Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolving cancer–niche interactions and therapeutic targets during bone metastasis

Abstract

Many cancer types metastasize to bone. This propensity may be a product of genetic traits of the primary tumour in some cancers. Upon arrival, cancer cells establish interactions with various bone-resident cells during the process of colonization. These interactions, to a large degree, dictate cancer cell fates at multiple steps of the metastatic cascade, from single cells to overt metastases. The bone microenvironment may even influence cancer cells to subsequently spread to multiple other organs. Therefore, it is imperative to spatiotemporally delineate the evolving cancer–bone crosstalk during bone colonization. In this Review, we provide a summary of the bone microenvironment and its impact on bone metastasis. On the basis of the microscopic anatomy, we tentatively define a roadmap of the journey of cancer cells through bone relative to various microenvironment components, including the potential of bone to function as a launch pad for secondary metastasis. Finally, we examine common and distinct features of bone metastasis from various cancer types. Our goal is to stimulate future studies leading to the development of a broader scope of potent therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The journey of DTCs towards bone metastasis and beyond.
Fig. 2: The possible relationship between different microenvironment niches during early-stage bone metastasis.
Fig. 3: The relationship between primary tumour and the vicious cycle of late-stage bone metastasis in various cancer types.
Fig. 4: Emerging therapeutic targets in bone metastasis.

Similar content being viewed by others

References

  1. Clarke, B. Normal bone anatomy and physiology. Clin. J. Am. Soc. Nephrol. 3 (Suppl. 3), S131–S139 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G. & Morrison, S. J. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15, 154–168 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kunisaki, Y. et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502, 637–643 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kusumbe, A. P. et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532, 380–384 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mendez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Brazill, J. M., Beeve, A. T., Craft, C. S., Ivanusic, J. J. & Scheller, E. L. Nerves in bone: evolving concepts in pain and anabolism. J. Bone Min. Res. 34, 1393–1406 (2019).

    Google Scholar 

  8. McAllister, S. S. & Weinberg, R. A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat. Cell Biol. 16, 717–727 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zeng, Z. et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat. Commun. 9, 5395 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, Y. et al. Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell 30, 243–256 (2016).

    PubMed  Google Scholar 

  12. Tyagi, A. et al. Nicotine promotes breast cancer metastasis by stimulating N2 neutrophils and generating pre-metastatic niche in lung. Nat. Commun. 12, 474 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Catena, R. et al. Bone marrow-derived Gr1+ cells can generate a metastasis-resistant microenvironment via induced secretion of thrombospondin-1. Cancer Discov. 3, 578–589 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Granot, Z. et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20, 300–314 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Meyer, M. A. et al. Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance. Nat. Commun. 9, 1250 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. Cheng, P. et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J. Exp. Med. 205, 2235–2249 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sinha, P. et al. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J. Immunol. 181, 4666–4675 (2008).

    CAS  PubMed  Google Scholar 

  18. Fleming, V. et al. Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front. Immunol. 9, 398 (2018).

    PubMed  PubMed Central  Google Scholar 

  19. Markowitz, J., Wesolowski, R., Papenfuss, T., Brooks, T. R. & Carson, W. E. III Myeloid-derived suppressor cells in breast cancer. Breast Cancer Res. Treat. 140, 13–21 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Welte, T. et al. Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nat. Cell Biol. 18, 632–644 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, I. S. et al. Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nat. Cell Biol. 21, 1113–1126 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 133, 571–573 (1889).

    Google Scholar 

  23. Kennecke, H. et al. Metastatic behavior of breast cancer subtypes. J. Clin. Oncol. 28, 3271–3277 (2010).

    PubMed  Google Scholar 

  24. Smid, M. et al. Subtypes of breast cancer show preferential site of relapse. Cancer Res. 68, 3108–3114 (2008).

    CAS  PubMed  Google Scholar 

  25. Zhang, X. H., Giuliano, M., Trivedi, M. V., Schiff, R. & Osborne, C. K. Metastasis dormancy in estrogen receptor-positive breast cancer. Clin. Cancer Res. 19, 6389–6397 (2013).

    CAS  PubMed  Google Scholar 

  26. Zhang, X. H. et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16, 67–78 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Vanharanta, S. & Massague, J. Origins of metastatic traits. Cancer Cell 24, 410–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, X. H. et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 154, 1060–1073 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Awolaran, O., Brooks, S. A. & Lavender, V. Breast cancer osteomimicry and its role in bone specific metastasis; an integrative, systematic review of preclinical evidence. Breast 30, 156–171 (2016).

    PubMed  Google Scholar 

  30. Bellahcene, A. & Castronovo, V. Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer. Am. J. Pathol. 146, 95–100 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tan, C. C. et al. Breast cancer cells obtain an osteomimetic feature via epithelial–mesenchymal transition that have undergone BMP2/RUNX2 signaling pathway induction. Oncotarget 7, 79688–79705 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. Shiozawa, Y. et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J. Clin. Invest. 121, 1298–1312 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ghajar, C. M. et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807–817 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Price, T. T. et al. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci. Transl. Med. 8, 340ra373 (2016).

    Google Scholar 

  35. Carlson, P. et al. Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nat. Cell Biol. 21, 238–250 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nobre, A. R. et al. Bone marrow NG2+/Nestin+ mesenchymal stem cells drive DTC dormancy via TGF-β2. Nat. Cancer 2, 327–339 (2021).

    PubMed  PubMed Central  Google Scholar 

  37. Johnson, R. W. et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat. Cell Biol. 18, 1078–1089 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gawrzak, S. et al. MSK1 regulates luminal cell differentiation and metastatic dormancy in ER+ breast cancer. Nat. Cell Biol. 20, 211–221 (2018).

    CAS  PubMed  Google Scholar 

  39. Esposito, M. et al. Bone vascular niche E-selectin induces mesenchymal–epithelial transition and Wnt activation in cancer cells to promote bone metastasis. Nat. Cell Biol. 21, 627–639 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Adams, G. B. et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439, 599–603 (2006).

    CAS  PubMed  Google Scholar 

  41. Wei, Q. & Frenette, P. S. Niches for hematopoietic stem cells and their progeny. Immunity 48, 632–648 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, H. et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell 27, 193–210 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. Zheng, H. et al. Therapeutic antibody targeting tumor- and osteoblastic niche-derived jagged1 sensitizes bone metastasis to chemotherapy. Cancer Cell 32, 731–747 e736 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, D. et al. NPNT promotes early-stage bone metastases in breast cancer by regulation of the osteogenic niche. J. Bone Oncol. 13, 91–96 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, H. et al. The osteogenic niche is a calcium reservoir of bone micrometastases and confers unexpected therapeutic vulnerability. Cancer Cell 34, 823–839 e827 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bado, I. L. et al. The bone microenvironment increases phenotypic plasticity of ER+ breast cancer cells. Dev. Cell 56, 1100–1117.e1109 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sethi, N., Dai, X., Winter, C. G. & Kang, Y. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19, 192–205 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. San Martin, R. et al. Tenascin-C and integrin alpha9 mediate interactions of prostate cancer with the bone microenvironment. Cancer Res. 77, 5977–5988 (2017).

    CAS  PubMed  Google Scholar 

  49. Oskarsson, T. et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat. Med. 17, 867–874 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lowy, C. M. & Oskarsson, T. Tenascin C in metastasis: a view from the invasive front. Cell Adh. Migr. 9, 112–124 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Shupp, A. B., Kolb, A. D., Mukhopadhyay, D. & Bussard, K. M. Cancer metastases to bone: concepts, mechanisms, and interactions with bone osteoblasts. Cancers 10, 182 (2018).

    PubMed Central  Google Scholar 

  52. Lawson, M. A. et al. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat. Commun. 6, 8983 (2015).

    CAS  PubMed  Google Scholar 

  53. Guise, T. A. et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J. Clin. Invest. 98, 1544–1549 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Guise, T. A. et al. Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin. Cancer Res. 12, 6213s–6216s (2006).

    CAS  PubMed  Google Scholar 

  55. Yasuda, H. et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl Acad. Sci. USA 95, 3597–3602 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kingsley, L. A., Fournier, P. G., Chirgwin, J. M. & Guise, T. A. Molecular biology of bone metastasis. Mol. Cancer Ther. 6, 2609–2617 (2007).

    CAS  PubMed  Google Scholar 

  57. Waning, D. L. & Guise, T. A. Molecular mechanisms of bone metastasis and associated muscle weakness. Clin. Cancer Res. 20, 3071–3077 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ell, B. & Kang, Y. SnapShot: bone metastasis. Cell 151, 690–690 e691 (2012).

    CAS  PubMed  Google Scholar 

  59. Lu, X. et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell 20, 701–714 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ross, M. H. et al. Bone-induced expression of integrin beta3 enables targeted nanotherapy of breast cancer metastases. Cancer Res. 77, 6299–6312 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Welm, A. L. et al. The macrophage-stimulating protein pathway promotes metastasis in a mouse model for breast cancer and predicts poor prognosis in humans. Proc. Natl Acad. Sci. USA 104, 7570–7575 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Andrade, K. et al. RON kinase: a target for treatment of cancer-induced bone destruction and osteoporosis. Sci. Transl. Med. 9, eaai9338 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Luo, X. et al. Stromal-initiated changes in the bone promote metastatic niche development. Cell Rep. 14, 82–92 (2016).

    CAS  PubMed  Google Scholar 

  64. Coleman, R. E. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat. Rev. 27, 165–176 (2001).

    CAS  PubMed  Google Scholar 

  65. Esposito, M., Guise, T. & Kang, Y. The biology of bone metastasis. Cold Spring Harb. Perspect. Med. 8, a031252 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Coleman, R. E. et al. Bone metastases. Nat. Rev. Dis. Prim. 6, 83 (2020).

    PubMed  Google Scholar 

  67. Soni, A. et al. Breast cancer subtypes predispose the site of distant metastases. Am. J. Clin. Pathol. 143, 471–478 (2015).

    PubMed  Google Scholar 

  68. Cummings, M. C. et al. Metastatic progression of breast cancer: insights from 50 years of autopsies. J. Pathol. 232, 23–31 (2014).

    CAS  PubMed  Google Scholar 

  69. Disibio, G. & French, S. W. Metastatic patterns of cancers: results from a large autopsy study. Arch. Pathol. Lab. Med. 132, 931–939 (2008).

    PubMed  Google Scholar 

  70. Lee, Y. T. Breast carcinoma: pattern of metastasis at autopsy. J. Surg. Oncol. 23, 175–180 (1983).

    CAS  PubMed  Google Scholar 

  71. Banys-Paluchowski, M., Fehm, T., Janni, W., Solomayer, E. F. & Hartkopf, A. Circulating and disseminated tumor cells in breast carcinoma: report from the consensus conference on tumor cell dissemination during the 39th Annual Meeting of the German Society of Senology, Berlin, 27 June 2019. Geburtshilfe Frauenheilkd. 79, 1320–1327 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. Tjensvoll, K. et al. Detection of disseminated tumor cells in bone marrow predict late recurrences in operable breast cancer patients. BMC Cancer 19, 1131 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Coleman, R. E. & Rubens, R. D. The clinical course of bone metastases from breast cancer. Br. J. Cancer 55, 61–66 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Coleman, R. E., Smith, P. & Rubens, R. D. Clinical course and prognostic factors following bone recurrence from breast cancer. Br. J. Cancer 77, 336–340 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Early Breast Cancer Trialists’ Collaborative Group. Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. Lancet 386, 1353–1361 (2015).

    Google Scholar 

  76. Solomayer, E. F. et al. Influence of zoledronic acid on disseminated tumor cells in primary breast cancer patients. Ann. Oncol. 23, 2271–2277 (2012).

    PubMed  Google Scholar 

  77. Hartkopf, A. D. et al. Prognostic relevance of disseminated tumour cells from the bone marrow of early stage breast cancer patients – results from a large single-centre analysis. Eur. J. Cancer 50, 2550–2559 (2014).

    PubMed  Google Scholar 

  78. Zhang, W. et al. The bone microenvironment invigorates metastatic seeds for further dissemination. Cell 184, 2471–2486.e20 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kalhor, R., Mali, P. & Church, G. M. Rapidly evolving homing CRISPR barcodes. Nat. Methods 14, 195–200 (2017).

    CAS  PubMed  Google Scholar 

  80. Kalhor, R. et al. Developmental barcoding of whole mouse via homing CRISPR. Science 361, eaat9804 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. Kim, M. Y. et al. Tumor self-seeding by circulating cancer cells. Cell 139, 1315–1326 (2009).

    PubMed  PubMed Central  Google Scholar 

  82. Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bos, P. D. et al. Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1009 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    CAS  PubMed  Google Scholar 

  86. Chen, Z., Orlowski, R. Z., Wang, M., Kwak, L. & McCarty, N. Osteoblastic niche supports the growth of quiescent multiple myeloma cells. Blood 123, 2204–2208 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).

    CAS  PubMed  Google Scholar 

  88. da Silva Meirelles, L., Caplan, A. I. & Nardi, N. B. In search of the in vivo identity of mesenchymal stem cells. Stem Cell 26, 2287–2299 (2008).

    Google Scholar 

  89. Muscarella, A. M. Unique cellular protrusions mediate breast cancer cell migration by tethering to osteogenic cells. NPJ Breast Cancer 6, 42 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Willam, C., Schindler, R., Frei, U. & Eckardt, K. U. Increases in oxygen tension stimulate expression of ICAM-1 and VCAM-1 on human endothelial cells. Am. J. Physiol. 276, H2044–2052 (1999).

    CAS  PubMed  Google Scholar 

  91. Shen, S., Vagner, S. & Robert, C. Persistent cancer cells: the deadly survivors. Cell 183, 860–874 (2020).

    CAS  PubMed  Google Scholar 

  92. Eyre, R. et al. Microenvironmental IL1beta promotes breast cancer metastatic colonisation in the bone via activation of Wnt signalling. Nat. Commun. 10, 5016 (2019).

    PubMed  PubMed Central  Google Scholar 

  93. Brown, D. et al. Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations. Nat. Commun. 8, 14944 (2017).

    PubMed  PubMed Central  Google Scholar 

  94. Ullah, I. et al. Evolutionary history of metastatic breast cancer reveals minimal seeding from axillary lymph nodes. J. Clin. Invest. 128, 1355–1370 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. Sturge, J., Caley, M. P. & Waxman, J. Bone metastasis in prostate cancer: emerging therapeutic strategies. Nat. Rev. Clin. Oncol. 8, 357–368 (2011).

    CAS  PubMed  Google Scholar 

  96. Wan, X. et al. Effect of transforming growth factor beta (TGF-beta) receptor I kinase inhibitor on prostate cancer bone growth. Bone 50, 695–703 (2012).

    CAS  PubMed  Google Scholar 

  97. Fournier, P. G. et al. The TGF-beta signaling regulator PMEPA1 suppresses prostate cancer metastases to bone. Cancer Cell 27, 809–821 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen, C. et al. IL-17 and insulin/IGF1 enhance adhesion of prostate cancer cells to vascular endothelial cells through CD44-VCAM-1 interaction. Prostate 75, 883–895 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Roudier, M. P. et al. Histological, immunophenotypic and histomorphometric characterization of prostate cancer bone metastases. Cancer Treat. Res. 118, 311–339 (2004).

    PubMed  Google Scholar 

  100. Furesi, G., Rauner, M. & Hofbauer, L. C. Emerging players in prostate cancer–bone niche communication. Trends Cancer 7, 112–121 (2021).

    CAS  PubMed  Google Scholar 

  101. Knerr, K., Ackermann, K., Neidhart, T. & Pyerin, W. Bone metastasis: osteoblasts affect growth and adhesion regulons in prostate tumor cells and provoke osteomimicry. Int. J. Cancer 111, 152–159 (2004).

    CAS  PubMed  Google Scholar 

  102. Hagberg Thulin, M., Jennbacken, K., Damber, J. E. & Welen, K. Osteoblasts stimulate the osteogenic and metastatic progression of castration-resistant prostate cancer in a novel model for in vitro and in vivo studies. Clin. Exp. Metastasis 31, 269–283 (2014).

    CAS  PubMed  Google Scholar 

  103. Akech, J. et al. Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene 29, 811–821 (2010).

    CAS  PubMed  Google Scholar 

  104. Yang, Y. et al. PTEN loss promotes intratumoral androgen synthesis and tumor microenvironment remodeling via aberrant activation of RUNX2 in castration-resistant prostate cancer. Clin. Cancer Res. 24, 834–846 (2018).

    CAS  PubMed  Google Scholar 

  105. Zhang, H. et al. FOXO1 inhibits Runx2 transcriptional activity and prostate cancer cell migration and invasion. Cancer Res. 71, 3257–3267 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Dai, J. et al. Prostate cancer induces bone metastasis through Wnt-induced bone morphogenetic protein-dependent and independent mechanisms. Cancer Res. 68, 5785–5794 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Liao, J. et al. Tumor expressed PTHrP facilitates prostate cancer-induced osteoblastic lesions. Int. J. Cancer 123, 2267–2278 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Nelson, J. B. et al. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat. Med. 1, 944–949 (1995).

    CAS  PubMed  Google Scholar 

  109. Lee, Y. C. et al. Secretome analysis of an osteogenic prostate tumor identifies complex signaling networks mediating cross-talk of cancer and stromal cells within the tumor microenvironment. Mol. Cell Proteom. 14, 471–483 (2015).

    CAS  Google Scholar 

  110. Long, F. Building strong bones: molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol. 13, 27–38 (2011).

    PubMed  Google Scholar 

  111. Nandana, S. et al. Bone metastasis of prostate cancer can be therapeutically targeted at the TBX2–WNT signaling axis. Cancer Res. 77, 1331–1344 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lin, S. C. et al. Endothelial-to-osteoblast conversion generates osteoblastic metastasis of prostate cancer. Dev. Cell 41, 467–480 e463 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Yu-Lee, L. Y. et al. Bone secreted factors induce cellular quiescence in prostate cancer cells. Sci. Rep. 9, 18635 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ercole, C. J. et al. Prostatic specific antigen and prostatic acid phosphatase in the monitoring and staging of patients with prostatic cancer. J. Urol. 138, 1181–1184 (1987).

    CAS  PubMed  Google Scholar 

  115. Cramer, S. D., Chen, Z. & Peehl, D. M. Prostate specific antigen cleaves parathyroid hormone-related protein in the PTH-like domain: inactivation of PTHrP-stimulated cAMP accumulation in mouse osteoblasts. J. Urol. 156, 526–531 (1996).

    CAS  PubMed  Google Scholar 

  116. Dallas, S. L. et al. Preferential production of latent transforming growth factor beta-2 by primary prostatic epithelial cells and its activation by prostate-specific antigen. J. Cell Physiol. 202, 361–370 (2005).

    CAS  PubMed  Google Scholar 

  117. Cohen, P., Peehl, D. M., Graves, H. C. & Rosenfeld, R. G. Biological effects of prostate specific antigen as an insulin-like growth factor binding protein-3 protease. J. Endocrinol. 142, 407–415 (1994).

    CAS  PubMed  Google Scholar 

  118. Kirschenbaum, A., Liu, X. H., Yao, S., Leiter, A. & Levine, A. C. Prostatic acid phosphatase is expressed in human prostate cancer bone metastases and promotes osteoblast differentiation. Ann. N. Y. Acad. Sci. 1237, 64–70 (2011).

    CAS  PubMed  Google Scholar 

  119. Ishibe, M., Rosier, R. N. & Puzas, J. E. Human prostatic acid phosphatase directly stimulates collagen synthesis and alkaline phosphatase content of isolated bone cells. J. Clin. Endocrinol. Metab. 73, 785–792 (1991).

    CAS  PubMed  Google Scholar 

  120. Santoni, M. et al. Bone metastases in patients with metastatic renal cell carcinoma: are they always associated with poor prognosis? J. Exp. Clin. Cancer Res. 34, 10 (2015).

    PubMed  PubMed Central  Google Scholar 

  121. Wood, S. L. & Brown, J. E. Skeletal metastasis in renal cell carcinoma: current and future management options. Cancer Treat. Rev. 38, 284–291 (2012).

    PubMed  Google Scholar 

  122. Chen, S. C. & Kuo, P. L. Bone metastasis from renal cell carcinoma. Int. J. Mol. Sci. 17, 987 (2016).

    PubMed Central  Google Scholar 

  123. Lin, P. P. et al. Patient survival after surgery for osseous metastases from renal cell carcinoma. J. Bone Jt. Surg. Am. 89, 1794–1801 (2007).

    Google Scholar 

  124. Pan, T. et al. BIGH3 promotes osteolytic lesions in renal cell carcinoma bone metastasis by inhibiting osteoblast differentiation. Neoplasia 20, 32–43 (2018).

    CAS  PubMed  Google Scholar 

  125. Sasaki, H. et al. Beta IGH3, a TGF-beta inducible gene, is overexpressed in lung cancer. Jpn. J. Clin. Oncol. 32, 85–89 (2002).

    PubMed  Google Scholar 

  126. Yamanaka, M. et al. BIGH3 is overexpressed in clear cell renal cell carcinoma. Oncol. Rep. 19, 865–874 (2008).

    CAS  PubMed  Google Scholar 

  127. Zhang, W., Bado, I., Wang, H., Lo, H. C. & Zhang, X. H. Bone metastasis: find your niche and fit in. Trends Cancer 5, 95–110 (2019).

    PubMed  PubMed Central  Google Scholar 

  128. Keizman, D. et al. Bisphosphonates combined with sunitinib may improve the response rate, progression free survival and overall survival of patients with bone metastases from renal cell carcinoma. Eur. J. Cancer 48, 1031–1037 (2012).

    CAS  PubMed  Google Scholar 

  129. Vrdoljak, E. et al. Bisphosphonates in patients with renal cell carcinoma and bone metastases: a sunitinib global expanded-access trial subanalysis. Future Oncol. 11, 2831–2840 (2015).

    CAS  PubMed  Google Scholar 

  130. Haber, T. et al. Bone metastasis in renal cell carcinoma is preprogrammed in the primary tumor and caused by AKT and integrin alpha5 signaling. J. Urol. 194, 539–546 (2015).

    CAS  PubMed  Google Scholar 

  131. Pan, T. et al. Three-dimensional (3D) culture of bone-derived human 786-O renal cell carcinoma retains relevant clinical characteristics of bone metastases. Cancer Lett. 365, 89–95 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Satcher, R. L. et al. Cadherin-11 in renal cell carcinoma bone metastasis. PLoS ONE 9, e89880 (2014).

    PubMed  PubMed Central  Google Scholar 

  133. Giuliani, N. et al. Increased osteocyte death in multiple myeloma patients: role in myeloma-induced osteoclast formation. Leukemia 26, 1391–1401 (2012).

    CAS  PubMed  Google Scholar 

  134. Riquelme, M. A., Cardenas, E. R. & Jiang, J. X. Osteocytes and bone metastasis. Front. Endocrinol. 11, 567844 (2020).

    Google Scholar 

  135. Terpos, E., Ntanasis-Stathopoulos, I. & Dimopoulos, M. A. Myeloma bone disease: from biology findings to treatment approaches. Blood 133, 1534–1539 (2019).

    CAS  PubMed  Google Scholar 

  136. Pan, T. et al. Cabozantinib reverses renal cell carcinoma-mediated osteoblast inhibition in three-dimensional co-culture in vitro and reduces bone osteolysis in vivo. Mol. Cancer Ther. 19, 1266–1278 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Choueiri, T. K. et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol. 17, 917–927 (2016).

    CAS  PubMed  Google Scholar 

  138. Choueiri, T. K. et al. Cabozantinib versus sunitinib as initial targeted therapy for patients with metastatic renal cell carcinoma of poor or intermediate risk: the alliance A031203 CABOSUN Trial. J. Clin. Oncol. 35, 591–597 (2017).

    CAS  PubMed  Google Scholar 

  139. Escudier, B. et al. Cabozantinib, a new standard of care for patients with advanced renal cell carcinoma and bone metastases? Subgroup analysis of the METEOR trial. J. Clin. Oncol. 36, 765–772 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Betts-Obregon, B. S. et al. TGFbeta induces BIGH3 expression and human retinal pericyte apoptosis: a novel pathway of diabetic retinopathy. Eye 30, 1639–1647 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Kim, J. E. et al. A TGF-beta-inducible cell adhesion molecule, betaig-h3, is downregulated in melorheostosis and involved in osteogenesis. J. Cell Biochem. 77, 169–178 (2000).

    CAS  PubMed  Google Scholar 

  142. Klamer, S. E. et al. BIGH3 modulates adhesion and migration of hematopoietic stem and progenitor cells. Cell Adh. Migr. 7, 434–449 (2013).

    PubMed  PubMed Central  Google Scholar 

  143. Ivanov, S. V. et al. Two novel VHL targets, TGFBI (BIGH3) and its transactivator KLF10, are up-regulated in renal clear cell carcinoma and other tumors. Biochem. Biophys. Res. Commun. 370, 536–540 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Thapa, N., Kang, K. B. & Kim, I. S. Beta ig-h3 mediates osteoblast adhesion and inhibits differentiation. Bone 36, 232–242 (2005).

    CAS  PubMed  Google Scholar 

  145. Raggatt, L. J. & Partridge, N. C. Cellular and molecular mechanisms of bone remodeling. J. Biol. Chem. 285, 25103–25108 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Tian, E. et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N. Engl. J. Med. 349, 2483–2494 (2003).

    CAS  PubMed  Google Scholar 

  147. D’Alterio, C. et al. Concomitant CXCR4 and CXCR7 expression predicts poor prognosis in renal cancer. Curr. Cancer Drug Targets 10, 772–781 (2010).

    PubMed  Google Scholar 

  148. Pan, J. et al. Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis. Mol. Cancer 5, 56 (2006).

    PubMed  PubMed Central  Google Scholar 

  149. Wehler, T. C. et al. Strong expression of chemokine receptor CXCR4 by renal cell carcinoma correlates with advanced disease. J. Oncol. 2008, 626340 (2008).

    PubMed  PubMed Central  Google Scholar 

  150. Motzer, R. J., Bander, N. H. & Nanus, D. M. Renal-cell carcinoma. N. Engl. J. Med. 335, 865–875 (1996).

    CAS  PubMed  Google Scholar 

  151. Chambers, A., Kundranda, M., Rao, S., Mahmoud, F. & Niu, J. Anti-angiogenesis revisited: combination with immunotherapy in solid tumors. Curr. Oncol. Rep. 23, 100 (2021).

    PubMed  Google Scholar 

  152. Geraets, S. E. W., Bos, P. K. & van der Stok, J. Preoperative embolization in surgical treatment of long bone metastasis: a systematic literature review. EFORT Open Rev. 5, 17–25 (2020).

    PubMed  PubMed Central  Google Scholar 

  153. Chan, D. A., Sutphin, P. D., Yen, S. E. & Giaccia, A. J. Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor 1 alpha. Mol. Cell Biol. 25, 6415–6426 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Blancher, C., Moore, J. W., Robertson, N. & Harris, A. L. Effects of ras and von Hippel–Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3′-kinase/Akt signaling pathway. Cancer Res. 61, 7349–7355 (2001).

    CAS  PubMed  Google Scholar 

  155. Wiesener, M. S. et al. Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1alpha in clear cell renal carcinomas. Cancer Res. 61, 5215–5222 (2001).

    CAS  PubMed  Google Scholar 

  156. Ivanyi, P. et al. Does the onset of bone metastasis in sunitinib-treated renal cell carcinoma patients impact the overall survival? World J. Urol. 34, 909–915 (2015).

    PubMed  Google Scholar 

  157. Kalra, S. et al. Outcomes of patients with metastatic renal cell carcinoma and bone metastases in the targeted therapy era. Clin. Genitourin. Cancer 15, 363–370 (2017).

    PubMed  Google Scholar 

  158. Osanto, S. & van der Hulle, T. Cabozantinib in the treatment of advanced renal cell carcinoma in adults following prior vascular endothelial growth factor targeted therapy: clinical trial evidence and experience. Ther. Adv. Urol. 10, 109–123 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Vanharanta, S. et al. Epigenetic expansion of VHL–HIF signal output drives multiorgan metastasis in renal cancer. Nat. Med. 19, 50–56 (2013).

    CAS  PubMed  Google Scholar 

  160. Atkinson, E. G. & Delgado-Calle, J. The emerging role of osteocytes in cancer in bone. JBMR Plus 3, e10186 (2019).

    PubMed  PubMed Central  Google Scholar 

  161. An, G. et al. Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication. Blood 128, 1590–1603 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Maroni, P. & Bendinelli, P. Bone, a secondary growth site of breast and prostate carcinomas: role of osteocytes. Cancers 12, 1812 (2020).

    CAS  PubMed Central  Google Scholar 

  163. Zhou, M. et al. KLF10 inhibits cell growth by regulating PTTG1 in multiple myeloma under the regulation of microRNA-106b-5p. Int. J. Biol. Sci. 16, 2063–2071 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Delgado-Calle, J. et al. Bidirectional notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple myeloma. Cancer Res. 76, 1089–1100 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Terpos, E. et al. Circulating activin-A is elevated in patients with advanced multiple myeloma and correlates with extensive bone involvement and inferior survival; no alterations post-lenalidomide and dexamethasone therapy. Ann. Oncol. 23, 2681–2686 (2012).

    CAS  PubMed  Google Scholar 

  166. Roussou, M. et al. Increased expression of macrophage inflammatory protein-1alpha on trephine biopsies correlates with extensive bone disease, increased angiogenesis and advanced stage in newly diagnosed patients with multiple myeloma. Leukemia 23, 2177–2181 (2009).

    CAS  PubMed  Google Scholar 

  167. Costa, F. et al. Expression of CD38 in myeloma bone niche: a rational basis for the use of anti-CD38 immunotherapy to inhibit osteoclast formation. Oncotarget 8, 56598–56611 (2017).

    PubMed  PubMed Central  Google Scholar 

  168. Chung, C. Role of immunotherapy in targeting the bone marrow microenvironment in multiple myeloma: an evolving therapeutic strategy. Pharmacotherapy 37, 129–143 (2017).

    CAS  PubMed  Google Scholar 

  169. Favaloro, J. et al. Myeloma skews regulatory T and pro-inflammatory T helper 17 cell balance in favor of a suppressive state. Leuk. Lymphoma 55, 1090–1098 (2014).

    CAS  PubMed  Google Scholar 

  170. Pratt, G., Goodyear, O. & Moss, P. Immunodeficiency and immunotherapy in multiple myeloma. Br. J. Haematol. 138, 563–579 (2007).

    CAS  PubMed  Google Scholar 

  171. Gagelmann, N. et al. Development of CAR-T cell therapies for multiple myeloma. Leukemia 34, 2317–2332 (2020).

    CAS  PubMed  Google Scholar 

  172. Mikhael, J. et al. Treatment of multiple myeloma: ASCO and CCO Joint Clinical Practice Guideline. J. Clin. Oncol. 37, 1228–1263 (2019).

    PubMed  Google Scholar 

  173. D’Oronzo, S., Coleman, R., Brown, J. & Silvestris, F. Metastatic bone disease: pathogenesis and therapeutic options: up-date on bone metastasis management. J. Bone Oncol. 15, 004 (2019).

    PubMed  Google Scholar 

  174. Henry, D. H. et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J. Clin. Oncol. 29, 1125–1132 (2011).

    CAS  PubMed  Google Scholar 

  175. Lipton, A. et al. Effect of denosumab versus zoledronic acid in preventing skeletal-related events in patients with bone metastases by baseline characteristics. Eur. J. Cancer 53, 75–83 (2016).

    CAS  PubMed  Google Scholar 

  176. Scagliotti, G. V. et al. Overall survival improvement in patients with lung cancer and bone metastases treated with denosumab versus zoledronic acid: subgroup analysis from a randomized phase 3 study. J. Thorac. Oncol. 7, 1823–1829 (2012).

    CAS  PubMed  Google Scholar 

  177. Body, J. J. et al. Oral ibandronate improves bone pain and preserves quality of life in patients with skeletal metastases due to breast cancer. Pain 111, 306–312 (2004).

    CAS  PubMed  Google Scholar 

  178. De Marinis, F. et al. Bisphosphonate use in patients with lung cancer and bone metastases: recommendations of a European expert panel. J. Thorac. Oncol. 4, 1280–1288 (2009).

    PubMed  Google Scholar 

  179. Dearnaley, D. P., Mason, M. D., Parmar, M. K., Sanders, K. & Sydes, M. R. Adjuvant therapy with oral sodium clodronate in locally advanced and metastatic prostate cancer: long-term overall survival results from the MRC PR04 and PR05 randomised controlled trials. Lancet Oncol. 10, 872–876 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. McKay, R. R. et al. Prognostic significance of bone metastases and bisphosphonate therapy in patients with renal cell carcinoma. Eur. Urol. 66, 502–509 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Cronin, K. A., Ries, L. A. & Edwards, B. K. The surveillance, epidemiology, and end results (SEER) program of the national cancer institute. Cancer 120 (Suppl. 23), 3755–3757 (2014).

    PubMed  Google Scholar 

  182. Noone, A. M. et al. Cancer incidence and survival trends by subtype using data from the surveillance epidemiology and end results program, 1992–2013. Cancer Epidemiol. Biomarkers Prev. 26, 632–641 (2017).

    PubMed  Google Scholar 

  183. Woodward, E. et al. Skeletal complications and survival in renal cancer patients with bone metastases. Bone 48, 160–166 (2011).

    PubMed  Google Scholar 

  184. Kinnane, N. Burden of bone disease. Eur. J. Oncol. Nurs. 11 (Suppl. 2), S28–S31 (2007).

    PubMed  Google Scholar 

  185. Mackiewicz-Wysocka, M., Pankowska, M. & Wysocki, P. J. Progress in the treatment of bone metastases in cancer patients. Expert. Opin. Investig. Drugs 21, 785–795 (2012).

    CAS  PubMed  Google Scholar 

  186. Sato, M. et al. Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. J. Clin. Invest. 88, 2095–2105 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Hughes, D. E. et al. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J. Bone Min. Res. 10, 1478–1487 (1995).

    CAS  Google Scholar 

  188. Lacey, D. L. et al. Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat. Rev. Drug Discov. 11, 401–419 (2012).

    CAS  PubMed  Google Scholar 

  189. Ghajar, C. M. Metastasis prevention by targeting the dormant niche. Nat. Rev. Cancer 15, 238–247 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Risson, E., Nobre, A. R., Maguer-Satta, V. & Aguirre-Ghiso, J. A. The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nat. Cancer 1, 672–680 (2020).

    PubMed  PubMed Central  Google Scholar 

  191. Barbier, V. et al. Endothelial E-selectin inhibition improves acute myeloid leukaemia therapy by disrupting vascular niche-mediated chemoresistance. Nat. Commun. 11, 2042 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Wang, H. et al. Bone-in-culture array as a platform to model early-stage bone metastases and discover anti-metastasis therapies. Nat. Commun. 8, 15045 (2017).

    PubMed  PubMed Central  Google Scholar 

  193. Denefle, T. et al. Thrombospondin-1 mimetic agonist peptides induce selective death in tumor cells: design, synthesis, and structure-activity relationship studies. J. Med. Chem. 59, 8412–8421 (2016).

    CAS  PubMed  Google Scholar 

  194. Allen, M. R. & Burr, D. B. Bisphosphonate effects on bone turnover, microdamage, and mechanical properties: what we think we know and what we know that we don’t know. Bone 49, 56–65 (2011).

    CAS  PubMed  Google Scholar 

  195. Garnero, P., Sornay-Rendu, E., Chapuy, M. C. & Delmas, P. D. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J. Bone Min. Res. 11, 337–349 (1996).

    CAS  Google Scholar 

  196. Chen, Q. & Massague, J. Molecular pathways: VCAM-1 as a potential therapeutic target in metastasis. Clin. Cancer Res. 18, 5520–5525 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Nakazawa, Y. et al. Periostin blockade overcomes chemoresistance via restricting the expansion of mesenchymal tumor subpopulations in breast cancer. Sci. Rep. 8, 4013 (2018).

    PubMed  PubMed Central  Google Scholar 

  198. Estey, E. et al. Use of granulocyte colony-stimulating factor before, during, and after fludarabine plus cytarabine induction therapy of newly diagnosed acute myelogenous leukemia or myelodysplastic syndromes: comparison with fludarabine plus cytarabine without granulocyte colony-stimulating factor. J. Clin. Oncol. 12, 671–678 (1994).

    CAS  PubMed  Google Scholar 

  199. Fischer, J. C. et al. Diagnostic leukapheresis enables reliable detection of circulating tumor cells of nonmetastatic cancer patients. Proc. Natl Acad. Sci. USA 110, 16580–16585 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Boyerinas, B. et al. Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy. Blood 121, 4821–4831 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Becker, P. S. et al. Clofarabine with high dose cytarabine and granulocyte colony-stimulating factor (G-CSF) priming for relapsed and refractory acute myeloid leukaemia. Br. J. Haematol. 155, 182–189 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03292536?term=NCT03292536&draw=2&rank=1 (2021).

  203. Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693–702 (1991).

    CAS  PubMed  Google Scholar 

  204. Furuyama, N. & Fujisawa, Y. Regulation of collagenolytic protease secretion through c-Src in osteoclasts. Biochem. Biophys. Res. Commun. 272, 116–124 (2000).

    CAS  PubMed  Google Scholar 

  205. Murali, B. et al. Inhibition of the stromal p38MAPK/MK2 pathway limits breast cancer metastases and chemotherapy-induced bone loss. Cancer Res. 78, 5618–5630 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Nyman, J. S. et al. Combined treatment with a transforming growth factor beta inhibitor (1D11) and bortezomib improves bone architecture in a mouse model of myeloma-induced bone disease. Bone 91, 81–91 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Cole, L. E., Vargo-Gogola, T. & Roeder, R. K. Targeted delivery to bone and mineral deposits using bisphosphonate ligands. Adv. Drug Deliv. Rev. 99, 12–27 (2016).

    CAS  PubMed  Google Scholar 

  208. Farrell, K. B., Karpeisky, A., Thamm, D. H. & Zinnen, S. Bisphosphonate conjugation for bone specific drug targeting. Bone Rep. 9, 47–60 (2018).

    PubMed  PubMed Central  Google Scholar 

  209. Tian, Z. et al. Harnessing the power of antibodies to fight bone metastasis. Sci. Adv. 7, eabf2051 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Schmid, P. et al. Atezolizumab and Nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379, 2108–2121 (2018).

    CAS  PubMed  Google Scholar 

  211. Beer, T. M. et al. Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J. Clin. Oncol. 35, 40–47 (2017).

    CAS  PubMed  Google Scholar 

  212. Jiao, S. et al. Differences in tumor microenvironment dictate T helper lineage polarization and response to immune checkpoint therapy. Cell 179, 1177–1190 e1113 (2019).

    CAS  PubMed  Google Scholar 

  213. Italiano, A. et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 19, 649–659 (2018).

    CAS  PubMed  Google Scholar 

  214. Yoneda, T., Sasaki, A. & Mundy, G. R. Osteolytic bone metastasis in breast cancer. Breast Cancer Res. Treat. 32, 73–84 (1994).

    CAS  PubMed  Google Scholar 

  215. Corey, E. et al. Establishment and characterization of osseous prostate cancer models: intra-tibial injection of human prostate cancer cells. Prostate 52, 20–33 (2002).

    PubMed  Google Scholar 

  216. Yu, C. et al. Intra-iliac artery injection for efficient and selective modeling of microscopic bone metastasis. J. Vis. Exp. https://doi.org/10.3791/53982 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Kuchimaru, T. et al. A reliable murine model of bone metastasis by injecting cancer cells through caudal arteries. Nat. Commun. 9, 2981 (2018).

    PubMed  PubMed Central  Google Scholar 

  218. Medina, D. The mammary gland: a unique organ for the study of development and tumorigenesis. J. Mammary Gland Biol. Neoplasia 1, 5–19 (1996).

    CAS  PubMed  Google Scholar 

  219. Sflomos, G. et al. A preclinical model for ERalpha-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. Cancer Cell 29, 407–422 (2016).

    CAS  PubMed  Google Scholar 

  220. Sato, N. et al. A metastatic and androgen-sensitive human prostate cancer model using intraprostatic inoculation of LNCaP cells in SCID mice. Cancer Res. 57, 1584–1589 (1997).

    CAS  PubMed  Google Scholar 

  221. Valta, M. P. et al. Development of a realistic in vivo bone metastasis model of human renal cell carcinoma. Clin. Exp. Metastasis 31, 573–584 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Kashtan, H. et al. Intra-rectal injection of tumour cells: a novel animal model of rectal cancer. Surg. Oncol. 1, 251–256 (1992).

    CAS  PubMed  Google Scholar 

  223. Sakamoto, S. et al. New metastatic model of human small-cell lung cancer by orthotopic transplantation in mice. Cancer Sci. 106, 367–374 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Martin, C. K. et al. Zoledronic acid reduces bone loss and tumor growth in an orthotopic xenograft model of osteolytic oral squamous cell carcinoma. Cancer Res. 70, 8607–8616 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Pinho, S. & Frenette, P. S. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 20, 303–320 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Crane, G. M., Jeffery, E. & Morrison, S. J. Adult haematopoietic stem cell niches. Nat. Rev. Immunol. 17, 573–590 (2017).

    CAS  PubMed  Google Scholar 

  227. Mendez-Ferrer, S. et al. Bone marrow niches in haematological malignancies. Nat. Rev. Cancer 20, 285–298 (2020).

    CAS  PubMed  Google Scholar 

  228. Sivaraj, K. K. & Adams, R. H. Blood vessel formation and function in bone. Development 143, 2706–2715 (2016).

    CAS  PubMed  Google Scholar 

  229. Kusumbe, A. P., Ramasamy, S. K. & Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507, 323–328 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Park, D. et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10, 259–272 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Logan, M. et al. Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33, 77–80 (2002).

    CAS  PubMed  Google Scholar 

  232. Greenbaum, A. et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495, 227–230 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Pinho, S. et al. PDGFRalpha and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J. Exp. Med. 210, 1351–1367 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988 (2006).

    CAS  PubMed  Google Scholar 

  235. Baccin, C. et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22, 38–48 (2020).

    CAS  PubMed  Google Scholar 

  236. Acar, M. et al. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526, 126–130 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Bruns, I. et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat. Med. 20, 1315–1320 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Heazlewood, S. Y. et al. Megakaryocytes co-localise with hemopoietic stem cells and release cytokines that up-regulate stem cell proliferation. Stem Cell Res. 11, 782–792 (2013).

    CAS  PubMed  Google Scholar 

  239. Olson, T. S. et al. Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning. Blood 121, 5238–5249 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Zhao, M. et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat. Med. 20, 1321–1326 (2014).

    CAS  PubMed  Google Scholar 

  241. Quarta, G., Cattaneo, C. & D’Elia, M. Determining 14C content in different human tissues: implications for application of 14C bomb-spike dating in forensic medicine. Radiocarbon 55, 1845–1849 (2013).

    Google Scholar 

  242. Rodan, G. A. Bone homeostasis. Proc. Natl Acad. Sci. USA 95, 13361–13362 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Ribot, C. et al. Obesity and postmenopausal bone loss: the influence of obesity on vertebral density and bone turnover in postmenopausal women. Bone 8, 327–331 (1987).

    CAS  PubMed  Google Scholar 

  244. Compston, J. E. et al. Obesity is not protective against fracture in postmenopausal women: GLOW. Am. J. Med. 124, 1043–1050 (2011).

    PubMed  PubMed Central  Google Scholar 

  245. Krakauer, J. C. et al. Bone loss and bone turnover in diabetes. Diabetes 44, 775–782 (1995).

    CAS  PubMed  Google Scholar 

  246. Einhorn, T. A. & Gerstenfeld, L. C. Fracture healing: mechanisms and interventions. Nat. Rev. Rheumatol. 11, 45–54 (2015).

    PubMed  Google Scholar 

  247. Schell, H. et al. The haematoma and its role in bone healing. J. Exp. Orthop. 4, 5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Bidwell, B. N. et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat. Med. 18, 1224–1231 (2012).

    CAS  PubMed  Google Scholar 

  249. Dobrolecki, L. E. et al. Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer Metastasis Rev. 35, 547–573 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Hoffman, R. M. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat. Rev. Cancer 15, 451–452 (2015).

    CAS  PubMed  Google Scholar 

  251. Wang, D. et al. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Min. Res. 14, 893–903 (1999).

    CAS  Google Scholar 

  252. Qiao, H. & Tang, T. Engineering 3D approaches to model the dynamic microenvironments of cancer bone metastasis. Bone Res. 6, 3 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank H. Chan and L. Michie for editing the manuscript. X.H.-F.Z. is supported by US Department of Defense DAMD W81XWH-16-1-0073, DAMD W81XWH-20-1-0375, NCI R01CA183878, NCI R01CA251950, NCI R01CA221946, NCI R01CA227904, NCI U01CA252553, Breast Cancer Research Foundation and McNair Foundation. R.L.S. is supported by US DOD KCRP W81XWH-20-1-0895, and UT MD Anderson Cancer Center Knowledge Gap Award and Institutional Research Grant.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Xiang H.-F. Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cancer thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Osteoblasts

Cells that are responsible for synthesis and mineralization of new bones during development and bone remodelling. They are derived from mesenchymal linage, usually localize at the surface of bone matrix and can differentiate into osteocytes.

Osteocytes

Cells that are derived from osteoblasts and become embedded in the bone matrix.

Osteoclasts

Cells that are responsible for resorption of bones. They are derived from myeloid cell lineage. Matured osteoclasts are multinuclear and function in close coordination with osteoblasts.

Mesenchymal stem cells

(MSCs). Cells that are multipotent and responsible for the production of mesenchymal cells, including osteoblasts, chondrocytes, adipocytes and fibroblasts.

Haematopoietic stem cells

(HSCs). Cells that are multipotent and responsible for production of all blood cells.

Type H capillaries

Vascular networks in the bone marrow that continue from arterioles and precede sinusoid vein vessels. They are surrounded by osteoprogenitor cells and couple osteogenesis and angiogenesis.

Type L capillaries

Sinusoid veins that continue from the H-type capillaries and converge on central vein in the medullar cavity of bone marrow.

Premetastatic niche

Potential destination of metastasis in distant organs before the actual arrival of metastatic cells. It is different from normal tissue because of interactions with bone marrow-derived cells stimulated by primary tumours.

Endosteal niche

The microenvironmental location at the endosteal surface. It is enriched with osteoblasts and osteoprogenitors as well as osteoclasts. Transplanted haematopoietic stem cells often adhere to this niche.

Epithelial-to-mesenchymal transition

(EMT). A process through which epithelial cells lose cell–cell adhesions and other epithelial traits but acquire mesenchymal characteristics, including migration and invasion. Recent studies demonstrate that EMT is a continuum and there exists a hybrid status with both epithelial and mesenchymal features. The hybrid EMT phenotype has been linked to cancer stemness, or the ability to regenerate a tumour.

Metastatic organotropism

The observations that metastasis does not occur randomly to all organs but rather preferentially affects a specific set of distant organs.

Darwinian selection

A process of evolution whereby individuals with greatest fitness among a population survive the selective pressure exerted by the environment. In cancer biology, it was adopted to understand how cancer cells with the most enabling genetic traits progress and expand over other cancer cells under the selective pressure from the microenvironment.

Perivascular niche

The microenvironmental location adjacent to a blood vessel. The components include endothelial cells, pericytes and haematopoietic stem cells. The pericytes exhibit mesenchymal stem cell activities.

Osteogenic niche

The microenvironmental locations including endosteum and trabecular bones, where osteogenesis occurs. It is enriched with osteoblasts and precursor cells. It overlaps with the endosteal niche, but also includes trabecular bones while lacking the osteoclast component by definition.

Phenotypic plasticity

The potential of a cell to alter its phenotypic characteristics in response to environmental stimuli. The ability to switch between epithelial and mesenchymal phenotypes is considered one example of phenotypic plasticity.

Osteogenesis

The process of osteoblast and osteocyte differentiation and formation of new bones.

Cabozantinib

A small-molecule inhibitor of the tyrosine kinases Met, VEGFR2, AXL and RET. It is approved to treat medullary thyroid cancer, renal cell carcinoma and hepatocellular carcinoma.

Embolization

Blockade of blood vessels by an agglomeration of cancer cells or other substance.

Periostin

An extracellular matrix component encoded by the POSTN gene. It is a ligand of integrins and has important roles in the niche supporting normal and cancer stem cells.

Endothelial tip cells

Endothelial cells that sprout branches of blood vessels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satcher, R.L., Zhang, X.HF. Evolving cancer–niche interactions and therapeutic targets during bone metastasis. Nat Rev Cancer 22, 85–101 (2022). https://doi.org/10.1038/s41568-021-00406-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-021-00406-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer