(Bi,Sb)2 single crystals towards high thermoelectric performance. Energy Environ. Sci. 13, 1717–1724 (2020).

    CAS  Google Scholar 

  24. Lenoir, B., Cassart, M., Michenaud, J.-P., Scherrer, H. & Scherrer, S. Transport properties of Bi-rich Bi–Sb alloys. J. Phys. Chem. Solids 57, 89–99 (1996).

    CAS  Google Scholar 

  25. Sun, P., Ikeno, T., Mizushima, T. & Isikawa, Y. Simultaneously optimizing the interdependent thermoelectric parameters in Ce(Ni1−xCux)2Al3. Phys. Rev. B 80, 193105 (2009).

    Google Scholar 

  26. Chung, D. Y. et al. CsBi4Te6: a high-performance thermoelectric material for low-temperature applications. Science 287, 1024–1027 (2000).

    CAS  Google Scholar 

  27. Gallo, C. F., Chandrasekhar, B. S. & Sutter, P. H. Transport properties of bismuth single crystals. J. Appl. Phys. 34, 144–152 (1963).

    CAS  Google Scholar 

  28. Yim, W. & Amith, A. BiSb alloys for magneto-thermoelectric and thermomagnetic cooling. Solid State Electron. 15, 1141–1165 (1972).

    CAS  Google Scholar 

  29. Wolfe, R. & Smith, G. Effects of a magnetic field on the thermoelectric properties of a bismuth–antimony alloy. Appl. Phys. Lett. 1, 5–7 (1962).

    CAS  Google Scholar 

  30. Harman, T., Honig, J., Fischler, S., Paladino, A. & Button, M. J. Oriented single-crystal bismuth Nernst–Ettingshausen refrigerators. Appl. Phys. Lett. 4, 77–79 (1964).

    Google Scholar 

  31. Goldsmid, H. J. XXVII. Thermoelectric applications of semiconductors. Int. J. Electron. 1, 218–222 (1955).

    CAS  Google Scholar 

  32. Goldsmid, H. J., Sheard, A. R. & Wright, D. A. The performance of bismuth telluride thermojunctions. Br. J. Appl. Phys. 9, 365–370 (1958).

    CAS  Google Scholar 

  33. Ioffe, A. F. On thermal conduction in semiconductors. Il Nuovo Cimento 3, 702–715 (1956).

    CAS  Google Scholar 

  34. Yim, W. M., Fitzke, E. V. & Rosi, F. D. Thermoelectric properties of Bi2Te3–Sb2Te3–Sb2Se3 pseudo-ternary alloys in the temperature range 77 to 300 K. J. Mater. Sci. 1, 52–65 (1966).

    CAS  Google Scholar 

  35. Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    CAS  Google Scholar 

  36. Goldsmid, H. Timeliness in the development of thermoelectric cooling. In 17th International Conf. on Thermoelectrics 25–28 (IEEE, 1998).

  37. Tamaki, H., Sato, H. K. & Kanno, T. Isotropic conduction network and defect chemistry in Mg3+δSb2-based layered Zintl compounds with high thermoelectric performance. Adv. Mater. 28, 10182–10187 (2016).

    CAS  Google Scholar 

  38. Zhang, J. et al. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands. Nat. Commun. 8, 13901 (2017).

    CAS  Google Scholar 

  39. Song, S. W. et al. Joint effect of magnesium and yttrium on enhancing thermoelectric properties of n-type Zintl Mg3+δY0.02Sb1.5Bi0.5. Mater. Today Phys. 8, 25–33 (2019).

    Google Scholar 

  40. Mao, J. et al. Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials. Proc. Natl Acad. Sci. USA 114, 10548–10553 (2017).

    CAS  Google Scholar 

  41. Kanno, T. et al. Enhancement of average thermoelectric figure of merit by increasing the grain-size of Mg3.2Sb1.5Bi0.49Te0.01. Appl. Phys. Lett. 112, 033903 (2018).

    Google Scholar 

  42. Shu, R. et al. Mg3+δSbxBi2−x family: a promising substitute for the state-of-the-art n-type thermoelectric materials near room temperature. Adv. Funct. Mater. 29, 1807235 (2019).

    Google Scholar 

  43. Imasato, K., Kang, S. D. & Snyder, G. J. Exceptional thermoelectric performance in Mg3Sb0.6Bi1.4 for low-grade waste heat recovery. Energy Environ. Sci. 12, 965–971 (2019).

    CAS  Google Scholar 

  44. Shi, X. et al. Extraordinary n-type Mg3SbBi thermoelectrics enabled by yttrium doping. Adv. Mater. 31, 1903387 (2019).

    Google Scholar 

  45. Liu, W. et al. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications. J. Mater. Chem. A 1, 13093–13100 (2013).

    CAS  Google Scholar 

  46. Liu, Z., Mao, J., Liu, T.-H., Chen, G. & Ren, Z. F. Nano-microstructural control of phonon engineering for thermoelectric energy harvesting. MRS Bull. 43, 181–186 (2018).

    Google Scholar 

  47. Pei, Y. Z. et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011).

    CAS  Google Scholar 

  48. Jeong, C., Kim, R. & Lundstrom, M. S. On the best bandstructure for thermoelectric performance: a Landauer perspective. J. Appl. Phys. 111, 113707 (2012).

    Google Scholar 

  49. Norouzzadeh, P. & Vashaee, D. Classification of valleytronics in thermoelectricity. Sci. Rep. 6, 22724 (2016).

    CAS  Google Scholar 

  50. Witkoske, E., Wang, X., Lundstrom, M., Askarpour, V. & Maassen, J. Thermoelectric band engineering: the role of carrier scattering. J. Appl. Phys. 122, 175102 (2017).

    Google Scholar 

  51. Chasmar, R. & Stratton, R. The thermoelectric figure of merit and its relation to thermoelectric generators. Int. J. Electron. 7, 52–72 (1959).

    CAS  Google Scholar 

  52. Sofo, J. O. & Mahan, G. D. Optimum band gap of a thermoelectric material. Phys. Rev. B 49, 4565–4570 (1994).

    CAS  Google Scholar 

  53. Fedorov, M. & Zaitsev, V. in CRC Handbook of Thermoelectrics Ch. 27, 321–328 (CRC, 1995).

  54. Zhang, C. et al. Unexpected low thermal conductivity and large power factor in Dirac semimetal Cd3As2. Chin. Phys. B 25, 017202 (2015).

    Google Scholar 

  55. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2006).

  56. Markov, M., Rezaei, S. E., Sadeghi, S. N., Esfarjani, K. & Zebarjadi, M. Thermoelectric properties of semimetals. Phys. Rev. Mater. 3, 095401 (2019).

    CAS  Google Scholar 

  57. Bahk, J. H. & Shakouri, A. Minority carrier blocking to enhance the thermoelectric figure of merit in narrow-band-gap semiconductors. Phys. Rev. B 93, 165209 (2016).

    Google Scholar 

  58. Conn, J. & Taylor, R. Thermoelectric and crystallographic properties of Ag2Se. J. Electrochem. Soc. 107, 977–982 (1960).

    CAS  Google Scholar 

  59. LeBlanc, S., Yee, S. K., Scullin, M. L., Dames, C. & Goodson, K. E. Material and manufacturing cost considerations for thermoelectrics. Renew. Sust. Energy Rev. 32, 313–327 (2014).

    CAS  Google Scholar 

  60. Attey, G. Enhanced thermoelectric refrigeration system COP through low thermal impedance liquid heat transfer system. In 17th International Conf. on Thermoelectrics 519–524 (IEEE, 1998).

  61. Astrain, D., Vián, J. G. & Domı́nguez, M. Increase of COP in the thermoelectric refrigeration by the optimization of heat dissipation. Appl. Therm. Eng. 23, 2183–2200 (2003).

    Google Scholar 

  62. Disawas, S. & Wongwises, S. Experimental investigation on the performance of the refrigeration cycle using a two-phase ejector as an expansion device. Int. J. Refrig. 27, 587–594 (2004).

    Google Scholar 

  63. Wang, X., Hwang, Y. & Radermacher, R. Two-stage heat pump system with vapor-injected scroll compressor using R410A as a refrigerant. Int. J. Refrig. 32, 1442–1451 (2009).

    CAS  Google Scholar 

  64. Issi, J. Low temperature transport properties of the group V semimetals. Aust. J. Phys. 32, 585–628 (1979).

    CAS  Google Scholar 

  65. Esaki, L. & Stiles, P. BiSb alloy tunnel junctions. Phys. Rev. Lett. 16, 574 (1966).

    CAS  Google Scholar 

  66. Goldsmid, H. J. in CRC Handbook of Thermoelectrics Ch. 48 (CRC, 1995).

  67. Raymond, M. & Edward, B. in CRC Handbook of Thermoelectrics Ch. 46 (CRC, 1995).

  68. Güler, N. F. & Ahiska, R. Design and testing of a microprocessor-controlled portable thermoelectric medical cooling kit. Appl. Therm. Eng. 22, 1271–1276 (2002).

    Google Scholar 

  69. Sharp, C. A. III, Doke, M. J., Howarth, R. A. & Recine, L. J. Sr. Compact thermoelectric refrigerator and module. US patent 5,501,076A (1996).

  70. Semenyuk, V. in Thermoelectrics Handbook: Macro to Nano Ch. 58 (Taylor & Francis, 2006).

  71. Hansen, J. & Nussbaum, M. Application of bismuth-telluride thermoelectrics in driving DNA amplification and sequencing reactions. In 15th International Conf. on Thermoelectrics 256–258 (IEEE, 1996).

  72. Lofy, J. & Bell, L. Thermoelectrics for environmental control in automobiles. In 21st International Conf. on Thermoelectrics 471–476 (IEEE, 2002).

  73. Stockholm, J. G. in CRC Handbook of Thermoelectrics Ch. 53 (CRC, 1995).

  74. Stockholm, J. Prototype thermoelectric air conditioning of a passenger railway coach. In 4th International Conf. on Thermoelectric Energy Conversion 12 (1982).

  75. Sharp, J., Bierschenk, J. & Lyon, H. B. Overview of solid-state thermoelectric refrigerators and possible applications to on-chip thermal management. Proc. IEEE 94, 1602–1612 (2006).

    Google Scholar 

  76. Heikes, R. R. & Ure, R. W. Thermoelectricity: Science and Engineering (Interscience, 1961).

  77. Mahan, G. D. Good thermoelectrics. Solid State Phys. 51, 81–157 (1997).

    Google Scholar 

  78. Zebarjadi, M. Electronic cooling using thermoelectric devices. Appl. Phys. Lett. 106, 203506 (2015).

    Google Scholar 

  79. Uemura, K.-i. in CRC Handbook of Thermoelectrics Ch. 49 (CRC, 1995).

  80. Bian, Z., Wang, H., Zhou, Q. & Shakouri, A. Maximum cooling temperature and uniform efficiency criterion for inhomogeneous thermoelectric materials. Phys. Rev. B 75, 245208 (2007).

    Google Scholar 

Download references

Acknowledgements

We thank Z. Liu and Z. Liang for discussions. Z.R. acknowledges the Humboldt Research Award from the Alexander von Humboldt Foundation and K. Nielsch at IFW Dresden in Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Ren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Lidong Chen, Ctirad Uher and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, J., Chen, G. & Ren, Z. Thermoelectric cooling materials. Nat. Mater. 20, 454–461 (2021). https://doi.org/10.1038/s41563-020-00852-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-00852-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing