Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

High-performance thermoelectrics and challenges for practical devices

Abstract

Thermoelectric materials can be potentially employed in solid-state devices that harvest waste heat and convert it to electrical power, thereby improving the efficiency of fuel utilization. The spectacular increases in the efficiencies of these materials achieved over the past decade have raised expectations regarding the use of thermoelectric generators in various energy saving and energy management applications, especially at mid to high temperature (400–900 °C). However, several important issues that prevent successful thermoelectric generator commercialization remain unresolved, in good part because of the lack of a research roadmap.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The power and conversion efficiency of PbTe-based modules.
Fig. 2: The conversion efficiency and stability of skutterudite and half-Heusler-based modules.
Fig. 3: SnSe-based modules and summaries of mechanical and thermal properties of TE materials.

Similar content being viewed by others

References

  1. Wood, C. Materials for thermoelectric energy conversion. Rep. Prog. Phys. 51, 459–539 (1988).

    Article  CAS  Google Scholar 

  2. Nandihalli, N., Liu, C. J. & Mori, T. Polymer based thermoelectric nanocomposite materials and devices: fabrication and characteristics. Nano Energy 78, 105186 (2020).

    Article  CAS  Google Scholar 

  3. Petsagkourakis, I. et al. Thermoelectric materials and applications for energy harvesting power generation. Sci. Technol. Adv. Mater. 19, 836–862 (2018).

    Article  CAS  Google Scholar 

  4. Tarancon, A. Powering the IoT revolution with heat. Nat. Electron. 2, 270–271 (2019).

    Article  Google Scholar 

  5. Jaziri, N. et al. A comprehensive review of thermoelectric generators: technologies and common applications. Energy Rep. 6, 264–287 (2020).

    Article  Google Scholar 

  6. Kober, M. Holistic development of thermoelectric generators for automotive applications. J. Electron. Mater. 49, 2910–2919 (2020).

    Article  CAS  Google Scholar 

  7. Lan, S., Yang, Z. J., Stobart, R. & Chen, R. Prediction of the fuel economy potential for a skutterudite thermoelectric generator in light-duty vehicle applications. Appl. Energy 231, 68–79 (2018).

    Article  Google Scholar 

  8. Zoui, M. A., Bentouba, S., Stocholm, J. G. & Bourouis, M. A review on thermoelectric generators: progress and applications. Energies 13, 3606 (2020).

    Article  CAS  Google Scholar 

  9. He, R., Schierning, G. & Nielsch, K. Thermoelectric devices: a review of devices, architectures, and contact optimization. Adv. Mater. Technol. 3, 1700256 (2018).

    Article  CAS  Google Scholar 

  10. Tan, G. J., Ohta, M. & Kanatzidis, M. G. Thermoelectric power generation: from new materials to devices. Phil. Trans. R. Soc. A 377, 20180450 (2019).

    Article  CAS  Google Scholar 

  11. Sootsman, J. R., Chung, D. Y. & Kanatzidis, M. G. New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 48, 8616–8639 (2009).

    Article  CAS  Google Scholar 

  12. Tan, G. J., Zhao, L. D. & Kanatzidis, M. G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116, 12123–12149 (2016).

    Article  CAS  Google Scholar 

  13. Pei, Y. Z. et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011).

    Article  CAS  Google Scholar 

  14. Zhao, L. D., Dravid, V. P. & Kanatzidis, M. G. The panoscopic approach to high performance thermoelectrics. Energy Environ. Sci. 7, 251–268 (2014).

    Article  CAS  Google Scholar 

  15. Stordeur, M., Stolzer, M., Sobotta, H. & Riede, V. Investigation of the valence band structure of thermoelectric (Bi1-xSbx)2Te3 single crystals. Phys. Status Solidi b 150, 165–176 (1988).

    Article  CAS  Google Scholar 

  16. Fu, C. et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun. 6, 8144 (2015).

    Article  Google Scholar 

  17. Zou, M., Li, J.-F. & Kita, T. Thermoelectric properties of fine-grained FeVSb half-Heusler alloys tuned to p-type by substituting vanadium with titanium. J. Solid State Chem. 198, 125–130 (2013).

    Article  CAS  Google Scholar 

  18. May, A. F., Fleurial, J. P. & Snyder, G. J. Thermoelectric performance of lanthanum telluride produced via mechanical alloying. Phys. Rev. B 78, 125205 (2008).

    Article  CAS  Google Scholar 

  19. Toberer, E. S. et al. Traversing the metal-insulator transition in a Zintl phase: rational enhancement of thermoelectric efficiency in Yb14Mn1-xAlxSb11. Adv. Funct. Mater. 18, 2795–2800 (2008).

    Article  CAS  Google Scholar 

  20. LaLonde, A. D., Pei, Y., Wang, H. & Jeffrey Snyder, G. Lead telluride alloy thermoelectrics. Mater. Today 14, 526–532 (2011).

    Article  CAS  Google Scholar 

  21. Rowe, D. M. Thermoelectrics Handbook: Macro to Nano (CRC, 2005).

  22. Hu, X. K. et al. Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules. Energy Environ. Sci. 9, 517–529 (2016).

    Article  CAS  Google Scholar 

  23. Jood, P., Ohta, M., Yamamoto, A. & Kanatzidis, M. G. Excessively doped PbTe with Ge-induced nanostructures enables high-efficiency thermoelectric modules. Joule 2, 1339–1355 (2018).

    Article  CAS  Google Scholar 

  24. Hazan, E., Ben-Yehuda, O., Madar, N. & Gelbstein, Y. Functional graded germanium–lead chalcogenide-based thermoelectric module for renewable energy applications. Adv. Energy Mater. 5, 1500272 (2015).

    Article  CAS  Google Scholar 

  25. Green, M. A. Rare materials for photovoltaics: recent tellurium price fluctuations and availability from copper refining. Sol. Energy Mater. Sol. Cells 119, 256–260 (2013).

    Article  CAS  Google Scholar 

  26. Luo, Z. Z. et al. Soft phonon modes from off-center Ge atoms lead to ultralow thermal conductivity and superior thermoelectric performance in n-type PbSe–GeSe. Energy Environ. Sci. 11, 3220–3230 (2018).

    Article  CAS  Google Scholar 

  27. Luo, Z. Z. et al. Strong valence band convergence to enhance thermoelectric performance in PbSe with two chemically independent controls. Angew. Chem. Int. Ed. 60, 268–273 (2021).

    Article  CAS  Google Scholar 

  28. Lee, Y. et al. Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide. Nat. Commun. 5, 3640 (2014).

    Article  CAS  Google Scholar 

  29. Hodges, J. M. et al. Chemical insights into PbSe–x%HgSe: high power factor and improved thermoelectric performance by alloying with discordant atoms. J. Am. Chem. Soc. 140, 18115–18123 (2018).

    Article  CAS  Google Scholar 

  30. Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).

    Article  CAS  Google Scholar 

  31. Zihang, L. et al. Demonstration of ultrahigh thermoelectric efficiency of 7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting. Joule 5, 1196–1208 (2021).

    Article  CAS  Google Scholar 

  32. Ying, P. J. et al. Towards tellurium-free thermoelectric modules for power generation from low-grade heat. Nat. Commun. 12, 1121 (2021).

    Article  CAS  Google Scholar 

  33. Gelbstein, Y., Gotesman, G., Lishzinker, Y., Dashevsky, Z. & Dariel, M. P. Mechanical properties of PbTe-based thermoelectric semiconductors. Scr. Mater. 58, 251–254 (2008).

    Article  CAS  Google Scholar 

  34. Ni, J. E. et al. Room temperature Young’s modulus, shear modulus, Poisson’s ratio and hardness of PbTe–PbS thermoelectric materials. J. Mater. Sci. Eng. B 170, 58–66 (2010).

    Article  CAS  Google Scholar 

  35. Sadia, Y., Ben-Ayoun, D. & Gelbstein, Y. Evaporation–condensation effects on the thermoelectric performance of PbTe-based couples. Phys. Chem. Chem. Phys. 19, 19326–19333 (2017).

    Article  CAS  Google Scholar 

  36. Luo, Z. Z. et al. High figure of merit in gallium-doped nanostructured n-type PbTe–xGeTe with midgap states. J. Am. Chem. Soc. 141, 16169–16177 (2019).

    Article  CAS  Google Scholar 

  37. Zhou, Z. X. et al. Uniform dispersion of SiC in Yb-filled skutterudite nanocomposites with high thermoelectric and mechanical performance. Scr. Mater. 162, 166–171 (2019).

    Article  CAS  Google Scholar 

  38. Li, W. J. et al. Enhanced thermoelectric performance of Yb-single-filled skutterudite by ultralow thermal conductivity. Chem. Mater. 31, 862–872 (2019).

    Article  CAS  Google Scholar 

  39. Zong, P. A. et al. Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy Environ. Sci. 10, 183–191 (2017).

    Article  CAS  Google Scholar 

  40. Nie, G. et al. High performance thermoelectric module through isotype bulk heterojunction engineering of skutterudite materials. Nano Energy 66, 104193 (2019).

    Article  CAS  Google Scholar 

  41. Zhang, Q. H. et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy Environ. Sci. 10, 956–963 (2017).

    Article  CAS  Google Scholar 

  42. Skomedal, G., Kristiansen, N. R., Sottong, R. & Middleton, H. Evaluation of thermoelectric performance and durability of functionalized skutterudite legs. J. Electron. Mater. 46, 2438–2450 (2017).

    Article  CAS  Google Scholar 

  43. Chu, J. et al. Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices. Nat. Commun. 11, 2723 (2020).

    Article  CAS  Google Scholar 

  44. Daniel, M. V., Friedemann, M., Franke, J. & Albrecht, M. Thermal stability of thermoelectric CoSb3 skutterudite thin films. Thin Solid Films 589, 203–208 (2015).

    Article  CAS  Google Scholar 

  45. Li, W. J. et al. High-efficiency skutterudite modules at a low temperature gradient. Energies 12, 4292 (2019).

    Article  CAS  Google Scholar 

  46. Fu, C. G., Zhu, T. J., Liu, Y. T., Xie, H. H. & Zhao, X. B. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT > 1. Energy Environ. Sci. 8, 216–220 (2015).

    Article  CAS  Google Scholar 

  47. Zhu, H. T. et al. Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency. Nat. Commun. 9, 2497 (2018).

    Article  CAS  Google Scholar 

  48. Zhu, H. T. et al. Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance. Nat. Commun. 10, 270 (2019).

    Article  CAS  Google Scholar 

  49. Xing, Y. F. et al. High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization. Energy Environ. Sci. 12, 3390–3399 (2019).

    Article  CAS  Google Scholar 

  50. Yu, J. J. et al. Half-Heusler thermoelectric module with high conversion efficiency and high power density. Adv. Energy Mater. 10, 2000888 (2020).

    Article  CAS  Google Scholar 

  51. Kang, H. B. et al. Decoupled phononic–electronic transport in multi-phase n-type half-Heusler nanocomposites enabling efficient high temperature power generation. Mater. Today 36, 63–72 (2020).

    Article  CAS  Google Scholar 

  52. Bartholome, K. et al. Thermoelectric modules based on half-Heusler materials produced in large quantities. J. Electron. Mater. 43, 1775–1781 (2014).

    Article  CAS  Google Scholar 

  53. Sakamoto, T. et al. Thermoelectric behavior of Sb- and Al-doped n-type Mg2Si device under large temperature differences. J. Electron. Mater. 40, 629–634 (2011).

    Article  CAS  Google Scholar 

  54. Gao, P., Davis, J. D., Poltavets, V. V. & Hogan, T. P. The p-type Mg2LixSi0.4Sn0.6 thermoelectric materials synthesized by a B2O3 encapsulation method using Li2CO3 as the doping agent. J. Mater. Chem. C 4, 929–934 (2016).

    Article  CAS  Google Scholar 

  55. Bux, S. K. et al. Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide. J. Mater. Chem. 21, 12259–12266 (2011).

    Article  CAS  Google Scholar 

  56. Kato, D., Iwasaki, K., Yoshino, M., Yamada, T. & Nagasaki, T. Control of Mg content and carrier concentration via post annealing under different Mg partial pressures for Sb-doped Mg2Si thermoelectric material. J. Solid State Chem. 258, 93–98 (2018).

    Article  CAS  Google Scholar 

  57. Inoue, H., Yoneda, S., Kato, M., Ohsugi, I. J. & Kobayashi, T. Examination of oxidation resistance of Mg2Si thermoelectric modules at practical operating temperature. J. Alloys Compd. 735, 828–832 (2018).

    Article  CAS  Google Scholar 

  58. de Boor, J. et al. Fabrication and characterization of nickel contacts for magnesium silicide based thermoelectric generators. J. Alloys Compd. 632, 348–353 (2015).

    Article  CAS  Google Scholar 

  59. Thimont, Y., Lognoné, Q., Goupil, C., Gascoin, F. & Guilmeau, E. Design of apparatus for Ni/Mg2Si and Ni/MnSi1.75 contact resistance determination for thermoelectric legs. J. Electron. Mater. 43, 2023–2028 (2014).

    Article  CAS  Google Scholar 

  60. Park, S. H., Kim, Y. & Yoo, C.-Y. Oxidation suppression characteristics of the YSZ coating on Mg2Si thermoelectric legs. Ceram. Int. 42, 10279–10288 (2016).

    Article  CAS  Google Scholar 

  61. Zhu, Q., Song, S., Zhu, H. & Ren, Z. Realizing high conversion efficiency of Mg3Sb2-based thermoelectric materials. J. Power Sources 414, 393–400 (2019).

    Article  CAS  Google Scholar 

  62. Zhao, L.-D. et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014).

    Article  CAS  Google Scholar 

  63. Zhao, L.-D. et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 351, 141–144 (2016).

    Article  CAS  Google Scholar 

  64. Chang, C. et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 360, 778–783 (2018).

    Article  CAS  Google Scholar 

  65. Lee, Y. K., Luo, Z., Cho, S. P., Kanatzidis, M. G. & Chung, I. Surface oxide removal for polycrystalline SnSe reveals near-single-crystal thermoelectric performance. Joule 3, 719–731 (2019).

    Article  CAS  Google Scholar 

  66. Li, J. et al. Substantial enhancement of mechanical properties for SnSe based composites with potassium titanate whiskers. J. Mater. Sci. Mater. Electron. 30, 8502–8507 (2019).

    Article  CAS  Google Scholar 

  67. Burton, M. R. et al. 3D printed SnSe thermoelectric generators with high figure of merit. Adv. Energy Mater. 9, 1900201 (2019).

    Article  CAS  Google Scholar 

  68. Qin B. et al. Momentum and energy multiband alignment enable power generation and thermoelectric cooling. Science 373, 556–561 (2021).

  69. Park, S. H., Jin, Y., Ahn, K., Chung, I. & Yoo, C.-Y. Ag/Ni metallization bilayer: a functional layer for highly efficient polycrystalline SnSe thermoelectric modules. J. Electron. Mater. 46, 848–855 (2017).

    Article  CAS  Google Scholar 

  70. Kim, Y., Yoon, G., Cho, B. J. & Park, S. H. Multi-layer metallization structure development for highly efficient polycrystalline SnSe thermoelectric devices. Appl. Sci. 7, 1116 (2017).

    Article  CAS  Google Scholar 

  71. Liu, H. et al. Copper ion liquid-like thermoelectrics. Nat. Mater. 11, 422–425 (2012).

    Article  CAS  Google Scholar 

  72. He, Y. et al. High thermoelectric performance in non-toxic Earth-abundant copper sulfide. Adv. Mater. 26, 3974–3978 (2014).

    Article  CAS  Google Scholar 

  73. Stapfer, G. & Truscello, V. C. Development of the data base for a degradation model of a selenide RTG. In Proc. 12th Intersociety Energy Conversion Engineering Conference 1271–1278 (American Nuclear Society, 1997).

  74. Olvera, A. A. et al. Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se. Energy Environ. Sci. 10, 1668–1676 (2017).

    Article  CAS  Google Scholar 

  75. Tang, H. et al. Graphene network in copper sulfide leading to enhanced thermoelectric properties and thermal stability. Nano Energy 49, 267–273 (2018).

    Article  CAS  Google Scholar 

  76. Yang, D. et al. Blocking ion migration stabilizes the high thermoelectric performance in Cu2Se composites. Adv. Mater. 32, 2003730 (2020).

    Article  CAS  Google Scholar 

  77. Brown, S. R., Kauzlarich, S. M., Gascoin, F. & Snyder, G. J. Yb14MnSb11: new high efficiency thermoelectric material for power generation. Chem. Mater. 18, 1873–1877 (2006).

    Article  CAS  Google Scholar 

  78. Cerretti, G., Villalpando, O., Fleurial, J. P. & Bux, S. K. Improving electronic properties and mechanical stability of Yb14MnSb11 via W compositing. J. Appl. Phys. 126, 175102 (2019).

    Article  CAS  Google Scholar 

  79. Vasilyeva, I. G., Nikolaev, R. E., Abdusaljamova, M. N. & Kauzlarich, S. M. Thermochemistry study and improved thermal stability of Yb14MnSb alloyed by Ln3+ (La–Lu). J. Mater. Chem. C 4, 3342–3348 (2016).

    Article  CAS  Google Scholar 

  80. Black, D. et al. Power generation from nanostructured half-Heusler thermoelectrics for efficient and robust energy harvesting. ACS Appl. Energy Mater. 1, 5986–5992 (2018).

    Article  CAS  Google Scholar 

  81. Macdonald, R. A. & Macdonald, W. M. Thermodynamic properties of fcc metals at high temperatures. Phys. Rev. B 24, 1715–1724 (1981).

    Article  CAS  Google Scholar 

  82. Moruzzi, V. L., Janak, J. F. & Schwarz, K. Calculated thermal properties of metals. Phys. Rev. B 37, 790–799 (1988).

    Article  CAS  Google Scholar 

  83. Scudder, M. R. et al. Highly efficient transverse thermoelectric devices with Re4Si7 crystals. Energy Environ. Sci. 14, 4009–4017 (2021).

    Article  CAS  Google Scholar 

  84. Xie, K. & Gupta, M. C. High-temperature thermoelectric energy conversion devices using Si–Ge thick films prepared by laser sintering of nano/micro particles. IEEE Trans. Electron Devices 67, 2113–2119 (2020).

    Article  CAS  Google Scholar 

  85. Liu, L. C., Cao, Z. P., Chen, M. & Jiang, J. Microstructure and thermoelectric properties of (Bi0.48Sb1.52)Te3 thick films prepared with tape casting method. Electronics 10, 140 (2021).

    Article  CAS  Google Scholar 

  86. Dong, Z. Y. et al. Facile fabrication of paper-based flexible thermoelectric generator. npj Flex. Electron. 5, 459 (2021).

    Article  CAS  Google Scholar 

  87. Hikage, Y. et al. Thermal expansion properties of thermoelectric generating device component. In 2007 26th International Conference on Thermoelectrics 331–335 (IEEE, 2007).

  88. Ferreres, X. R., Aminorroaya Yamini, S., Nancarrow, M. & Zhang, C. One-step bonding of Ni electrode to n-type PbTe—a step towards fabrication of thermoelectric generators. Mater. Des. 107, 90–97 (2016).

    Article  CAS  Google Scholar 

  89. Li, G. et al. Micro- and macromechanical properties of thermoelectric lead chalcogenides. ACS Appl. Mater. Interfaces 9, 40488–40496 (2017).

    Article  CAS  Google Scholar 

  90. Tan, G. et al. All-scale hierarchically structured p-type PbSe alloys with high thermoelectric performance enabled by improved band degeneracy. J. Am. Chem. Soc. 141, 4480–4486 (2019).

    Article  CAS  Google Scholar 

  91. Springholz, G. & Bauer, G. Substrate materials. In Growth and Structuring 437–438 (Springer, 2013).

  92. Wu, C.-F., Wang, H., Yan, Q., Wei, T.-R. & Li, J.-F. Doping of thermoelectric PbSe with chemically inert secondary phase nanoparticles. J. Mater. Chem. C 5, 10881–10887 (2017).

    Article  CAS  Google Scholar 

  93. Shi, X. et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133, 7837–7846 (2011).

    Article  CAS  Google Scholar 

  94. Rogl, G. et al. New bulk p-type skutterudites DD0.7Fe2.7Co1.3Sb12-xXx (X = Ge, Sn) reaching ZT > 1.3. Acta Mater. 91, 227–238 (2015).

    Article  CAS  Google Scholar 

  95. Ravi, V. et al. Thermal expansion studies of selected high-temperature thermoelectric materials. J. Electron. Mater. 38, 1433–1442 (2009).

    Article  CAS  Google Scholar 

  96. Guo, J. Q. et al. Development of skutterudite thermoelectric materials and modules. J. Electron. Mater. 41, 1036–1042 (2012).

    Article  CAS  Google Scholar 

  97. Rogl, G. et al. Thermal expansion of skutterudites. J. Appl. Phys. 107, 043507 (2010).

    Article  CAS  Google Scholar 

  98. Dahal, T. et al. Thermoelectric and mechanical properties on misch metal filled p-type skutterudites Mm0.9Fe4-xCoxSb12. J. Appl. Phys. 117, 055101 (2015).

    Article  CAS  Google Scholar 

  99. Liu, Z. et al. Mechanical properties of nanostructured thermoelectric materials α-MgAgSb. Scr. Mater. 127, 72–75 (2017).

    Article  CAS  Google Scholar 

  100. Hanninger, G., Ipser, H., Terzieff, P. L. & Komarek, K. The Co–Sb phase diagram and some properties of NiAs-type Co1 ± xSb. J. Less-Common Met. 166, 103–114 (1990).

    Article  CAS  Google Scholar 

  101. Fu, C. et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun. 6, 8144 (2015).

    Article  Google Scholar 

  102. Rogl, G. et al. Mechanical properties of half-Heusler alloys. Acta Mater. 107, 178–195 (2016).

    Article  CAS  Google Scholar 

  103. Mao, J. et al. Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials. Proc. Natl Acad. Sci. USA 114, 10548 (2017).

    Article  CAS  Google Scholar 

  104. Liu, Z. et al. Understanding and manipulating the intrinsic point defect in α-MgAgSb for higher thermoelectric performance. J. Mater. Chem. A 4, 16834–16840 (2016).

    Article  CAS  Google Scholar 

  105. Agne, M. T. et al. Heat capacity of Mg3Sb2, Mg3Bi2, and their alloys at high temperature. Mater. Today Phys. 6, 83–88 (2018).

    Article  Google Scholar 

  106. Li, J. et al. Point defect engineering and machinability in n-type Mg3Sb2-based materials. Mater. Today Phys. 15, 100269 (2020).

    Article  Google Scholar 

  107. Martinez-Ripoll, M., Haase, A. & Brauer, G. The crystal structure of α-Mg3Sb2. Acta Crystallogr. B 30, 2006–2009 (1974).

    Article  Google Scholar 

  108. Wiedemeier, H. & Csillag, F. J. The thermal expansion and high temperature transformation of SnS and SnSe. Z. Kristallogr. Cryst. Mater. 149, 17 (1979).

    CAS  Google Scholar 

  109. Liu, G., Zhou, J. & Wang, H. Anisotropic thermal expansion of SnSe from first-principles calculations based on Grüneisen’s theory. Phys. Chem. Chem. Phys. 19, 15187–15193 (2017).

    Article  CAS  Google Scholar 

  110. Tyagi, K. et al. Crystal structure and mechanical properties of spark plasma sintered Cu2Se: an efficient photovoltaic and thermoelectric material. Solid State Commun. 207, 21–25 (2015).

    Article  CAS  Google Scholar 

  111. Ding, Y. F. et al. High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator. Nat. Commun. 10, 841 (2019).

    Article  CAS  Google Scholar 

  112. Rauscher, J. F. et al. Synthesis, structure, magnetism, and high temperature thermoelectric properties of Ge doped Yb14MnSb11. Dalton Trans. 39, 1055–1062 (2010).

    Article  CAS  Google Scholar 

  113. Zhao, L.-D. et al. Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J. Alloys Compd. 455, 259–264 (2008).

    Article  CAS  Google Scholar 

  114. Zheng, Y. et al. Mechanically robust BiSbTe alloys with superior thermoelectric performance: a case study of stable hierarchical nanostructured thermoelectric materials. Adv. Energy Mater. 5, 1401391 (2015).

    Article  CAS  Google Scholar 

  115. Kim, S. I. et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348, 109–114 (2015).

    Article  CAS  Google Scholar 

  116. Zhu, B. et al. Realizing record high performance in n-type Bi2Te3-based thermoelectric materials. Energy Environ. Sci. 13, 2106–2114 (2020).

    Article  CAS  Google Scholar 

  117. Fu, L. et al. Large enhancement of thermoelectric properties in n-type PbTe via dual-site point defects. Energy Environ. Sci. 10, 2030–2040 (2017).

    Article  CAS  Google Scholar 

  118. Tan, G. et al. Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe. Nat. Commun. 7, 12167 (2016).

    Article  CAS  Google Scholar 

  119. Zhao, H. et al. High thermoelectric performance of MgAgSb-based materials. Nano Energy 7, 97–103 (2014).

    Article  CAS  Google Scholar 

  120. Liu, Y. et al. Demonstration of a phonon-glass electron-crystal strategy in (Hf,Zr)NiSn half-Heusler thermoelectric materials by alloying. J. Mater. Chem. A 3, 22716–22722 (2015).

    Article  CAS  Google Scholar 

  121. Wang, B. L., Guo, Y. B. & Zhang, C. W. Cracking and thermal shock resistance of a Bi2Te3 based thermoelectric material. Eng. Fract. Mech. 152, 1–9 (2016).

    Article  CAS  Google Scholar 

  122. Pavlova, L. M., Shtern, Y. I. & Mironov, R. E. Thermal expansion of bismuth telluride. High Temp. 49, 369–379 (2011).

    Article  CAS  Google Scholar 

  123. Kirkham, M. J. et al. Ab initio determination of crystal structures of the thermoelectric material MgAgSb. Phys. Rev. B 85, 144120 (2012).

    Article  CAS  Google Scholar 

  124. Wang, J.-F. et al. Structural, elastic, electronic, and thermodynamic properties of MgAgSb investigated by density functional theory. Chin. Phys. B 25, 086302 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

TE materials research at NTU is supported by Singapore MOE AcRF Tier 2 under grant nos. 2018-T2-1-010, Singapore A*STAR Pharos Program SERC 1527200022 and Singapore A*STAR project A19D9a0096. Basic TE materials research at Northwestern University is supported by the US Department of Energy, Office of Science and Office of Basic Energy Sciences, under award no. DE-SC0014520.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with contributions from both authors. Both authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Mercouri G. Kanatzidis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Joseph P. Heremans, Takao Mori and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Q., Kanatzidis, M.G. High-performance thermoelectrics and challenges for practical devices. Nat. Mater. 21, 503–513 (2022). https://doi.org/10.1038/s41563-021-01109-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01109-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing