Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities

Abstract

Atherosclerosis is a lipid-driven inflammatory disease of the arterial intima in which the balance of pro-inflammatory and inflammation-resolving mechanisms dictates the final clinical outcome. Intimal infiltration and modification of plasma-derived lipoproteins and their uptake mainly by macrophages, with ensuing formation of lipid-filled foam cells, initiate atherosclerotic lesion formation, and deficient efferocytotic removal of apoptotic cells and foam cells sustains lesion progression. Defective efferocytosis, as a sign of inadequate inflammation resolution, leads to accumulation of secondarily necrotic macrophages and foam cells and the formation of an advanced lesion with a necrotic lipid core, indicative of plaque vulnerability. Resolution of inflammation is mediated by specialized pro-resolving lipid mediators derived from omega-3 fatty acids or arachidonic acid and by relevant proteins and signalling gaseous molecules. One of the major effects of inflammation resolution mediators is phenotypic conversion of pro-inflammatory macrophages into macrophages that suppress inflammation and promote healing. In advanced atherosclerotic lesions, the ratio between specialized pro-resolving mediators and pro-inflammatory lipids (in particular leukotrienes) is strikingly low, providing a molecular explanation for the defective inflammation resolution features of these lesions. In this Review, we discuss the mechanisms of the formation of clinically dangerous atherosclerotic lesions and the potential of pro-resolving mediator therapy to inhibit this process.

Key points

  • Modified lipoproteins and cholesterol crystals accumulate in the arterial intima and induce foam cell formation and inflammation.

  • Defective efferocytosis of apoptotic foam cells leads to necrotic core formation.

  • Defective efferocytosis is a sign of failure in the resolution of inflammation.

  • Inflammation resolution is mediated by specialized pro-resolving lipid mediators, proteins and signalling gases.

  • Improvement of the balance between pro-inflammatory and pro-resolving processes enables the resolution of inflammation.

  • Pro-resolving mediator therapy could be a novel approach to suppressing the formation of clinically dangerous atherosclerotic lesions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ligands and receptors transducing pro-resolving signalling in macrophages.
Fig. 2: Modified lipoproteins and cholesterol crystals induce inflammasome activation.
Fig. 3: Macrophage life cycle and cholesterol round trip in atherosclerosis.
Fig. 4: Defective efferocytosis drives necrotic core formation in atherosclerosis.
Fig. 5: Resolution versus chronic inflammation in atherosclerosis.

Similar content being viewed by others

References

  1. Williams, K. J. & Tabas, I. The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 15, 551–561 (1995).

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Williams, K. J. & Tabas, I. The response-to-retention hypothesis of atherogenesis reinforced. Curr. Opin. Lipidol. 9, 471–474 (1998).

    PubMed  CAS  Google Scholar 

  3. Tabas, I., Williams, K. J. & Boren, J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116, 1832–1844 (2007).

    PubMed  CAS  Google Scholar 

  4. Galkina, E. & Ley, K. Immune and inflammatory mechanisms of atherosclerosis*. Annu. Rev. Immunol. 27, 165–197 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    PubMed  CAS  Google Scholar 

  6. Hansson, G. K., Libby, P. & Tabas, I. Inflammation and plaque vulnerability. J. Intern. Med. 278, 483–493 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Libby, P., Ridker, P. M. & Maseri, A. Inflammation and atherosclerosis. Circulation 105, 1135–1143 (2002).

    PubMed  CAS  Google Scholar 

  8. Shi, G. P., Bot, I. & Kovanen, P. T. Mast cells in human and experimental cardiometabolic diseases. Nat. Rev. Cardiol. 12, 643–658 (2015).

    PubMed  CAS  Google Scholar 

  9. Zernecke, A. Dendritic cells in atherosclerosis: evidence in mice and humans. Arterioscler. Thromb. Vasc. Biol. 35, 763–770 (2015).

    PubMed  CAS  Google Scholar 

  10. Paulson, K. E. et al. Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circ. Res. 106, 383–390 (2010).

    PubMed  CAS  Google Scholar 

  11. Major, A. S., Fazio, S. & Linton, M. F. B-Lymphocyte deficiency increases atherosclerosis in LDL receptor-null mice. Arterioscler. Thromb. Vasc. Biol. 22, 1892–1898 (2002).

    PubMed  CAS  Google Scholar 

  12. Douna, H. & Kuiper, J. Novel B cell subsets in atherosclerosis. Curr. Opin. Lipidol 27, 493–498 (2016).

    PubMed  CAS  Google Scholar 

  13. Ketelhuth, D. F. J. & Hansson, G. K. Adaptive response of T and B cells in atherosclerosis. Circ. Res. 118, 668–678 (2016).

    PubMed  CAS  Google Scholar 

  14. Doring, Y., Soehnlein, O. & Weber, C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ. Res. 120, 736–743 (2017).

    PubMed  Google Scholar 

  15. Niccoli, G., Montone, R. A., Sabato, V. & Crea, F. Role of allergic inflammatory cells in coronary artery disease. Circulation 138, 1736–1748 (2018).

    PubMed  CAS  Google Scholar 

  16. Pentikäinen, M. O., Öörni, K., Ala-Korpela, M. & Kovanen, P. T. Modified LDL - trigger of atherosclerosis and inflammation in the arterial intima. J. Intern. Med. 247, 359–370 (2000).

    PubMed  Google Scholar 

  17. Napoli, C. et al. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J. Clin. Invest. 100, 2680–2690 (1997).

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Weber, C. & Noels, H. Atherosclerosis: current pathogenesis and therapeutic options. Nat. Med. 17, 1410–1422 (2011).

    PubMed  CAS  Google Scholar 

  19. Berg, K. E. et al. Elevated CD14++CD16 monocytes predict cardiovascular events. Circ. Cardiovasc. Genet. 5, 122–131 (2012).

    PubMed  CAS  Google Scholar 

  20. Schiopu, A. et al. Associations between macrophage colony-stimulating factor and monocyte chemotactic protein 1 in plasma and first-time coronary events: a nested case-control study. J. Am. Heart Assoc. 5, e002851 (2016).

    PubMed  PubMed Central  Google Scholar 

  21. Brown, M. S. & Goldstein, J. L. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu. Rev. Biochem. 52, 223–261 (1983).

    PubMed  CAS  Google Scholar 

  22. Sorci-Thomas, M. G. & Thomas, M. J. Microdomains, inflammation, and atherosclerosis. Circ. Res. 118, 679–691 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Li, A. C. & Glass, C. K. The macrophage foam cell as a target for therapeutic intervention. Nat. Med. 8, 1235–1242 (2002).

    PubMed  CAS  Google Scholar 

  24. Brown, M. S., Ho, Y. K. & Goldstein, J. L. The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters. J. Biol. Chem. 255, 9344–9352 (1980).

    PubMed  CAS  Google Scholar 

  25. Öörni, K. et al. Acidification of the intimal fluid: the perfect storm for atherogenesis. J. Lipid Res. 56, 203–214 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. Tabas, I. & Bornfeldt, K. E. Macrophage phenotype and function in different stages of atherosclerosis. Circ. Res. 118, 653–667 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Serhan, C. N. et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 21, 325–332 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Nathan, C. & Ding, A. Nonresolving inflammation. Cell 140, 871–882 (2010).

    PubMed  CAS  Google Scholar 

  29. Serhan, C. N. Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Am. J. Pathol. 177, 1576–1591 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Perretti, M. & D’Acquisto, F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat. Rev. Immunol. 9, 62–70 (2009).

    PubMed  CAS  Google Scholar 

  31. Tabas, I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 10, 36–46 (2010).

    PubMed  CAS  Google Scholar 

  32. Merched, A. J., Ko, K., Gotlinger, K. H., Serhan, C. N. & Chan, L. Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. FASEB J. 22, 3595–3606 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Tabas, I. & Glass, C. K. Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science 339, 166–172 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Kolodgie, F. D. et al. Pathologic assessment of the vulnerable human coronary plaque. Heart 90, 1385–1391 (2004).

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Kojima, Y., Weissman, I. L. & Leeper, N. J. The role of efferocytosis in atherosclerosis. Circulation 135, 476–489 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Fredman, G. et al. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat. Commun. 7, 12859 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Thul, S., Labat, C., Temmar, M., Benetos, A. & Back, M. Low salivary resolvin D1 to leukotriene B4 ratio predicts carotid intima media thickness: a novel biomarker of non-resolving vascular inflammation. Eur. J. Prev. Cardiol. 24, 903–906 (2017).

    Google Scholar 

  38. Viola, J. R. et al. Resolving lipid mediators maresin 1 and resolvin D2 prevent atheroprogression in mice. Circ. Res. 119, 1030–1038 (2016).

    PubMed  CAS  Google Scholar 

  39. Packard, C. J. LDL cholesterol: how low to go? Trends Cardiovasc. Med. 28, 348–354 (2018).

    PubMed  CAS  Google Scholar 

  40. Weber, C. & von Hundelshausen, P. CANTOS Trial validates the inflammatory pathogenesis of atherosclerosis: setting the stage for a new chapter in therapeutic targeting. Circ. Res. 121, 1119–1121 (2017).

    PubMed  CAS  Google Scholar 

  41. Nordestgaard, B. G., Wootton, R. & Lewis, B. Selective retention of VLDL, IDL, and LDL in the arterial intima of genetically hyperlipidemic rabbits in vivo. Molecular size as a determinant of fractional loss from the intima-inner media. Arterioscler. Thromb. Vasc. Biol. 15, 534–542 (1995).

    PubMed  CAS  Google Scholar 

  42. Shaikh, M. et al. Quantitative studies of transfer in vivo of low density, Sf 12–60, and Sf 60–400 lipoproteins between plasma and arterial intima in humans. Arterioscler. Thromb. 11, 569–577 (1991).

    PubMed  CAS  Google Scholar 

  43. Borén, J. & Williams, K. J. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity. Curr. Opin. Lipidol. 27, 473–483 (2016).

    PubMed  Google Scholar 

  44. Skalen, K. et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417, 750–754 (2002).

    PubMed  CAS  Google Scholar 

  45. Smith, E. B., Keen, G. A. & Grant, A. Factors influencing the accumulation in fibrous plaques of lipid derived from low density lipoprotein. I. Relation between fibrin and immobilization of apo B-containing lipoprotein. Atherosclerosis 84, 165–171 (1990).

    PubMed  CAS  Google Scholar 

  46. Öörni, K., Pentikäinen, M. O., Ala-Korpela, M. & Kovanen, P. T. Aggregation, fusion, and vesicle formation of modified low density lipoprotein particles: molecular mechanisms and effects on matrix interactions. J. Lipid Res. 41, 1703–1714 (2000).

    PubMed  Google Scholar 

  47. Houde, M. & Van Eck, M. Escaping the atherogenic trap: preventing LDL fusion and binding in the intima. Atherosclerosis 275, 376–378 (2018).

    PubMed  CAS  Google Scholar 

  48. Soto, Y. et al. Antiatherosclerotic effect of an antibody that binds to extracellular matrix glycosaminoglycans. Arterioscler. Thromb. Vasc. Biol. 32, 595–604 (2012).

    PubMed  CAS  Google Scholar 

  49. Yurdagul, A. Jr., Finney, A. C., Woolard, M. D. & Orr, A. W. The arterial microenvironment: the where and why of atherosclerosis. Biochem. J. 473, 1281–1295 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Adamson, S. & Leitinger, N. Phenotypic modulation of macrophages in response to plaque lipids. Curr. Opin. Lipidol. 22, 335–342 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Que, X. et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 558, 301–306 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Watson, A. D. et al. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J. Biol. Chem. 272, 13597–13607 (1997).

    PubMed  CAS  Google Scholar 

  53. Fu, P. & Birukov, K. G. Oxidized phospholipids in control of inflammation and endothelial barrier. Transl Res. 153, 166–176 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Zanoni, I., Tan, Y., Di Gioia, M., Springstead, J. R. & Kagan, J. C. By capturing inflammatory lipids released from dying cells, the receptor CD14 induces inflammasome-dependent phagocyte hyperactivation. Immunity 47, 697–709 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Ruuth, M. et al. Susceptibility of low-density lipoprotein particles to aggregate depends on particle lipidome, is modifiable, and associates with future cardiovascular deaths. Eur. Heart J. 39, 2562–2573 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Lehti, S. et al. Extracellular lipid accumulates in human carotid arteries as distinct three-dimensional structures with proinflammatory properties. Am. J. Pathol. 188, 525–538 (2018).

    PubMed  CAS  Google Scholar 

  57. Guarino, A. J., Tulenko, T. N. & Wrenn, S. P. Cholesterol crystal nucleation from enzymatically modified low-density lipoproteins: combined effect of sphingomyelinase and cholesterol esterase. Biochemistry 43, 1685–1693 (2004).

    PubMed  CAS  Google Scholar 

  58. Rajamäki, K. et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLOS ONE 5, e11765 (2010).

    PubMed  PubMed Central  Google Scholar 

  59. Sheedy, F. J. et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat. Immunol. 14, 812–820 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Westerterp, M. et al. Cholesterol accumulation in dendritic cells links the inflammasome to acquired immunity. Cell Metab. 25, 1294–1304 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Rajamäki, K. et al. P38δ MAPK: a novel regulator of NLRP3 inflammasome activation with increased expression in coronary atherogenesis. Arterioscler. Thromb. Vasc. Biol. 36, 1937–1946 (2016).

    PubMed  Google Scholar 

  62. van der Heijden, T. et al. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice - brief report. Arterioscler. Thromb. Vasc. Biol. 37, 1457–1461 (2017).

    PubMed  Google Scholar 

  63. Patel, M. N. et al. Inflammasome priming in sterile inflammatory disease. Trends Mol. Med. 23, 165–180 (2017).

    PubMed  CAS  Google Scholar 

  64. He, Y., Hara, H. & Nunez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 41, 1012–1021 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Kozarov, E. V., Dorn, B. R., Shelburne, C. E., Dunn, W. A. Jr & Progulske-Fox, A. Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arterioscler. Thromb. Vasc. Biol. 25, e17–e18 (2005).

    PubMed  CAS  Google Scholar 

  66. Caesar, R., Fak, F. & Backhed, F. Effects of gut microbiota on obesity and atherosclerosis via modulation of inflammation and lipid metabolism. J. Intern. Med. 268, 320–328 (2010).

    PubMed  CAS  Google Scholar 

  67. Lopategi, A. et al. Frontline science: specialized proresolving lipid mediators inhibit the priming and activation of the macrophage NLRP3 inflammasome. J. Leukoc. Biol. 105, 25–36 (2018).

    PubMed  Google Scholar 

  68. Wang, L., Chen, Y., Li, X., Zhang, Y. & Gulbins, E. Enhancement of endothelial permeability by free fatty acid through lysosomal cathepsin B-mediated Nlrp3 inflammasome activation. Oncotarget 7, 73229–73241 (2016).

    PubMed  PubMed Central  Google Scholar 

  69. Schroder, K., Zhou, R. & Tschopp, J. The NLRP3 inflammasome: a sensor for metabolic danger? Science 327, 296–300 (2010).

    PubMed  CAS  Google Scholar 

  70. Wen, H. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408–415 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Duewell, P. & Latz, E. Assessment and quantification of crystal-induced lysosomal damage. Methods Mol. Biol. 1040, 19–27 (2013).

    PubMed  CAS  Google Scholar 

  72. Grebe, A., Hoss, F. & Latz, E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ. Res. 122, 1722–1740 (2018).

    PubMed  CAS  Google Scholar 

  73. Westerterp, M. et al. Cholesterol efflux pathways suppress inflammasome activation, NETosis and atherogenesis. Circulation 138, 898–912 (2018).

    PubMed  CAS  Google Scholar 

  74. Rhoads, J. P. et al. Oxidized low-density lipoprotein immune complex priming of the Nlrp3 inflammasome involves TLR and FcγR cooperation and is dependent on CARD9. J. Immunol. 198, 2105–2114 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Estruch, M. et al. Electronegative LDL induces priming and inflammasome activation leading to IL-1beta release in human monocytes and macrophages. Biochim. Biophys. Acta 1851, 1442–1449 (2015).

    Google Scholar 

  76. Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Fredman, G. & Tabas, I. Boosting inflammation resolution in atherosclerosis: the next frontier for therapy. Am. J. Pathol. 187, 1211–1221 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  78. Mirakaj, V., Dalli, J., Granja, T., Rosenberger, P. & Serhan, C. N. Vagus nerve controls resolution and pro-resolving mediators of inflammation. J. Exp. Med. 211, 1037–1048 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Proto, J. D. et al. Regulatory T cells promote macrophage efferocytosis during inflammation resolution. Immunity 49, 666–677 (2018).

    PubMed  CAS  Google Scholar 

  80. Li, X. et al. Endogenously generated omega-3 fatty acids attenuate vascular inflammation and neointimal hyperplasia by interaction with free fatty acid receptor 4 in mice. J. Am. Heart Assoc. 4, e001856 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. Breitzig, M., Bhimineni, C., Lockey, R. & Kolliputi, N. 4-hydroxy-2-nonenal: a critical target in oxidative stress? Am. J. Physiol. Cell Physiol. 311, C537–C543 (2016).

    PubMed  PubMed Central  Google Scholar 

  82. Serhan, C. N., Krishnamoorthy, S., Recchiuti, A. & Chiang, N. Novel anti-inflammatory—pro-resolving mediators and their receptors. Curr. Top. Med. Chem. 11, 629–647 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Radmark, O. & Samuelsson, B. Regulation of 5-lipoxygenase enzyme activity. Biochem. Biophys. Res. Commun. 338, 102–110 (2005).

    PubMed  CAS  Google Scholar 

  84. Fredman, G. et al. Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B4 synthesis by inhibiting a calcium-activated kinase pathway. Proc. Natl Acad. Sci. USA 111, 14530–14535 (2014).

    PubMed  CAS  Google Scholar 

  85. Dichlberger, A., Kovanen, P. T. & Schneider, W. J. Mast cells: from lipid droplets to lipid mediators. Clin. Sci. 125, 121–130 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Werz, O., Klemm, J., Samuelsson, B. & Radmark, O. 5-Lipoxygenase is phosphorylated by p38 kinase-dependent MAPKAP kinases. Proc. Natl Acad. Sci. USA 97, 5261–5266 (2000).

    PubMed  CAS  Google Scholar 

  87. Cai, B. et al. MerTK cleavage limits proresolving mediator biosynthesis and exacerbates tissue inflammation. Proc. Natl Acad. Sci. USA 113, 6526–6531 (2016).

    PubMed  CAS  Google Scholar 

  88. Cai, B. et al. MerTK signaling in macrophages promotes the synthesis of inflammation resolution mediators by suppressing CaMKII activity. Sci. Signal. 11, eaar3721 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. Dinarello, C. A. Interleukin-1β and the autoinflammatory diseases. N. Engl. J. Med. 360, 2467–2470 (2009).

    PubMed  CAS  Google Scholar 

  90. D’Elia, R. V., Harrison, K., Oyston, P. C., Lukaszewski, R. A. & Clark, G. C. Targeting the “cytokine storm” for therapeutic benefit. Clin. Vaccine Immunol. 20, 319–327 (2013).

    PubMed  PubMed Central  Google Scholar 

  91. English, J. T., Norris, P. C., Hodges, R. R., Dartt, D. A. & Serhan, C. N. Identification and profiling of specialized pro-resolving mediators in human tears by lipid mediator metabolomics. Prostaglandins Leukot. Essent. Fatty Acids 117, 17–27 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Arnardottir, H., Orr, S. K., Dalli, J. & Serhan, C. N. Human milk proresolving mediators stimulate resolution of acute inflammation. Mucosal Immunol. 9, 757–766 (2016).

    PubMed  CAS  Google Scholar 

  93. Kasikara, C., Doran, A. C., Cai, B. & Tabas, I. The role of non-resolving inflammation in atherosclerosis. J. Clin. Invest. 128, 2713–2723 (2018).

    PubMed  Google Scholar 

  94. Wallace, J. L., Vong, L., McKnight, W., Dicay, M. & Martin, G. R. Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology 137, 569–578 (2009).

    PubMed  CAS  Google Scholar 

  95. Han, X. & Boisvert, W. A. Interleukin-10 protects against atherosclerosis by modulating multiple atherogenic macrophage function. Thromb. Haemost. 113, 505–512 (2015).

    PubMed  Google Scholar 

  96. de Jong, R. J. et al. Protective aptitude of annexin A1 in arterial neointima formation in atherosclerosis-prone mice - brief report. Arterioscler. Thromb. Vasc. Biol. 37, 312–315 (2017).

    PubMed  Google Scholar 

  97. Zhang, R. et al. Hydrogen sulfide inhibits L-type calcium currents depending upon the protein sulfhydryl state in rat cardiomyocytes. PLOS ONE 7, e37073 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  98. Mani, S. et al. Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation 127, 2523–2534 (2013).

    PubMed  CAS  Google Scholar 

  99. Petri, M. H. et al. Aspirin-triggered lipoxin A4 inhibits atherosclerosis progression in apolipoprotein E−/− mice. Br. J. Pharmacol. 174, 4043–4054 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Krishnamoorthy, N. et al. Cutting edge: maresin-1 engages regulatory T cells to limit type 2 innate lymphoid cell activation and promote resolution of lung inflammation. J. Immunol. 194, 863–867 (2015).

    PubMed  CAS  Google Scholar 

  101. Foks, A. C., Lichtman, A. H. & Kuiper, J. Treating atherosclerosis with regulatory T cells. Arterioscler. Thromb. Vasc. Biol. 35, 280–287 (2015).

    PubMed  CAS  Google Scholar 

  102. Perretti, M., Leroy, X., Bland, E. J. & Montero-Melendez, T. Resolution pharmacology: opportunities for therapeutic innovation in inflammation. Trends Pharmacol. Sci. 36, 737–755 (2015).

    PubMed  CAS  Google Scholar 

  103. Bäck, M. et al. Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR review 7. Br. J. Pharmacol. 171, 3551–3574 (2014).

    PubMed  PubMed Central  Google Scholar 

  104. Petri, M. H. et al. The role of the FPR2/ALX receptor in atherosclerosis development and plaque stability. Cardiovasc. Res. 105, 65–74 (2015).

    PubMed  CAS  Google Scholar 

  105. Laguna-Fernandez, A. et al. ERV1/ChemR23 signaling protects from atherosclerosis by modifying oxLDL uptake and phagocytosis in macrophages. Circulation 138, 1693–1705 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  106. Kostopoulos, C. G., Spiroglou, S. G., Varakis, J. N., Apostolakis, E. & Papadaki, H. H. Chemerin and CMKLR1 expression in human arteries and periadventitial fat: a possible role for local chemerin in atherosclerosis? BMC Cardiovasc. Disord. 14, 56 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Ho, K. J. et al. Aspirin-triggered lipoxin and resolvin E1 modulate vascular smooth muscle phenotype and correlate with peripheral atherosclerosis. Am. J. Pathol. 177, 2116–2123 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  108. Drechsler, M. et al. Annexin A1 counteracts chemokine-induced arterial myeloid cell recruitment. Circ. Res. 116, 827–835 (2015).

    PubMed  CAS  Google Scholar 

  109. Fredman, G. et al. Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Sci. Transl Med. 7, 275ra220 (2015).

    Google Scholar 

  110. Petri, M. H. et al. Aspirin-triggered 15-epi-lipoxin A4 signals through FPR2/ALX in vascular smooth muscle cells and protects against intimal hyperplasia after carotid ligation. Int. J. Cardiol. 179, 370–372 (2015).

    PubMed  PubMed Central  Google Scholar 

  111. Akagi, D., Chen, M., Toy, R., Chatterjee, A. & Conte, M. S. Systemic delivery of proresolving lipid mediators resolvin D2 and maresin 1 attenuates intimal hyperplasia in mice. FASEB J. 29, 2504–2513 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Miyahara, T. et al. D-Series resolvin attenuates vascular smooth muscle cell activation and neointimal hyperplasia following vascular injury. FASEB J. 27, 2220–2232 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  113. El Kebir, D., Gjorstrup, P. & Filep, J. G. Resolvin E1 promotes phagocytosis-induced neutrophil apoptosis and accelerates resolution of pulmonary inflammation. Proc. Natl Acad. Sci. USA 109, 14983–14988 (2012).

    PubMed  CAS  Google Scholar 

  114. Herova, M., Schmid, M., Gemperle, C. & Hersberger, M. ChemR23, the receptor for chemerin and resolvin E1, is expressed and functional on M1 but not on M2 macrophages. J. Immunol. 194, 2330–2337 (2015).

    PubMed  CAS  Google Scholar 

  115. Ohira, T. et al. Resolvin E1 receptor activation signals phosphorylation and phagocytosis. J. Biol. Chem. 285, 3451–3461 (2010).

    PubMed  CAS  Google Scholar 

  116. Kennedy, A. J. & Davenport, A. P. International Union of Basic and Clinical Pharmacology CIII: chemerin receptors CMKLR1 (chemerin1) and GPR1 (chemerin2) nomenclature, pharmacology, and function. Pharmacol. Rev. 70, 174–196 (2018).

    CAS  Google Scholar 

  117. Lopez-Vicario, C. et al. Association of a variant in the gene encoding for ERV1/ChemR23 with reduced inflammation in visceral adipose tissue from morbidly obese individuals. Sci. Rep. 7, 15724 (2017).

    PubMed  PubMed Central  Google Scholar 

  118. Hasturk, H. et al. Resolvin E1 (RvE1) attenuates atherosclerotic plaque formation in diet and inflammation-induced atherogenesis. Arterioscler. Thromb. Vasc. Biol. 35, 1123–1133 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  119. Salic, K. et al. Resolvin E1 attenuates atherosclerosis in absence of cholesterol-lowering effects and on top of atorvastatin. Atherosclerosis 250, 158–165 (2016).

    PubMed  CAS  Google Scholar 

  120. Neves, K. B. et al. Chemerin regulates crosstalk between adipocytes and vascular cells through Nox. Hypertension 66, 657–666 (2015).

    PubMed  CAS  Google Scholar 

  121. Kunimoto, H. et al. Chemerin promotes the proliferation and migration of vascular smooth muscle and increases mouse blood pressure. Am. J. Physiol. Heart Circ. Physiol. 309, H1017–H1028 (2015).

    PubMed  CAS  Google Scholar 

  122. Aung, T. et al. Associations of omega-3 fatty acid supplement use with cardiovascular disease risks: meta-analysis of 10 trials involving 77917 individuals. JAMA Cardiol. 3, 225–234 (2018).

    PubMed  Google Scholar 

  123. The ASCEND Study Collaborative Group. Effects of n-3 fatty acid supplements in diabetes mellitus. N. Engl. J. Med. 379, 1540–1550 (2018).

    Google Scholar 

  124. Bhatt, D. L. et al. Rationale and design of REDUCE-IT: Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial. Clin. Cardiol. 40, 138–148 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. Bhatt, D. L. et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 380, 11–22 (2019).

    PubMed  Google Scholar 

  126. Elajami, T. K. et al. Specialized proresolving lipid mediators in patients with coronary artery disease and their potential for clot remodeling. FASEB J. 30, 2792–2801 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  127. Skarke, C. et al. Bioactive products formed in humans from fish oils. J. Lipid Res. 56, 1808–1820 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  128. Gromovsky, A. D. et al. Delta-5 fatty acid desaturase FADS1 impacts metabolic disease by balancing proinflammatory and proresolving lipid mediators. Arterioscler. Thromb. Vasc. Biol. 38, 218–231 (2018).

    PubMed  CAS  Google Scholar 

  129. Tuomisto, T. T. et al. Simvastatin has an anti-inflammatory effect on macrophages via upregulation of an atheroprotective transcription factor, Kruppel-like factor 2. Cardiovasc. Res. 78, 175–184 (2008).

    PubMed  CAS  Google Scholar 

  130. Wallace, J. L., Ianaro, A., Flannigan, K. L. & Cirino, G. Gaseous mediators in resolution of inflammation. Semin. Immunol. 27, 227–233 (2015).

    PubMed  CAS  Google Scholar 

  131. Dufton, N., Natividad, J., Verdu, E. F. & Wallace, J. L. Hydrogen sulfide and resolution of acute inflammation: a comparative study utilizing a novel fluorescent probe. Sci. Rep. 2, 499 (2012).

    PubMed  PubMed Central  Google Scholar 

  132. Wang, Y. et al. Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice. Arterioscler. Thromb. Vasc. Biol. 29, 173–179 (2009).

    PubMed  CAS  Google Scholar 

  133. Chiang, N. et al. Inhaled carbon monoxide accelerates resolution of inflammation via unique proresolving mediator-heme oxygenase-1 circuits. J. Immunol. 190, 6378–6388 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  134. Winkels, H., Ehinger, E., Ghosheh, Y., Wolf, D. & Ley, K. Atherosclerosis in the single-cell era. Curr. Opin. Lipidol 29, 389–396 (2018).

    PubMed  CAS  Google Scholar 

  135. Winkels, H. et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ. Res. 122, 1675–1688 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  136. Shibata, N. et al. 25-Hydroxycholesterol activates the integrated stress response to reprogram transcription and translation in macrophages. J. Biol. Chem. 288, 35812–35823 (2013).

    PubMed  CAS  Google Scholar 

  137. Talbot, C. P. J., Plat, J., Ritsch, A. & Mensink, R. P. Determinants of cholesterol efflux capacity in humans. Prog. Lipid Res. 69, 21–32 (2018).

    PubMed  CAS  Google Scholar 

  138. van Gils, J. M. et al. The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat. Immunol. 13, 136–143 (2012).

    PubMed  PubMed Central  Google Scholar 

  139. Swirski, F. K. et al. Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proc. Natl Acad. Sci. USA 103, 10340–10345 (2006).

    PubMed  CAS  Google Scholar 

  140. Williams, J. W. et al. Limited macrophage positional dynamics in progressing or regressing murine atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol. 38, 1702–1710 (2018).

    PubMed  CAS  Google Scholar 

  141. Nagenborg, J., Goossens, P., Biessen, E. A. L. & Donners, M. Heterogeneity of atherosclerotic plaque macrophage origin, phenotype and functions: Implications for treatment. Eur. J. Pharmacol. 816, 14–24 (2017).

    PubMed  CAS  Google Scholar 

  142. Allahverdian, S., Chehroudi, A. C., McManus, B. M., Abraham, T. & Francis, G. A. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation 129, 1551–1559 (2014).

    PubMed  CAS  Google Scholar 

  143. Bennett, M. R., Sinha, S. & Owens, G. K. Vascular smooth muscle cells in atherosclerosis. Circ. Res. 118, 692–702 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  144. Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013).

    PubMed  CAS  Google Scholar 

  145. Ensan, S. et al. Self-renewing resident arterial macrophages arise from embryonic CX3CR1+ precursors and circulating monocytes immediately after birth. Nat. Immunol. 17, 159–168 (2016).

    PubMed  CAS  Google Scholar 

  146. Quintar, A. et al. Endothelial protective monocyte patrolling in large arteries intensified by western diet and atherosclerosis. Circ. Res. 120, 1789–1799 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  147. Patel, A. A. et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med. 214, 1913–1923 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  148. Gautier, E. L., Jakubzick, C. & Randolph, G. J. Regulation of the migration and survival of monocyte subsets by chemokine receptors and its relevance to atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 29, 1412–1418 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  149. Di Gregoli, K. & Johnson, J. L. Role of colony-stimulating factors in atherosclerosis. Curr. Opin. Lipidol. 23, 412–421 (2012).

    PubMed  Google Scholar 

  150. Ushach, I. & Zlotnik, A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J. Leukoc. Biol. 100, 481–489 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  151. da Silva, R. F., Lappalainen, J., Lee-Rueckert, M. & Kovanen, P. T. Conversion of human M-CSF macrophages into foam cells reduces their proinflammatory responses to classical M1-polarizing activation. Atherosclerosis 248, 170–178 (2016).

    PubMed  Google Scholar 

  152. Kim, K. et al. Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models. Circ. Res. 123, 1127–1142 (2018).

    PubMed  CAS  Google Scholar 

  153. Colin, S., Chinetti-Gbaguidi, G. & Staels, B. Macrophage phenotypes in atherosclerosis. Immunol. Rev. 262, 153–166 (2014).

    PubMed  CAS  Google Scholar 

  154. Cochain, C. et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ. Res. 122, 1661–1674 (2018).

    PubMed  CAS  Google Scholar 

  155. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  156. Italiani, P. & Boraschi, D. From monocytes to M1/M2 macrophages: phenotypical versus functional differentiation. Front. Immunol. 5, 514 (2014).

    PubMed  PubMed Central  Google Scholar 

  157. Chinetti-Gbaguidi, G. et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways. Circ. Res. 108, 985–995 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  158. de Jong, R., Leoni, G., Drechsler, M. & Soehnlein, O. The advantageous role of annexin A1 in cardiovascular disease. Cell Adh. Migr. 11, 261–274 (2017).

    PubMed  Google Scholar 

  159. Li, Y. et al. Pleiotropic regulation of macrophage polarization and tumorigenesis by formyl peptide receptor-2. Oncogene 30, 3887–3899 (2011).

    PubMed  CAS  Google Scholar 

  160. Titos, E. et al. Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J. Immunol. 187, 5408–5418 (2011).

    PubMed  CAS  Google Scholar 

  161. Dalli, J. & Serhan, C. Macrophage proresolving mediators — the when and where. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MCHD-0001-2014 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Cai, B. et al. MerTK receptor cleavage promotes plaque necrosis and defective resolution in atherosclerosis. J. Clin. Invest. 127, 564–568 (2017).

    PubMed  PubMed Central  Google Scholar 

  163. Robbins, C. S. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med. 19, 1166–1172 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  164. Gordon, D., Reidy, M. A., Benditt, E. P. & Schwartz, S. M. Cell proliferation in human coronary arteries. Proc. Natl Acad. Sci. USA 87, 4600–4604 (1990).

    PubMed  CAS  Google Scholar 

  165. Kavurma, M. M., Rayner, K. J. & Karunakaran, D. The walking dead: macrophage inflammation and death in atherosclerosis. Curr. Opin. Lipidol. 28, 91–98 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  166. Tait, S. W., Ichim, G. & Green, D. R. Die another way — non-apoptotic mechanisms of cell death. J. Cell Sci. 127, 2135–2144 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  167. Das, G., Shravage, B. V. & Baehrecke, E. H. Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb. Perspect. Biol. 4, a008813 (2012).

    PubMed  PubMed Central  Google Scholar 

  168. Ouimet, M. et al. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab. 13, 655–667 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  169. Karunakaran, D. et al. Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis. Sci. Adv. 2, e1600224 (2016).

    PubMed  PubMed Central  Google Scholar 

  170. Andres, V., Pello, O. M. & Silvestre-Roig, C. Macrophage proliferation and apoptosis in atherosclerosis. Curr. Opin. Lipidol. 23, 429–438 (2012).

    PubMed  CAS  Google Scholar 

  171. Mai, J. et al. The atheroprotective role of lipoxin A4 prevents oxLDL-induced apoptotic signaling in macrophages via JNK pathway. Atherosclerosis 278, 259–268 (2018).

    PubMed  CAS  Google Scholar 

  172. Prieto, P. et al. Activation of autophagy in macrophages by pro-resolving lipid mediators. Autophagy 11, 1729–1744 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  173. Crisby, M. et al. Cell death in human atherosclerotic plaques involves both oncosis and apoptosis. Atherosclerosis 130, 17–27 (1997).

    PubMed  CAS  Google Scholar 

  174. Crisby, M. et al. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation 103, 926–933 (2001).

    PubMed  CAS  Google Scholar 

  175. Han, C. Z. & Ravichandran, K. S. Metabolic connections during apoptotic cell engulfment. Cell 147, 1442–1445 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  176. Hamada, M. et al. MafB promotes atherosclerosis by inhibiting foam-cell apoptosis. Nat. Commun. 5, 3147 (2014).

    PubMed  Google Scholar 

  177. Yurdagul, A. et al. Mechanisms and consequences of defective efferocytosis in atherosclerosis. Front. Cardiovasc. Med. 4, 86 (2017).

    PubMed  Google Scholar 

  178. Penaloza, C., Lin, L., Lockshin, R. A. & Zakeri, Z. Cell death in development: shaping the embryo. Histochem. Cell Biol. 126, 149–158 (2006).

    PubMed  CAS  Google Scholar 

  179. Nagata, S., Hanayama, R. & Kawane, K. Autoimmunity and the clearance of dead cells. Cell 140, 619–630 (2010).

    PubMed  CAS  Google Scholar 

  180. Elliott, M. R. & Ravichandran, K. S. The dynamics of apoptotic cell clearance. Dev. Cell 38, 147–160 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  181. Krishnamoorthy, S., Recchiuti, A., Chiang, N., Fredman, G. & Serhan, C. N. Resolvin D1 receptor stereoselectivity and regulation of inflammation and proresolving microRNAs. Am. J. Pathol. 180, 2018–2027 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  182. Godson, C. et al. Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J. Immunol. 164, 1663–1667 (2000).

    PubMed  CAS  Google Scholar 

  183. Mitchell, S. et al. Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J. Am. Soc. Nephrol. 13, 2497–2507 (2002).

    PubMed  CAS  Google Scholar 

  184. Campana, L. et al. The STAT3-IL-10-IL-6 pathway is a novel regulator of macrophage efferocytosis and phenotypic conversion in sterile liver injury. J. Immunol. 200, 1169–1187 (2018).

    PubMed  CAS  Google Scholar 

  185. Ogden, C. A. et al. Enhanced apoptotic cell clearance capacity and B cell survival factor production by IL-10-activated macrophages: implications for Burkitt’s lymphoma. J. Immunol. 174, 3015–3023 (2005).

    PubMed  CAS  Google Scholar 

  186. Cardilo-Reis, L. et al. Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol. Med. 4, 1072–1086 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  187. Green, D. R., Oguin, T. H. & Martinez, J. The clearance of dying cells: table for two. Cell Death Differ. 23, 915–926 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  188. Thorp, E. & Tabas, I. Mechanisms and consequences of efferocytosis in advanced atherosclerosis. J. Leukoc. Biol. 86, 1089–1095 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  189. Thorp, E., Subramanian, M. & Tabas, I. The role of macrophages and dendritic cells in the clearance of apoptotic cells in advanced atherosclerosis. Eur. J. Immunol. 41, 2515–2518 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  190. Tajbakhsh, A., Rezaee, M., Kovanen, P. T. & Sahebkar, A. Efferocytosis in atherosclerotic lesions: malfunctioning regulatory pathways and control mechanisms. Pharmacol. Ther. 188, 12–25 (2018).

    PubMed  CAS  Google Scholar 

  191. Tabas, I. The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ. Res. 107, 839–850 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  192. Tabas, I. Macrophage apoptosis in atherosclerosis: consequences on plaque progression and the role of endoplasmic reticulum stress. Antioxid. Redox Signal. 11, 2333–2339 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  193. Vengrenyuk, Y. et al. Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler. Thromb. Vasc. Biol. 35, 535–546 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  194. Penberthy, K. K. & Ravichandran, K. S. Apoptotic cell recognition receptors and scavenger receptors. Immunol. Rev. 269, 44–59 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  195. Thorp, E. et al. Shedding of the Mer tyrosine kinase receptor is mediated by ADAM17 protein through a pathway involving reactive oxygen species, protein kinase Cδ, and p38 mitogen-activated protein kinase (MAPK). J. Biol. Chem. 286, 33335–33344 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  196. Thorp, E., Cui, D., Schrijvers, D. M., Kuriakose, G. & Tabas, I. Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe−/− mice. Arterioscler. Thromb. Vasc. Biol. 28, 1421–1428 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  197. Ait-Oufella, H. et al. Defective mer receptor tyrosine kinase signaling in bone marrow cells promotes apoptotic cell accumulation and accelerates atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 28, 1429–1431 (2008).

    PubMed  CAS  Google Scholar 

  198. Gorovoy, M., Gaultier, A., Campana, W. M., Firestein, G. S. & Gonias, S. L. Inflammatory mediators promote production of shed LRP1/CD91, which regulates cell signaling and cytokine expression by macrophages. J. Leukoc. Biol. 88, 769–778 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  199. Yancey, P. G. et al. Macrophage LRP-1 controls plaque cellularity by regulating efferocytosis and Akt activation. Arterioscler. Thromb. Vasc. Biol. 30, 787–795 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  200. Overton, C. D., Yancey, P. G., Major, A. S., Linton, M. F. & Fazio, S. Deletion of macrophage LDL receptor-related protein increases atherogenesis in the mouse. Circ. Res. 100, 670–677 (2007).

    PubMed  CAS  Google Scholar 

  201. Foks, A. C. et al. Blockade of Tim-1 and Tim-4 enhances atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 36, 456–465 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  202. Tao, H. et al. Macrophage SR-BI mediates efferocytosis via Src/PI3K/Rac1 signaling and reduces atherosclerotic lesion necrosis. J. Lipid Res. 56, 1449–1460 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  203. Kojima, Y. et al. Cyclin-dependent kinase inhibitor 2B regulates efferocytosis and atherosclerosis. J. Clin. Invest. 124, 1083–1097 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  204. Helgadottir, A. et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316, 1491–1493 (2007).

    PubMed  CAS  Google Scholar 

  205. McPherson, R. et al. A common allele on chromosome 9 associated with coronary heart disease. Science 316, 1488–1491 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  206. Nanda, V. et al. CDKN2B regulates TGFβ signaling and smooth muscle cell investment of hypoxic neovessels. Circ. Res. 118, 230–240 (2016).

    PubMed  CAS  Google Scholar 

  207. Kojima, Y. et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 536, 86–90 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  208. Tsai, R. K. & Discher, D. E. Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J. Cell Biol. 180, 989–1003 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  209. Feig, J. E. et al. Regression of atherosclerosis is characterized by broad changes in the plaque macrophage transcriptome. PLOS ONE 7, e39790 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  210. Tang, X. et al. The effect of statin therapy on plaque regression following acute coronary syndrome: a meta-analysis of prospective trials. Coron. Artery Dis. 27, 636–649 (2016).

    PubMed  Google Scholar 

  211. Rosenson, R. S., Hegele, R. A., Fazio, S. & Cannon, C. P. The evolving future of PCSK9 inhibitors. J. Am. Coll. Cardiol. 72, 314–329 (2018).

    PubMed  CAS  Google Scholar 

  212. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    PubMed  CAS  Google Scholar 

  213. Dalli, J. & Serhan, C. N. Identification and structure elucidation of the pro-resolving mediators provides novel leads for resolution pharmacology. Br. J. Pharmacol. https://doi.org/10.1111/bph.14336 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Chiang, N. et al. Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 484, 524–528 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  215. Spite, M. et al. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature 461, 1287–1291 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  216. Romano, M., Cianci, E., Simiele, F. & Recchiuti, A. Lipoxins and aspirin-triggered lipoxins in resolution of inflammation. Eur. J. Pharmacol. 760, 49–63 (2015).

    PubMed  CAS  Google Scholar 

  217. Pope, N. H. et al. D-Series resolvins inhibit murine abdominal aortic aneurysm formation and increase M2 macrophage polarization. FASEB J. 30, 4192–4201 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  218. Petri, M. H. et al. Resolution of inflammation through the lipoxin and ALX/FPR2 receptor pathway protects against abdominal aortic aneurysms. JACC Basic Transl Sci. 3, 719–727 (2018).

    PubMed  PubMed Central  Google Scholar 

  219. Liu, G. et al. Resolvin E1 attenuates injury-induced vascular neointimal formation by inhibition of inflammatory responses and vascular smooth muscle cell migration. FASEB J. 32, 5413–5425 (2018).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

M.B.’s research is supported by grants from the Swedish Research Council (2014–2312), the Swedish Heart and Lung Foundation (20180571) and the Marianne and Marcus Wallenberg Foundation (2015.0104). A.Y.’s research is supported by the NIH (T32 HL007343-28 and K99 HL145131). I.T.’s research is supported by the NIH (R01 HL075662, R01 HL127464 and R01 HL132412). K.Ö.’s research is supported by the Academy of Finland (315568), the Aarne Koskelo Foundation and the Finnish Foundation for Cardiovascular Research. The Wihuri Research Institute is maintained by the Jenny and Antti Wihuri Foundation.

Reviewer information

Nature Reviews Cardiology thanks C. J. Binder, K. Ley, and the other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, discussed its content, wrote the manuscript and reviewed the manuscript before submission.

Corresponding author

Correspondence to Petri T. Kovanen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bäck, M., Yurdagul, A., Tabas, I. et al. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol 16, 389–406 (2019). https://doi.org/10.1038/s41569-019-0169-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-019-0169-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing