Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes

Abstract

The thermal quenching of light emission is a critical bottleneck that hampers the real-world application of lead halide perovskite nanocrystals in both electroluminescent and down-conversion light-emitting diodes. Here, we report CsPbBr3 perovskite nanocrystals with a temperature-independent emission efficiency of near unity and constant decay kinetics up to a temperature of 373 K. This unprecedented regime is obtained by a fluoride post-synthesis treatment that produces fluorine-rich surfaces with a wider energy gap than the inner nanocrystal core, yielding suppressed carrier trapping, improved thermal stability and efficient charge injection. Light-emitting diodes incorporating these fluoride-treated perovskite nanocrystals show a low turn-on voltage and spectrally pure green electroluminescence with an external quantum efficiency as high as 19.3% at 350 cd m−2. Importantly, nearly 80% of the room-temperature external quantum efficiency is preserved at 343 K, in contrast to the dramatic drop commonly observed for standard CsPbBr3 perovskite nanocrystal light-emitting diodes. These results provide a promising pathway for high-performance, practical light-emitting diodes based on perovskite nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of lead halide perovskite LED performance.
Fig. 2: Optical properties and electronic structure of fluoride-treated CsPbBr3 PNCs.
Fig. 3: Suppression of emission thermal quenching.
Fig. 4: Structural characterization.
Fig. 5: Thermally stable LEDs based on CsPbBr3:F nanocrystals.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Shamsi, J., Urban, A. S., Imran, M., De Trizio, L. & Manna, L. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119, 3296–3348 (2019).

    Article  Google Scholar 

  2. Akkerman, Q. A. et al. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat. Energy 2, 16194 (2016).

    Article  ADS  Google Scholar 

  3. Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

    Article  ADS  Google Scholar 

  4. Meinardi, F. et al. Doped halide perovskite nanocrystals for reabsorption-free luminescent solar concentrators. ACS Energy Lett. 2, 2368–2377 (2017).

    Article  Google Scholar 

  5. Gandini, M. et al. Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators. Nat. Nanotechnol. 15, 462–468 (2020).

    Article  ADS  Google Scholar 

  6. Song, J. et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 27, 7162–7167 (2015).

    Article  Google Scholar 

  7. Pan, J. et al. Highly efficient perovskite‐quantum‐dot light‐emitting diodes by surface engineering. Adv. Mater. 28, 8718–8725 (2016).

    Article  Google Scholar 

  8. Chiba, T. et al. High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment. ACS Appl. Mater. Interfaces 9, 18054–18060 (2017).

    Article  Google Scholar 

  9. Li, J. et al. 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 29, 1603885 (2017).

    Article  Google Scholar 

  10. Song, J. et al. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Adv. Mater. 30, 1800764 (2018).

    Article  Google Scholar 

  11. Song, J. et al. Organic–inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Adv. Mater. 30, 1805409 (2018).

    Article  Google Scholar 

  12. Yan, F. et al. Highly efficient visible colloidal lead-halide perovskite nanocrystal light-emitting diodes. Nano Lett. 18, 3157–3164 (2018).

    Article  ADS  Google Scholar 

  13. Chen, H. et al. Sodium ion modifying in situ fabricated CsPbBr3 nanoparticles for efficient perovskite light emitting diodes. Adv. Opt. Mater. 7, 1900747 (2019).

    Article  Google Scholar 

  14. Dong, Y. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020).

    Article  ADS  Google Scholar 

  15. Xing, J. et al. High-Efficiency Light-Emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano 10, 6623–6630 (2016).

    Article  Google Scholar 

  16. Han, D. et al. Efficient light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process. ACS Nano 12, 8808–8816 (2018).

    Article  Google Scholar 

  17. Chen, H. et al. High-efficiency formamidinium lead bromide perovskite nanocrystal-based light-emitting diodes fabricated via a surface defect self-passivation strategy. Adv. Opt. Mater. 8, 1901390 (2020).

    Article  Google Scholar 

  18. Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 12, 681–687 (2018).

    Article  ADS  Google Scholar 

  19. Lee, S. et al. Growth of nanosized single crystals for efficient perovskite light-emitting diodes. ACS Nano 12, 3417–3423 (2018).

    Article  Google Scholar 

  20. Ban, M. et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat. Commun. 9, 3892 (2018).

    Article  ADS  Google Scholar 

  21. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article  ADS  Google Scholar 

  22. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article  ADS  Google Scholar 

  23. Zhao, B. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photonics 12, 783–789 (2018).

    Article  ADS  Google Scholar 

  24. Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 13, 418–424 (2019).

    Article  ADS  Google Scholar 

  25. Lee, H., Ko, D. & Lee, C. Direct evidence of ion-migration-induced degradation of ultrabright perovskite light-emitting diodes. ACS Appl. Mater. Interfaces 11, 11667–11673 (2019).

    Article  Google Scholar 

  26. Palazon, F. et al. Evolution of CsPbBr3 nanocrystals upon post-synthesis annealing under an inert atmosphere. J. Mater. Chem. C 4, 9179–9182 (2016).

    Article  Google Scholar 

  27. Conings, B. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015).

    Article  Google Scholar 

  28. Bachmann, V., Ronda, C. & Meijerink, A. Temperature quenching of yellow Ce3+ luminescence in YAG:Ce. Chem. Mater. 21, 2077–2084 (2009).

    Article  Google Scholar 

  29. Ahn, B.-L., Jang, C.-Y., Leigh, S.-B., Yoo, S. & Jeong, H. Effect of LED lighting on the cooling and heating loads in office buildings. Appl. Energy 113, 1484–1489 (2014).

    Article  Google Scholar 

  30. Wei, Y., Cheng, Z. & Lin, J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 48, 310–350 (2019).

    Article  Google Scholar 

  31. Zhang, F. et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9, 4533–4542 (2015).

    Article  Google Scholar 

  32. Li, X. et al. CsPbX3 quantum dots for lighting and displays: room‐temperature synthesis, photoluminescence superiorities, underlying origins and white light‐emitting diodes. Adv. Funct. Mater. 26, 2435–2445 (2016).

    Article  ADS  Google Scholar 

  33. Wei, S. et al. Room-temperature and gram-scale synthesis of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with 50–85% photoluminescence quantum yields. Chem. Commun. 52, 7265–7268 (2016).

    Article  Google Scholar 

  34. Diroll, B. T., Nedelcu, G., Kovalenko, M. V. & Schaller, R. D. High‐temperature photoluminescence of CsPbX3 (X = Cl, Br, I) nanocrystals. Adv. Funct. Mater. 27, 1606750 (2017).

    Article  Google Scholar 

  35. Zhang, Q. et al. Bifunctional passivation strategy to achieve stable CsPbBr3 nanocrystals with drastically reduced thermal-quenching. J. Phys. Chem. Lett. 11, 993–999 (2020).

    Article  Google Scholar 

  36. Shi, Z. et al. Strategy of solution-processed all-inorganic heterostructure for humidity/temperature-stable perovskite quantum dot light-emitting diodes. ACS Nano 12, 1462–1472 (2018).

    Article  Google Scholar 

  37. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  38. Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10, 699–704 (2016).

    Article  ADS  Google Scholar 

  39. Shi, H. & Du, M.-H. Shallow halogen vacancies in halide optoelectronic materials. Phys. Rev. B 90, 174103 (2014).

    Article  ADS  Google Scholar 

  40. Sebastian, M. et al. Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbBr3 and CsPbCl3. Phys. Rev. B 92, 235210 (2015).

    Article  ADS  Google Scholar 

  41. Righetto, M. et al. Hot carriers perspective on the nature of traps in perovskites. Nat. Commun. 11, 2712 (2020).

    Article  ADS  Google Scholar 

  42. Li, N. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019).

    Article  ADS  Google Scholar 

  43. Castelli, I. E., García-Lastra, J. M., Thygesen, K. S. & Jacobsen, K. W. Bandgap calculations and trends of organometal halide perovskites. APL Mater. 2, 081514 (2014).

    Article  ADS  Google Scholar 

  44. Li, C. et al. Halide-substituted electronic properties of organometal halide perovskite films: direct and inverse photoemission studies. ACS Appl. Mater. Interfaces 8, 11526–11531 (2016).

    Article  ADS  Google Scholar 

  45. Chen, Q. et al. Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10, 355–396 (2015).

    Article  Google Scholar 

  46. Woo, J. Y. et al. Highly stable cesium lead halide perovskite nanocrystals through in situ lead halide inorganic passivation. Chem. Mater. 29, 7088–7092 (2017).

    Article  Google Scholar 

  47. Empedocles, S. A. & Bawendi, M. G. Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots. Science 278, 2114–2117 (1997).

    Article  ADS  Google Scholar 

  48. Di Stasio, F. et al. High-efficiency light-emitting diodes based on formamidinium lead bromide nanocrystals and solution processed transport layers. Chem. Mater. 30, 6231–6235 (2018).

    Article  Google Scholar 

  49. Tan, Y. et al. Highly luminescent and stable perovskite nanocrystals with octylphosphonic acid as a ligand for efficient light-emitting diodes. ACS Appl. Mater. Interfaces 10, 3784–3792 (2018).

    Article  Google Scholar 

  50. Yang, F. et al. Efficient and spectrally stable blue perovskite light-emitting diodes based on potassium passivated nanocrystals. Adv. Funct. Mater. 30, 1908760 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program (no. 2017YFE0127100), Guangdong Province’s 2018–2019 Key R&D Program (2019B010924001), the National Natural Science Foundation of China (NSFC 21773155), the Shanghai Sailing Program (19YF1422200), the Shanghai Jiao Tong University Scientific and Technological Innovation Funds, and the Engineering Research Center for Nanophotonics & Advanced Instrument, the Ministry of Education, East China Normal University (no. 202001). Financial support from the Italian Ministry of University and Research (MIUR) through grant Dipartimenti di Eccellenza - 2017 ‘Materials For Energy’. We thank the Instrumental Analysis Center of Shanghai Jiao Tong University and the workers (J. Ding, X. Ding, N. Zhang, X. Guo and Y. Han) for their help with XPS, TOF-SIMS and TEM analyses. We also thank H. Song from the School of Chemistry of Sun Yat-sen University for help with the aberration-corrected STEM measurements.

Author information

Authors and Affiliations

Authors

Contributions

L.L. conceived this study. M.L. synthesized and characterized the nanocrystals and performed the thermal quenching experiments. Q.W. fabricated and tested the LEDs. H.W. and X.S. performed the DFT calculations. F.C. performed the optical characterization under the supervision of S.B., M.L. and W.Z. with the assistance of Qinggang Zhang; L.K., Qi Zhang and C.Z. performed the structural characterization. L.L. and S.B. analysed the data. S.B. wrote the paper in consultation with all authors. M.L, Q.W. and H.W. contributed equally to this work.

Corresponding authors

Correspondence to Sergio Brovelli or Liang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Yangchuan Xing and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4 and Figs. 1–19.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Wan, Q., Wang, H. et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nat. Photonics 15, 379–385 (2021). https://doi.org/10.1038/s41566-021-00766-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00766-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing