Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visualization of the strain-induced topological phase transition in a quasi-one-dimensional superconductor TaSe3

An Author Correction to this article was published on 23 June 2021

This article has been updated

Abstract

Control of the phase transition from topological to normal insulators can allow for an on/off switching of spin current. While topological phase transitions have been realized by elemental substitution in semiconducting alloys, such an approach requires preparation of materials with various compositions. Thus it is quite far from a feasible device application, which demands a reversible operation. Here we use angle-resolved photoemission spectroscopy and spin- and angle-resolved photoemission spectroscopy to visualize the strain-driven band-structure evolution of the quasi-one-dimensional superconductor TaSe3. We demonstrate that it undergoes reversible strain-induced topological phase transitions from a strong topological insulator phase with spin-polarized, quasi-one-dimensional topological surface states, to topologically trivial semimetal and band insulating phases. The quasi-one-dimensional superconductor TaSe3 provides a suitable platform for engineering the topological spintronics, for example as an on/off switch for a spin current that is robust against impurity scattering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structure of TaSe3 and its electronic structure revealed by ARPES.
Fig. 2: TSSs near the \(\widetilde{{\rm{X}}}\) point on the \((\overline{1}01)\) surface BZ revealed by laser-SARPES with 7 eV photons.
Fig. 3: Observed topological and metal–insulator phase transitions driven by the in-situ-controlled tensile strain along the chain.
Fig. 4: Calculated topological phase transition and metal–insulator transition driven by the strain along chain direction.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

Change history

References

  1. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  CAS  Google Scholar 

  2. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Article  CAS  Google Scholar 

  3. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

    Article  CAS  Google Scholar 

  4. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

    Article  CAS  Google Scholar 

  5. Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn 82, 102001 (2013).

    Article  CAS  Google Scholar 

  6. Xu, S.-Y. et al. Topological phase transition and texture inversion in a tunable topological insulator. Science 332, 560–564 (2011).

    Article  CAS  Google Scholar 

  7. Sato, T. et al. Unexpected mass acquisition of Dirac fermions at the quantum phase transition of a topological insulator. Nat. Phys. 7, 840–844 (2011).

    Article  CAS  Google Scholar 

  8. Xu, S.-Y. et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1–xSnxTe. Nat. Commun. 3, 1192 (2012).

    Article  CAS  Google Scholar 

  9. Brahlek, M. et al. Topological-metal to band-insulator transition in (Bi1–xInx)2Se3 thin films. Phys. Rev. Lett. 109, 186403 (2012).

    Article  CAS  Google Scholar 

  10. Zhang, J. et al. Topology-driven magnetic quantum phase transition in topological insulators. Science 339, 1582–1586 (2013).

    Article  CAS  Google Scholar 

  11. Wu, L. et al. A sudden collapse in the transport lifetime across the topological phase transition in (Bi1–xInx)2Se3. Nat. Phys. 9, 410–414 (2013).

    Article  CAS  Google Scholar 

  12. Xu, S.-Y. et al. Unconventional transformation of spin Dirac phase across a topological quantum phase transition. Nat. Commun. 6, 6870 (2015).

    Article  CAS  Google Scholar 

  13. Monceau, P. Electronic crystals: an experimental overview. Adv. Phys. 61, 325–581 (2012).

    Article  CAS  Google Scholar 

  14. Sambongi, T. et al. Superconductivity in one-dimensional TaSe3. J. Phys. Soc. Jpn 42, 1421–1422 (1977).

    Article  CAS  Google Scholar 

  15. Stolyarov, M. A. et al. Breakdown current density in h-BN-capped quasi-1D TaSe3 metallic nanowires: prospects of interconnect applications. Nanoscale 8, 15774–15782 (2016).

    Article  CAS  Google Scholar 

  16. Liu, G. et al. Low-frequency electronic noise in quasi-1D TaSe3 van der Waals nanowires. Nano Lett. 17, 377–383 (2017).

    Article  CAS  Google Scholar 

  17. Nie, S. et al. Topological phases in the TaSe3 compound. Phys. Rev. B 98, 125143 (2018).

    Article  CAS  Google Scholar 

  18. Fu, L. & Berg, E. Odd-parity topological superconductors: theory and application to CuxBi2Se3. Phys. Rev. Lett. 105, 097001 (2010).

    Article  CAS  Google Scholar 

  19. Sasaki, S. et al. Topological superconductivity in CuxBi2Se3. Phys. Rev. Lett. 107, 217001 (2011).

    Article  CAS  Google Scholar 

  20. Wang, M.-X. et al. The coexistence of superconductivity and topological order in the Bi2Se3 thin films. Science 336, 52–55 (2012).

    Article  CAS  Google Scholar 

  21. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  CAS  Google Scholar 

  22. Sakano, M. et al. Topologically protected surface states in a centrosymmetric superconductor β-PdBi2. Nat. Commun. 6, 8595 (2015).

    Article  CAS  Google Scholar 

  23. Guan, S.-Y. et al. Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe2. Sci. Adv. 2, e1600894 (2016).

    Article  CAS  Google Scholar 

  24. Zhang, P. et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 360, 182–186 (2018).

    Article  CAS  Google Scholar 

  25. Clark, O. J. et al. Fermiology and superconductivity of topological surface states in PdTe2. Phys. Rev. Lett. 120, 156401 (2018).

    Article  CAS  Google Scholar 

  26. Liu, W. et al. A new Majorana platform in an Fe-As bilayer superconductor. Nat. Commun. 11, 5688 (2020).

    Article  CAS  Google Scholar 

  27. Yuan, Y. et al. Evidence of anisotropic Majorana bound states in 2M-WS2. Nat. Phys. 15, 1046–1051 (2019).

    Article  CAS  Google Scholar 

  28. Perucchi, A. et al. Spectroscopic and dc-transport investigations of the electronic properties of TaSe3. Eur. Phys. J. B 39, 433–440 (2004).

    Article  CAS  Google Scholar 

  29. Chen, C. et al. Observation of topological electronic structure in quasi-1D superconductor TaSe3. Matter 3, 2055–2065 (2020).

    Article  Google Scholar 

  30. Flötotto, D. et al. In situ strain tuning of the Dirac surface states in Bi2Se3 films. Nano Lett. 18, 5628–5632 (2018).

    Article  CAS  Google Scholar 

  31. Kostylev, I., Yonezawa, S., Wang, Z., Ando, Y. & Maeno, Y. Uniaxial-strain control of nematic superconductivity in SrxBi2Se3. Nat. Commun. 11, 4152 (2020).

    Article  CAS  Google Scholar 

  32. Mutch, J. et al. Evidence for a strain-tuned topological phase transition in ZrTe5. Sci. Adv. 5, eaav9771 (2019).

    Article  CAS  Google Scholar 

  33. Zhang, P. et al. Observation and control of the weak topological insulator state in ZrTe5. Nat. Commun. 12, 406 (2021).

    Article  CAS  Google Scholar 

  34. Riccò, S. et al. In situ strain tuning of the metal-insulator-transition of Ca2RuO4 in angle-resolved photoemission experiments. Nat. Commun. 9, 4535 (2018).

    Article  CAS  Google Scholar 

  35. Tritt, T. M., Stillwell, E. P. & Skove, M. J. Effect of uniaxial stress on the transport properties of TaSe3. Phys. Rev. B 34, 6799 (1986).

    Article  CAS  Google Scholar 

  36. Nomura, A. et al. Emergence of a resistance anomaly by Cu-doping in TaSe3. EPL 119, 17005 (2017).

    Article  CAS  Google Scholar 

  37. Yaji, K. et al. High-resolution three-dimensional spin- and angle-resolved photoelectron spectrometer using vacuum ultraviolet laser light. Rev. Sci. Instrum. 87, 053111 (2016).

    Article  CAS  Google Scholar 

  38. Tusche, C., Krasyuk, A. & Kirschner, J. Spin resolved bandstructure imaging with a high resolution momentum microscope. Ultramicroscopy 159, 520–529 (2015).

    Article  CAS  Google Scholar 

  39. Noguchi, R. et al. Direct mapping of spin and orbital entangled wave functions under interband spin-orbit coupling of giant Rashba spin-split surface states. Phys. Rev. B 95, 041111 (2017).

    Article  Google Scholar 

  40. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  CAS  Google Scholar 

  41. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  42. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  43. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994).

    Article  CAS  Google Scholar 

  44. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  45. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  46. Tran, F. & Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009).

    Article  CAS  Google Scholar 

  47. Blaha, P. et al. WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Technische Universität Wien, 2018).

  48. Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847 (1997).

    Article  CAS  Google Scholar 

  49. Souza, I., Marzari, N. & Vanderbilt, D. Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B 65, 035109 (2001).

    Article  CAS  Google Scholar 

  50. Kuneš, J. et al. Wien2wannier: from linearized augmented plane waves to maximally localized Wannier functions. Comput. Phys. Commun. 181, 1888–1895 (2010).

    Article  CAS  Google Scholar 

  51. Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter 32, 165902 (2020).

    Article  CAS  Google Scholar 

  52. Lopez Sancho, M. P., Lopez Sancho, J. M., Sancho, J. M. L. & Rubio, J. Highly convergent schemes for the calculation of bulk and surface green functions. J. Phys. F Met. Phys. 15, 851 (1985).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Hirai and Y. Mizukami for fruitful comments on the strain measurements, and also thank S. Sakuragi and T. Yajima for the X-ray diffraction measurements. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. This work was supported by the JSPS KAKENHI (grant numbers JP18H01165, JP18K03484, JP19H02683, JP19F19030 and JP19H00651), MEXT Q-LEAP (grant number JPMXS0118068681) and by MEXT under the ‘Program for Promoting Researches on the Supercomputer Fugaku’ (Basic Science for Emergence and Functionality in Quantum Matter Innovative Strongly Correlated Electron Science by Integration of ‘Fugaku’ and Frontier Experiments; project ID hp200132).

Author information

Authors and Affiliations

Authors

Contributions

T.K. and S.T. planned the experimental project. C.L. conducted the ARPES experiments, analysed the data and performed the strain simulations. C.L. and T.K. designed the strain devices. C.L., K. Kuroda, Y.A. and T.K. conducted the strain gauge measurements. R.N., K. Kuroda, P.Z., C.B., K. Kurokawa, Y.A., K. Kawaguchi, H.T., K.Y., A.H., M.H., D.L., S.S. and T.K. supported the ARPES experiment. M.S., A.N., M.T. and S.T. prepared the single crystals. M.O. and R.A. calculated and analysed the theoretical band structure. C.L., M.O. and T.K. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Takeshi Kondo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Phil King, Hsin Lin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and Notes 1–15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Ochi, M., Noguchi, R. et al. Visualization of the strain-induced topological phase transition in a quasi-one-dimensional superconductor TaSe3. Nat. Mater. 20, 1093–1099 (2021). https://doi.org/10.1038/s41563-021-01004-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01004-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing