Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

PPAR control of metabolism and cardiovascular functions

Abstract

Peroxisome proliferator-activated receptor-α (PPARα), PPARδ and PPARγ are transcription factors that regulate gene expression following ligand activation. PPARα increases cellular fatty acid uptake, esterification and trafficking, and regulates lipoprotein metabolism genes. PPARδ stimulates lipid and glucose utilization by increasing mitochondrial function and fatty acid desaturation pathways. By contrast, PPARγ promotes fatty acid uptake, triglyceride formation and storage in lipid droplets, thereby increasing insulin sensitivity and glucose metabolism. PPARs also exert antiatherogenic and anti-inflammatory effects on the vascular wall and immune cells. Clinically, PPARγ activation by glitazones and PPARα activation by fibrates reduce insulin resistance and dyslipidaemia, respectively. PPARs are also physiological master switches in the heart, steering cardiac energy metabolism in cardiomyocytes, thereby affecting pathological heart failure and diabetic cardiomyopathy. Novel PPAR agonists in clinical development are providing new opportunities in the management of metabolic and cardiovascular diseases.

Key points

  • Peroxisome proliferator-activated receptors (PPARs) are fatty acid sensors that regulate whole-body metabolism.

  • Activation of PPARγ (for example, by glitazones) improves the management of diabetes mellitus by increasing insulin sensitivity.

  • Activation of PPARα (for example, by fibrates) normalizes atherogenic dyslipidaemia, thereby lowering the risk of cardiovascular disease.

  • PPARs are expressed in the heart, where they modulate lipid and glucose metabolism.

  • Failing or stressed hearts switch from the preferential use of fatty acids as energy substrates to glucose oxidation, with repression of the PPARα and PPARδ pathways.

  • Rescuing PPARδ or both PPARα and PPARδ signalling, particularly in early stages of cardiac remodelling, might be a promising therapeutic strategy for heart failure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metabolic switches driven by the PPAR and HIF–mTOR pathways during heart failure.
Fig. 2: PPAR regulation of cardiomyocyte metabolism.

Similar content being viewed by others

References

  1. WHO. Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (2017).

  2. Staels, B., Maes, M. & Zambon, A. Fibrates and future PPARalpha agonists in the treatment of cardiovascular disease. Nat. Clin. Pract. Cardiovasc. Med. 5, 542–553 (2008).

    CAS  PubMed  Google Scholar 

  3. Gross, B., Pawlak, M., Lefebvre, P. & Staels, B. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat. Rev. Endocrinol. 13, 36–49 (2017).

    CAS  PubMed  Google Scholar 

  4. Feige, J. N. & Auwerx, J. Transcriptional coregulators in the control of energy homeostasis. Trends Cell Biol. 17, 292–301 (2007).

    CAS  PubMed  Google Scholar 

  5. Pawlak, M., Lefebvre, P. & Staels, B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol. 62, 720–733 (2015).

    CAS  PubMed  Google Scholar 

  6. Oishi, Y. et al. Krüppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab. 1, 27–39 (2005).

    CAS  PubMed  Google Scholar 

  7. Lee, H. et al. Krüppel-like factor KLF8 plays a critical role in adipocyte differentiation. PLoS ONE 7, e52474 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, Y. et al. Krüppel-like factor 10 (KLF10) is transactivated by the transcription factor C/EBPβ and involved in early 3T3-L1 preadipocyte differentiation. J. Biol. Chem. 293, 14012–14021 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Drosatos, K. et al. Cardiac myocyte KLF5 regulates Ppara expression and cardiac function. Circ. Res. 118, 241–253 (2016).

    CAS  PubMed  Google Scholar 

  10. Prosdocimo, D. A. et al. KLF15 and PPARα cooperate to regulate cardiomyocyte lipid gene expression and oxidation. PPAR Res. 2015, 201625 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Oishi, Y. et al. SUMOylation of Krüppel-like transcription factor 5 acts as a molecular switch in transcriptional programs of lipid metabolism involving PPAR-delta. Nat. Med. 14, 656–666 (2008).

    CAS  PubMed  Google Scholar 

  12. Dubois, V., Eeckhoute, J., Lefebvre, P. & Staels, B. Distinct but complementary contributions of PPAR isotypes to energy homeostasis. J. Clin. Invest. 127, 1202–1214 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Bougarne, N. et al. Molecular actions of PPARα in lipid metabolism and inflammation. Endocr. Rev. 39, 760–802 (2018).

    PubMed  Google Scholar 

  14. Sasaki, Y. et al. Pemafibrate, a selective PPARα modulator, prevents non-alcoholic steatohepatitis development without reducing the hepatic triglyceride content. Sci. Rep. 10, 7818 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Choi, Y.-J. et al. Effects of the PPAR-δ agonist MBX-8025 on atherogenic dyslipidemia. Atherosclerosis 220, 470–476 (2012).

    CAS  PubMed  Google Scholar 

  16. Rastogi, A. et al. Abrogation of postprandial triglyceridemia with dual PPAR α/γ agonist in type 2 diabetes mellitus: a randomized, placebo-controlled study. Acta Diabetol. 57, 809–818 (2020).

    CAS  PubMed  Google Scholar 

  17. Ratziu, V. et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-α and -δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 150, 1147–1159.e5 (2016).

    CAS  PubMed  Google Scholar 

  18. Lefere, S. et al. Differential effects of selective- and pan-PPAR agonists on experimental steatohepatitis and hepatic macrophages. J. Hepatol. 73, 757–770 (2020).

    CAS  PubMed  Google Scholar 

  19. He, B. K. et al. In vitro and in vivo characterizations of chiglitazar, a newly identified PPAR pan-agonist. PPAR Res. 2012, 546548 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Grabacka, M., Pierzchalska, M., Dean, M. & Reiss, K. Regulation of ketone body metabolism and the role of PPARα. Int. J. Mol. Sci. 17, 2093 (2016).

    PubMed Central  Google Scholar 

  21. Guan, D. et al. Diet-induced circadian enhancer remodeling synchronizes opposing hepatic lipid metabolic processes. Cell 174, 831–842.e12 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Drosatos, K. et al. Peroxisome proliferator-activated receptor-γ activation prevents sepsis-related cardiac dysfunction and mortality in mice. Circ. Heart Fail. 6, 550–562 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Paumelle, R. et al. Hepatic PPARα is critical in the metabolic adaptation to sepsis. J. Hepatol. 70, 963–973 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Seok, S. et al. Fasting-induced JMJD3 histone demethylase epigenetically activates mitochondrial fatty acid β-oxidation. J. Clin. Invest. 128, 3144–3159 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. Iershov, A. et al. The class 3 PI3K coordinates autophagy and mitochondrial lipid catabolism by controlling nuclear receptor PPARα. Nat. Commun. 10, 1566 (2019).

    PubMed  PubMed Central  Google Scholar 

  26. Zhao, Z. et al. Hepatic PPARα function is controlled by polyubiquitination and proteasome-mediated degradation through the coordinated actions of PAQR3 and HUWE1. Hepatology 68, 289–303 (2018).

    CAS  PubMed  Google Scholar 

  27. Francque, S. M., van der Graaff, D. & Kwanten, W. J. Non-alcoholic fatty liver disease and cardiovascular risk: pathophysiological mechanisms and implications. J. Hepatol. 65, 425–443 (2016).

    CAS  PubMed  Google Scholar 

  28. Francque, S. et al. PPARα gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. J. Hepatol. 63, 164–173 (2015).

    CAS  PubMed  Google Scholar 

  29. Liang, N. et al. Hepatocyte-specific loss of GPS2 in mice reduces non-alcoholic steatohepatitis via activation of PPARα. Nat. Commun. 10, 1684 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. Montagner, A. et al. Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut 65, 1202–1214 (2016).

    CAS  PubMed  Google Scholar 

  31. Stec, D. E. et al. Loss of hepatic PPARα promotes inflammation and serum hyperlipidemia in diet-induced obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 317, R733–R745 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Régnier, M. et al. Hepatocyte-specific deletion of Pparα promotes NAFLD in the context of obesity. Sci. Rep. 10, 6489 (2020).

    PubMed  PubMed Central  Google Scholar 

  33. Brocker, C. N. et al. Extrahepatic PPARα modulates fatty acid oxidation and attenuates fasting-induced hepatosteatosis in mice. J. Lipid Res. 59, 2140–2152 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gaich, G. et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 18, 333–340 (2013).

    CAS  PubMed  Google Scholar 

  35. Sanyal, A. et al. Pegbelfermin (BMS-986036), a PEGylated fibroblast growth factor 21 analogue, in patients with non-alcoholic steatohepatitis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet 392, 2705–2717 (2019).

    PubMed  Google Scholar 

  36. Zarei, M., Pizarro-Delgado, J., Barroso, E., Palomer, X. & Vázquez-Carrera, M. Targeting FGF21 for the treatment of nonalcoholic steatohepatitis. Trends Pharmacol. Sci. 41, 199–208 (2020).

    CAS  PubMed  Google Scholar 

  37. Hennuyer, N. et al. The novel selective PPARα modulator (SPPARMα) pemafibrate improves dyslipidemia, enhances reverse cholesterol transport and decreases inflammation and atherosclerosis. Atherosclerosis 249, 200–208 (2016).

    CAS  PubMed  Google Scholar 

  38. Sairyo, M. et al. A novel selective PPARα modulator (SPPARMα), K-877 (pemafibrate), attenuates postprandial hypertriglyceridemia in mice. J. Atheroscler. Thromb. 25, 142–152 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Othman, A. et al. Fenofibrate lowers atypical sphingolipids in plasma of dyslipidemic patients: A novel approach for treating diabetic neuropathy? J. Clin. Lipidol. 9, 568–575 (2015).

    PubMed  Google Scholar 

  40. Holm, L. J. et al. Fenofibrate increases very-long-chain sphingolipids and improves blood glucose homeostasis in NOD mice. Diabetologia 62, 2262–2272 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Keech, A. et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366, 1849–1861 (2005).

    CAS  PubMed  Google Scholar 

  42. ACCORD Study Group et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 362, 1563–1574 (2010).

    Google Scholar 

  43. Gutiérrez-Cuevas, J. et al. Prolonged-release pirfenidone prevents obesity-induced cardiac steatosis and fibrosis in a mouse NASH model. Cardiovasc Drugs Ther. https://doi.org/10.1007/s10557-020-07014-9 (2020).

    Article  Google Scholar 

  44. Barroso, E. et al. The PPARβ/δ activator GW501516 prevents the down-regulation of AMPK caused by a high-fat diet in liver and amplifies the PGC-1α-lipin 1-PPARα pathway leading to increased fatty acid oxidation. Endocrinology 152, 1848–1859 (2011).

    CAS  PubMed  Google Scholar 

  45. Zarei, M. et al. Hepatic regulation of VLDL receptor by PPARβ/δ and FGF21 modulates non-alcoholic fatty liver disease. Mol. Metab. 8, 117–131 (2018).

    CAS  PubMed  Google Scholar 

  46. Wolf Greenstein, A. et al. Hepatocyte-specific, PPARγ-regulated mechanisms to promote steatosis in adult mice. J. Endocrinol. 232, 107–121 (2017).

    PubMed  Google Scholar 

  47. Li, X. et al. MicroRNA-34a and microRNA-34c promote the activation of human hepatic stellate cells by targeting peroxisome proliferator-activated receptor γ. Mol. Med. Rep. 11, 1017–1024 (2015).

    CAS  PubMed  Google Scholar 

  48. Oikonomou, E. K. & Antoniades, C. The role of adipose tissue in cardiovascular health and disease. Nat. Rev. Cardiol. 16, 83–99 (2019).

    PubMed  Google Scholar 

  49. Ha, E. E. & Bauer, R. C. Emerging roles for adipose tissue in cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 38, e137–e144 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dean, J. M. et al. MED19 regulates adipogenesis and maintenance of white adipose tissue mass by mediating PPARγ-dependent gene expression. Cell Rep. 33, 108228 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. El Ouarrat, D. et al. TAZ is a negative regulator of PPARγ activity in adipocytes and TAZ deletion improves insulin sensitivity and glucose tolerance. Cell Metab. 31, 162–173.e5 (2020).

    CAS  PubMed  Google Scholar 

  52. Fujiki, K. et al. PPARγ-induced PARylation promotes local DNA demethylation by production of 5-hydroxymethylcytosine. Nat. Commun. 4, 2262 (2013).

    PubMed  Google Scholar 

  53. Bian, F. et al. TET2 facilitates PPARγ agonist-mediated gene regulation and insulin sensitization in adipocytes. Metab. Clin. Exp. 89, 39–47 (2018).

    CAS  PubMed  Google Scholar 

  54. Peng, J. et al. An Hsp20-FBXO4 axis regulates adipocyte function through modulating PPARγ ubiquitination. Cell Rep. 23, 3607–3620 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Virtue, S. et al. Peroxisome proliferator-activated receptor γ2 controls the rate of adipose tissue lipid storage and determines metabolic flexibility. Cell Rep. 24, 2005–2012.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Katafuchi, T. et al. PPARγ-K107 SUMOylation regulates insulin sensitivity but not adiposity in mice. Proc. Natl Acad. Sci. USA 115, 12102–12111 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bastie, C., Luquet, S., Holst, D., Jehl-Pietri, C. & Grimaldi, P. A. Alterations of peroxisome proliferator-activated receptor delta activity affect fatty acid-controlled adipose differentiation. J. Biol. Chem. 275, 38768–38773 (2000).

    CAS  PubMed  Google Scholar 

  58. Kang, K. et al. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab. 7, 485–495 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, Y.-X. et al. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113, 159–170 (2003).

    CAS  PubMed  Google Scholar 

  60. Doktorova, M. et al. Intestinal PPARδ protects against diet-induced obesity, insulin resistance and dyslipidemia. Sci. Rep. 7, 846 (2017).

    PubMed  PubMed Central  Google Scholar 

  61. Bays, H. E. et al. MBX-8025, a novel peroxisome proliferator receptor-delta agonist: lipid and other metabolic effects in dyslipidemic overweight patients treated with and without atorvastatin. J. Clin. Endocrinol. Metab. 96, 2889–2897 (2011).

    CAS  PubMed  Google Scholar 

  62. Qiang, L. et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell 150, 620–632 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hall, J. A. et al. Obesity-linked PPARγ S273 phosphorylation promotes insulin resistance through growth differentiation factor 3. Cell Metab. 32, 665–675.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kraakman, M. J. et al. PPARγ deacetylation dissociates thiazolidinedione’s metabolic benefits from its adverse effects. J. Clin. Invest. 128, 2600–2612 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. Barbera, M. J. et al. Peroxisome proliferator-activated receptor alpha activates transcription of the brown fat uncoupling protein-1 gene. A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. J. Biol. Chem. 276, 1486–1493 (2001).

    CAS  PubMed  Google Scholar 

  66. Hondares, E. et al. Peroxisome proliferator-activated receptor α (PPARα) induces PPARγ coactivator 1α (PGC-1α) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16. J. Biol. Chem. 286, 43112–43122 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rachid, T. L. et al. Fenofibrate (PPARalpha agonist) induces beige cell formation in subcutaneous white adipose tissue from diet-induced male obese mice. Mol. Cell. Endocrinol. 402, 86–94 (2015).

    CAS  PubMed  Google Scholar 

  68. Zhou, L. et al. Coordination among lipid droplets, peroxisomes, and mitochondria regulates energy expenditure through the CIDE-ATGL-PPARα pathway in adipocytes. Diabetes 67, 1935–1948 (2018).

    CAS  PubMed  Google Scholar 

  69. Jeong, S. et al. Effects of fenofibrate on high-fat diet-induced body weight gain and adiposity in female C57BL/6J mice. Metabolism 53, 1284–1289 (2004).

    CAS  PubMed  Google Scholar 

  70. Xiong, W. et al. Brown adipocyte-specific PPARγ (peroxisome proliferator-activated receptor γ) deletion impairs perivascular adipose tissue development and enhances atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 38, 1738–1747 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nauck, M. A., Meier, J. J., Cavender, M. A., Abd El Aziz, M. & Drucker, D. J. Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation 136, 849–870 (2017).

    CAS  PubMed  Google Scholar 

  72. Marx, N. Reduction of cardiovascular risk in patients with T2DM by GLP-1 receptor agonists: a shift in paradigm driven by data from large cardiovascular outcome trials. Eur. Heart J. 41, 3359–3362 (2020).

    PubMed  Google Scholar 

  73. Tang, W. H. W., Kitai, T. & Hazen, S. L. Gut microbiota in cardiovascular health and disease. Circ. Res. 120, 1183–1196 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. den Besten, G. et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 64, 2398–2408 (2015).

    Google Scholar 

  75. Nepelska, M. et al. Commensal gut bacteria modulate phosphorylation-dependent PPARγ transcriptional activity in human intestinal epithelial cells. Sci. Rep. 7, 43199 (2017).

    PubMed  PubMed Central  Google Scholar 

  76. Byndloss, M. X. et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357, 570–575 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Tomas, J. et al. High-fat diet modifies the PPAR-γ pathway leading to disruption of microbial and physiological ecosystem in murine small intestine. Proc. Natl Acad. Sci. USA 113, E5934–E5943 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Duszka, K. et al. Complementary intestinal mucosa and microbiota responses to caloric restriction. Sci. Rep. 8, 11338 (2018).

    PubMed  PubMed Central  Google Scholar 

  79. Colin, S. et al. Activation of intestinal peroxisome proliferator-activated receptor-α increases high-density lipoprotein production. Eur. Heart J. 34, 2566–2574 (2013).

    CAS  PubMed  Google Scholar 

  80. Takei, K. et al. Effects of K-877, a novel selective PPARα modulator, on small intestine contribute to the amelioration of hyperlipidemia in low-density lipoprotein receptor knockout mice. J. Pharmacol. Sci. 133, 214–222 (2017).

    CAS  PubMed  Google Scholar 

  81. Daoudi, M. et al. PPARβ/δ activation induces enteroendocrine L cell GLP-1 production. Gastroenterology 140, 1564–1574 (2011).

    CAS  PubMed  Google Scholar 

  82. Luquet, S. et al. Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability. FASEB J. 17, 2299–2301 (2003).

    CAS  PubMed  Google Scholar 

  83. Wang, Y.-X. et al. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol. 2, e294 (2004).

    PubMed  PubMed Central  Google Scholar 

  84. Koh, J.-H. et al. PPARβ is essential for maintaining normal levels of PGC-1α and mitochondria and for the increase in muscle mitochondria induced by exercise. Cell Metab. 25, 1176–1185.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Koh, J.-H. et al. AMPK and PPARβ positive feedback loop regulates endurance exercise training-mediated GLUT4 expression in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 316, E931–E939 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Le Garf, S. et al. Complementary immunometabolic effects of exercise and PPARβ/δ agonist in the context of diet-induced weight loss in obese female mice. Int. J. Mol. Sci. 20, 5182 (2019).

    PubMed Central  Google Scholar 

  87. Fan, W. et al. PPARδ promotes running endurance by preserving glucose. Cell Metab. 25, 1186–1193.e4 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Finck, B. N. et al. A potential link between muscle peroxisome proliferator- activated receptor-alpha signaling and obesity-related diabetes. Cell Metab. 1, 133–144 (2005).

    CAS  PubMed  Google Scholar 

  89. Bhattacharjee, S., Das, N., Mandala, A., Mukhopadhyay, S. & Roy, S. S. Fenofibrate reverses palmitate induced impairment in glucose uptake in skeletal muscle cells by preventing cytosolic ceramide accumulation. Cell. Physiol. Biochem. 37, 1315–1328 (2015).

    CAS  PubMed  Google Scholar 

  90. Libby, P. et al. Atherosclerosis. Nat. Rev. Dis. Prim. 5, 56 (2019).

    PubMed  Google Scholar 

  91. Mundi, S. et al. Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review. Cardiovasc. Res. 114, 35–52 (2018).

    CAS  PubMed  Google Scholar 

  92. Marx, N., Duez, H., Fruchart, J.-C. & Staels, B. Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells. Circ. Res. 94, 1168–1178 (2004).

    CAS  PubMed  Google Scholar 

  93. De Silva, T. M., Li, Y., Kinzenbaw, D. A., Sigmund, C. D. & Faraci, F. M. Endothelial PPARγ (peroxisome proliferator-activated receptor-γ) is essential for preventing endothelial dysfunction with aging. Hypertension 72, 227–234 (2018).

    PubMed  Google Scholar 

  94. Li, C. G. et al. PPARγ interaction with UBR5/ATMIN promotes DNA repair to maintain endothelial homeostasis. Cell Rep. 26, 1333–1343.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mao, H. et al. Endothelial LRP1 regulates metabolic responses by acting as a co-activator of PPARγ. Nat. Commun. 8, 14960 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Calvier, L. et al. PPARγ links BMP2 and TGFβ1 pathways in vascular smooth muscle cells, regulating cell proliferation and glucose metabolism. Cell Metab. 25, 1118–1134.e7 (2017).

    CAS  PubMed  Google Scholar 

  97. Yu, J. et al. DNMT1-PPARγ pathway in macrophages regulates chronic inflammation and atherosclerosis development in mice. Sci. Rep. 6, 30053 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Bouhlel, M. A. et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab. 6, 137–143 (2007).

    CAS  PubMed  Google Scholar 

  99. Nelson, V. L. et al. PPARγ is a nexus controlling alternative activation of macrophages via glutamine metabolism. Genes Dev. 32, 1035–1044 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Jordan, S. et al. Dietary intake regulates the circulating inflammatory monocyte pool. Cell 178, 1102–1114.e17 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Barish, G. D. et al. PPARdelta regulates multiple proinflammatory pathways to suppress atherosclerosis. Proc. Natl Acad. Sci. USA 105, 4271–4276 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Tian, X. Y. et al. PPARδ activation protects endothelial function in diabetic mice. Diabetes 61, 3285–3293 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Toral, M. et al. Role of UCP2 in the protective effects of PPARβ/δ activation on lipopolysaccharide-induced endothelial dysfunction. Biochem. Pharmacol. 110–111, 25–36 (2016).

    PubMed  Google Scholar 

  104. Fang, X. et al. Activation of PPAR-δ induces microRNA-100 and decreases the uptake of very low-density lipoprotein in endothelial cells. Br. J. Pharmacol. 172, 3728–3736 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hwang, J. S. et al. Sirtuin 1 mediates the actions of peroxisome proliferator-activated receptor δ on the oxidized low-density lipoprotein-triggered migration and proliferation of vascular smooth muscle cells. Mol. Pharmacol. 90, 522–529 (2016).

    CAS  PubMed  Google Scholar 

  106. Yue, T. L. et al. In vivo myocardial protection from ischemia/reperfusion injury by the peroxisome proliferator–activated receptor-γ agonist rosiglitazone. Circulation 104, 2588–2594 (2001).

    CAS  Google Scholar 

  107. Yue, T. et al. Activation of peroxisome proliferator-activated receptor-alpha protects the heart from ischemia/reperfusion injury. Circulation 108, 2393–2399 (2003).

    CAS  PubMed  Google Scholar 

  108. Kapoor, A., Collino, M., Castiglia, S., Fantozzi, R. & Thiemermann, C. Activation of peroxisome proliferator-activated receptor-beta/delta attenuates myocardial ischemia/reperfusion injury in the rat. Shock 34, 117–124 (2010).

    CAS  PubMed  Google Scholar 

  109. el Azzouzi, H. et al. Peroxisome proliferator-activated receptor (PPAR) gene profiling uncovers insulin-like growth factor-1 as a PPARalpha target gene in cardioprotection. J. Biol. Chem. 286, 14598–14607 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Yue, T.-L. et al. Rosiglitazone treatment in Zucker diabetic fatty rats is associated with ameliorated cardiac insulin resistance and protection from ischemia/reperfusion-induced myocardial injury. Diabetes 54, 554–562 (2005).

    CAS  PubMed  Google Scholar 

  111. Morrison, A., Yan, X., Tong, C. & Li, J. Acute rosiglitazone treatment is cardioprotective against ischemia-reperfusion injury by modulating AMPK, Akt, and JNK signaling in nondiabetic mice. Am. J. Physiol. Heart Circ. Physiol. 301, H895–H902 (2011).

    CAS  PubMed  Google Scholar 

  112. Xiang, A. H. et al. Effect of pioglitazone on pancreatic beta-cell function and diabetes risk in Hispanic women with prior gestational diabetes. Diabetes 55, 517–522 (2006).

    CAS  PubMed  Google Scholar 

  113. Dormandy, J. A. et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366, 1279–1289 (2005).

    CAS  PubMed  Google Scholar 

  114. Kernan, W. N. et al. Pioglitazone after ischemic stroke or transient ischemic attack. N. Engl. J. Med. 374, 1321–1331 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kalliora, C. et al. Dual peroxisome-proliferator-activated-receptor-α/γ activation inhibits SIRT1-PGC1α axis and causes cardiac dysfunction. JCI Insight 5, e129556 (2019).

    Google Scholar 

  116. Duan, S. Z., Ivashchenko, C. Y., Russell, M. W., Milstone, D. S. & Mortensen, R. M. Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-gamma both induce cardiac hypertrophy in mice. Circ. Res. 97, 372–379 (2005).

    CAS  PubMed  Google Scholar 

  117. Sena, S. et al. Cardiac hypertrophy caused by peroxisome proliferator- activated receptor-gamma agonist treatment occurs independently of changes in myocardial insulin signaling. Endocrinology 148, 6047–6053 (2007).

    CAS  PubMed  Google Scholar 

  118. Barbieri, M. et al. Effects of PPARs agonists on cardiac metabolism in littermate and cardiomyocyte-specific PPAR-γ-knockout (CM-PGKO) mice. PLoS ONE 7, e35999 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. US National Library of Medicine. Pemafibrate to reduce cardiovascular outcomes by reducing triglycerides in patients with diabetes (PROMINENT). ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03071692 (2017).

  120. Pradhan, A. D. et al. Rationale and design of the pemafibrate to reduce cardiovascular outcomes by reducing triglycerides in patients with diabetes (PROMINENT) study. Am. Heart J. 206, 80–93 (2018).

    CAS  PubMed  Google Scholar 

  121. Araki, E. et al. Effects of pemafibrate, a novel selective PPARα modulator, on lipid and glucose metabolism in patients with type 2 diabetes and hypertriglyceridemia: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care 41, 538–546 (2018).

    CAS  PubMed  Google Scholar 

  122. Ishibashi, S. et al. Efficacy and safety of pemafibrate (K-877), a selective peroxisome proliferator-activated receptor α modulator, in patients with dyslipidemia: results from a 24-week, randomized, double blind, active-controlled, phase 3 trial. J. Clin. Lipidol. 12, 173–184 (2018).

    PubMed  Google Scholar 

  123. Madrazo, J. A. & Kelly, D. P. The PPAR trio: regulators of myocardial energy metabolism in health and disease. J. Mol. Cell. Cardiol. 44, 968–975 (2008).

    CAS  PubMed  Google Scholar 

  124. Pol, C. J., Lieu, M. & Drosatos, K. PPARs: protectors or opponents of myocardial function? PPAR Res. 2015, 835985 (2015).

    PubMed  PubMed Central  Google Scholar 

  125. Lehman, J. J. & Kelly, D. P. Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin. Exp. Pharmacol. Physiol. 29, 339–345 (2002).

    CAS  PubMed  Google Scholar 

  126. Mirtschink, P. & Krek, W. Hypoxia-driven glycolytic and fructolytic metabolic programs: Pivotal to hypertrophic heart disease. Biochim. Biophys. Acta 1863, 1822–1828 (2016).

    CAS  PubMed  Google Scholar 

  127. Ritterhoff, J. et al. Metabolic remodeling promotes cardiac hypertrophy by directing glucose to aspartate biosynthesis. Circ. Res. 126, 182–196 (2020).

    CAS  PubMed  Google Scholar 

  128. Cluntun, A. A. et al. The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure. Cell Metab. 33, 629–648.E10 (2021).

    CAS  PubMed  Google Scholar 

  129. Zhang, Y. et al. Mitochondrial pyruvate carriers are required for myocardial stress adaptation. Nat. Metab. 2, 1248–1264 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Cardoso, A. C. et al. Mitochondrial substrate utilization regulates cardiomyocyte cell cycle progression. Nat. Metab. 2, 167–178 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Lopaschuk, G. D., Collins-Nakai, R. L. & Itoi, T. Developmental changes in energy substrate use by the heart. Cardiovasc. Res. 26, 1172–1180 (1992).

    CAS  PubMed  Google Scholar 

  132. Dorn, G. W., Vega, R. B. & Kelly, D. P. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev. 29, 1981–1991 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Son, N.-H. et al. Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice. J. Clin. Invest. 117, 2791–2801 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Watanabe, K. et al. Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J. Biol. Chem. 275, 22293–22299 (2000).

    CAS  PubMed  Google Scholar 

  135. Campbell, F. M. et al. A role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. J. Biol. Chem. 277, 4098–4103 (2002).

    CAS  PubMed  Google Scholar 

  136. Leone, T. C., Weinheimer, C. J. & Kelly, D. P. A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc. Natl Acad. Sci. USA 96, 7473–7478 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Luptak, I. et al. Decreased contractile and metabolic reserve in peroxisome proliferator-activated receptor-alpha-null hearts can be rescued by increasing glucose transport and utilization. Circulation 112, 2339–2346 (2005).

    CAS  PubMed  Google Scholar 

  138. Haemmerle, G. et al. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. Nat. Med. 17, 1076–1085 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Finck, B. N. et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J. Clin. Invest. 109, 121–130 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Burkart, E. M. et al. Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J. Clin. Invest. 117, 3930–3939 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu, J. et al. Peroxisome proliferator-activated receptor β/δ activation in adult hearts facilitates mitochondrial function and cardiac performance under pressure-overload condition. Hypertension 57, 223–230 (2011).

    CAS  PubMed  Google Scholar 

  142. Cheng, L. et al. Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat. Med. 10, 1245–1250 (2004).

    CAS  PubMed  Google Scholar 

  143. Ding, G. et al. Cardiac peroxisome proliferator-activated receptor gamma is essential in protecting cardiomyocytes from oxidative damage. Cardiovasc. Res. 76, 269–279 (2007).

    CAS  PubMed  Google Scholar 

  144. Son, N.-H. et al. PPARγ-induced cardiolipotoxicity in mice is ameliorated by PPARα deficiency despite increases in fatty acid oxidation. J. Clin. Invest. 120, 3443–3454 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Bosma, M. et al. Sequestration of fatty acids in triglycerides prevents endoplasmic reticulum stress in an in vitro model of cardiomyocyte lipotoxicity. Biochim. Biophys. Acta 1841, 1648–1655 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Bertero, E. & Maack, C. Metabolic remodelling in heart failure. Nat. Rev. Cardiol. 15, 457–470 (2018).

    CAS  PubMed  Google Scholar 

  147. Wende, A. R., Brahma, M. K., McGinnis, G. R. & Young, M. E. Metabolic origins of heart failure. JACC Basic. Transl. Sci. 2, 297–310 (2017).

    PubMed  PubMed Central  Google Scholar 

  148. Krishnan, J. et al. Activation of a HIF1alpha-PPARgamma axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab. 9, 512–524 (2009).

    CAS  PubMed  Google Scholar 

  149. Shende, P. et al. Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice. Circulation 123, 1073–1082 (2011).

    PubMed  Google Scholar 

  150. Barger, P. M., Brandt, J. M., Leone, T. C., Weinheimer, C. J. & Kelly, D. P. Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth. J. Clin. Invest. 105, 1723–1730 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Cole, M. A. et al. On the pivotal role of PPARα in adaptation of the heart to hypoxia and why fat in the diet increases hypoxic injury. FASEB J. 30, 2684–2697 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. el Azzouzi, H. et al. The hypoxia-inducible microRNA cluster miR-199a214 targets myocardial PPARδ and impairs mitochondrial fatty acid oxidation. Cell Metab. 18, 341–354 (2013).

    CAS  PubMed  Google Scholar 

  153. Tran, D. H. et al. Chronic activation of hexosamine biosynthesis in the heart triggers pathological cardiac remodeling. Nat. Commun. 11, 1771 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Neglia, D. et al. Impaired myocardial metabolic reserve and substrate selection flexibility during stress in patients with idiopathic dilated cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 293, H3270–H3278 (2007).

    CAS  PubMed  Google Scholar 

  155. Murashige, D. et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 370, 364–368 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Schulze, P. C., Drosatos, K. & Goldberg, I. J. Lipid use and misuse by the heart. Circ. Res. 118, 1736–1751 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Dass, S. et al. Exacerbation of cardiac energetic impairment during exercise in hypertrophic cardiomyopathy: a potential mechanism for diastolic dysfunction. Eur. Heart J. 36, 1547–1554 (2015).

    CAS  PubMed  Google Scholar 

  158. Levelt, E. et al. Relationship between left ventricular structural and metabolic remodelling in type 2 diabetes. Diabetes 65, 44–52 (2016).

    CAS  PubMed  Google Scholar 

  159. Mather, K. J. et al. Assessment of myocardial metabolic flexibility and work efficiency in human type 2 diabetes using 16-[18F]fluoro-4-thiapalmitate, a novel PET fatty acid tracer. Am. J. Physiol. Endocrinol. Metab. 310, E452–E460 (2016).

    CAS  PubMed  Google Scholar 

  160. Kato, T. et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ. Heart Fail. 3, 420–430 (2010).

    PubMed  Google Scholar 

  161. McGill, J. B. et al. Potentiation of abnormalities in myocardial metabolism with the development of diabetes in women with obesity and insulin resistance. J. Nucl. Cardiol. 18, 421–429; quiz 432–433 (2011).

    PubMed  Google Scholar 

  162. Montaigne, D. et al. Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation 130, 554–564 (2014).

    CAS  PubMed  Google Scholar 

  163. Levelt, E. et al. Cardiac energetics, oxygenation, and perfusion during increased workload in patients with type 2 diabetes mellitus. Eur. Heart J. 37, 3461–3469 (2016).

    PubMed  Google Scholar 

  164. Jia, G., Hill, M. A. & Sowers, J. R. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ. Res. 122, 624–638 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Marfella, R. et al. Myocardial lipid accumulation in patients with pressure-overloaded heart and metabolic syndrome. J. Lipid Res. 50, 2314–2323 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Shao, D. et al. Increasing fatty acid oxidation prevents high-fat diet-induced cardiomyopathy through regulating parkin-mediated mitophagy. Circulation 142, 983–997 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Planavila, A. et al. Peroxisome proliferator-activated receptor beta/delta activation inhibits hypertrophy in neonatal rat cardiomyocytes. Cardiovasc. Res. 65, 832–841 (2005).

    CAS  PubMed  Google Scholar 

  168. Park, S.-Y. et al. Cardiac-specific overexpression of peroxisome proliferator-activated receptor-alpha causes insulin resistance in heart and liver. Diabetes 54, 2514–2524 (2005).

    CAS  PubMed  Google Scholar 

  169. Kaimoto, S. et al. Activation of PPAR-α in the early stage of heart failure maintained myocardial function and energetics in pressure-overload heart failure. Am. J. Physiol. Heart Circ. Physiol. 312, H305–H313 (2017).

    PubMed  Google Scholar 

  170. Young, M. E., Laws, F. A., Goodwin, G. W. & Taegtmeyer, H. Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart. J. Biol. Chem. 276, 44390–44395 (2001).

    CAS  PubMed  Google Scholar 

  171. Labinskyy, V. et al. Chronic activation of peroxisome proliferator-activated receptor-alpha with fenofibrate prevents alterations in cardiac metabolic phenotype without changing the onset of decompensation in pacing-induced heart failure. J. Pharmacol. Exp. Ther. 321, 165–171 (2007).

    CAS  PubMed  Google Scholar 

  172. Deprince, A., Haas, J. T. & Staels, B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Mol. Metab. 42, 101092 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Berthier, A., Johanns, M., Zummo, F. P., Lefebvre, P. & Staels, B. PPARs in liver physiology. Biochim. Biophys. Acta Mol. Basis Dis. 1867, 166097 (2021).

    CAS  PubMed  Google Scholar 

  174. Carley, A. N. & Lewandowski, E. D. Triacylglycerol turnover in the failing heart. Biochim. Biophys. Acta 1861, 1492–1499 (2016).

    CAS  PubMed  Google Scholar 

  175. Banke, N. H. et al. Preferential oxidation of triacylglyceride-derived fatty acids in heart is augmented by the nuclear receptor PPARalpha. Circ. Res. 107, 233–241 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Lahey, R., Wang, X., Carley, A. N. & Lewandowski, E. D. Dietary fat supply to failing hearts determines dynamic lipid signaling for nuclear receptor activation and oxidation of stored triglyceride. Circulation 130, 1790–1799 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Aubert, G. et al. The failing heart relies on ketone bodies as a fuel. Circulation 133, 698–705 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Horton, J. L. et al. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight 4, e124079 (2019).

    PubMed Central  Google Scholar 

  179. Cowie, M. R. & Fisher, M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat. Rev. Cardiol. 17, 761–772 (2020).

    CAS  PubMed  Google Scholar 

  180. Ferrannini, E. et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes 65, 1190–1195 (2016).

    CAS  PubMed  Google Scholar 

  181. Santos-Gallego, C. G. et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J. Am. Coll. Cardiol. 73, 1931–1944 (2019).

    CAS  PubMed  Google Scholar 

  182. Li, X. et al. Treatment with PPARδ agonist alleviates non-alcoholic fatty liver disease by modulating glucose and fatty acid metabolic enzymes in a rat model. Int. J. Mol. Med. 36, 767–775 (2015).

    PubMed  Google Scholar 

  183. Soccio, R. E., Chen, E. R. & Lazar, M. A. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 20, 573–591 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Lopaschuk, G. D., Ussher, J. R., Folmes, C. D. L., Jaswal, J. S. & Stanley, W. C. Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 90, 207–258 (2010).

    CAS  PubMed  Google Scholar 

  185. Goodwin, G. W., Taylor, C. S. & Taegtmeyer, H. Regulation of energy metabolism of the heart during acute increase in heart work. J. Biol. Chem. 273, 29530–29539 (1998).

    CAS  PubMed  Google Scholar 

  186. Camici, P. et al. Coronary hemodynamics and myocardial metabolism during and after pacing stress in normal humans. Am. J. Physiol. 257, E309–E317 (1989).

    CAS  PubMed  Google Scholar 

  187. Bartelds, B. et al. Perinatal changes in myocardial metabolism in lambs. Circulation 102, 926–931 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the French Agence Nationale de la Recherche (ANR-16-RHUS-0006-PreciNASH; European Genomic Institute for Diabetes ANR-10-LABX-0046 and ANR-16-IDEX-0004 ULNE; ANR TOMIS-Leukocyte ANR-CE14-0003-01 and ANR CALMOS ANR-18-CE17-0003-02), the Leducq Foundation LEAN Network 16CVD01 and the French National Center for Precision Diabetic Medicine — PreciDIAB (ANR-18-IBHU-0001; 20001891/NP0025517; 2019_ESR_11). B.S. is a recipient of an ERC Advanced Grant (694717).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed substantially to all aspects of preparing the manuscript.

Corresponding author

Correspondence to Bart Staels.

Ethics declarations

Competing interests

B.S. is a consultant for Genfit. D.M. and L.B. declare no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks K. Drosatos, D. Kelly, A. Murray and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

The authors have focused on original research articles published after 2017 covering the topics of cardiovascular risk factors, metabolism and new mechanisms of regulation by PPARs, because exhaustive reviews on PPAR functions covering the period before 2017 have been published previously. For the section on the role of PPARs in heart metabolism, they focus on studies showing the function of the PPARs in the heart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montaigne, D., Butruille, L. & Staels, B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol 18, 809–823 (2021). https://doi.org/10.1038/s41569-021-00569-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-021-00569-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research