Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration

Abstract

The addition of X3Si–H or X2B–H (X = H, OR or R) across a C–C multiple bond is a well-established method for incorporating silane or borane groups, respectively, into hydrocarbon feedstocks. These hydrofunctionalization reactions are often mediated by transition metal catalysts, with precious metals being the most commonly used owing to the ability to optimize reaction scope, rates and selectivities. For example, platinum catalysts effect the hydrosilylation of alkenes with anti-Markovnikov selectivity and constitute an enabling technology in the multibillion dollar silicones industry. Increased emphasis on sustainable catalytic methods and on more economic processes has shifted the focus to catalysis with more earth-abundant transition metals, such as iron, cobalt and nickel. This Review describes the use of first-row transition metal complexes in catalytic alkene hydrosilylation and hydroboration. Defining advances in the field are covered, noting the chemistry that is unique to first-row transition metals and the design features that enable them to exhibit precious-metal-like reactivity. Other important features, such as catalyst activity and stability, are covered, as are practical considerations, such as cost and safety.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Olefin hydrosilylation and hydroboration afford different products but can proceed through mechanistically similar routes.
Fig. 2: Pt-catalysed hydrosilylation is an important process in the manufacture of many everyday items.
Fig. 3: The hydrosilylation of commercially important substrates can be effected using earth-abundant metal catalysts, which can exhibit rates and selectivities exceeding those of Pt catalysts.
Fig. 4: Overcoming practical limitations in base-metal-catalysed hydrosilylation.
Fig. 5: Pyridine(diimine)Co-catalysed dehydrogenative silylation.
Fig. 6: Proposed mechanism for alkene hydrosilylation with (α-diimine)Ni complexes.
Fig. 7: Transition-metal-catalysed hydroboration enables new opportunities for fine chemical synthesis.
Fig. 8: Hydroboration is mediated by a variety of precious metal catalysts, each of which can exhibit a different selectivity.
Fig. 9: New reactivity enabled by Co and Cu catalysts.
Fig. 10: New reactivity enabled by earth-abundant metal catalysts.
Fig. 11: Proposed mechanisms in base-metal-catalysed alkene and terminal alkyne hydroboration explaining new reactivity.

Similar content being viewed by others

References

  1. Principe, L. M. The Secrets of Alchemy (Univ. of Chicago Press, 2013).

  2. U.S. Energy Information Administration. International Energy Outlook 2017. U.S. Energy Information Administration https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf (2017).

  3. Johnson, J. Global energy markets in turmoil, International Energy Agency says. Chem. Eng. News 95, 15 (2017).

    Google Scholar 

  4. Marciniec, B. Catalysis by transition metal complexes of alkene silylation — recent progress and mechanistic implications. Coord. Chem. Rev. 249, 2374–2390 (2005).

    Article  CAS  Google Scholar 

  5. Marciniec, B., Maciejewski, H., Pietraszok, C. & Pawluc, P. Advances in Silicone Science Vol. 1 (Springer, 2009).

  6. Nakajima, Y. & Shimada, S. Hydrosilylation reactions of olefins: recent advances and perspectives. RSC Adv. 5, 20603–20616 (2015).

    Article  CAS  Google Scholar 

  7. Vogels, C. M. & Westcott, S. A. Recent advances in organic synthesis using transition metal-catalyzed hydroborations. Curr. Org. Chem. 9, 687–699 (2005).

    Article  CAS  Google Scholar 

  8. Burgess, K. & Ohlmeyer, M. J. Transition-metal promoted hydroboration of alkenes, emerging methodology for organic transformations. Chem. Rev. 91, 1179–1191 (1991).

    Article  CAS  Google Scholar 

  9. Komiyama, T., Minami, Y. & Hiyama, T. Recent advances in transition-metal-catalyzed synthetic transformations of organosilicon reagents. ACS Catal. 7, 631–651 (2017).

    Article  CAS  Google Scholar 

  10. Pukhnarevitch, V. B., Lukevics, E., Kopylova, L. I. & Voronkov, M. Perspectives of Hydrosilylation (Institute for Organic Synthesis, Riga, Latvia, 1992).

    Google Scholar 

  11. Herzig, C. Siloxane copolymers containing alkenyl groups. US Patent 6265497 B1 (2001).

  12. Friedman, G., Sperry, P. & Brossas, J. Oxygen-permeable transparent polymer compositions for contact lenses of the rigid type. US Patent 5166298 A (1992).

  13. Lewis, L. N., Stein, J., Gao, Y., Colborn, R. E. & Hutchins, G. Platinum catalysts used in the silicones industry. Platin. Met. Rev. 41, 66–75 (1997).

    CAS  Google Scholar 

  14. Momentive Performance Materials. Silquest* A-137 Technical Data Sheet. HCD-10164. Momentive https://www.momentive.com/products/show-technical-datasheet.aspx?id=10164 (2011).

  15. Troegel, D. & Stohrer, J. Recent advances and actual challenges in late transition metal catalyzed hydrosilylation of olefins from an industrial point of view. Coord. Chem. Rev. 255, 1440–1459 (2011). This review describes how the attributes desired in a hydrosilylation catalyst depend on the type of commercial hydrosilylation product being produced.

    Article  CAS  Google Scholar 

  16. Speier, J. L., Webster, J. A. & Barnes, G. H. The addition of silicon hydrides to olefinic double bonds. Part II. The use of group viii metal catalysts. J. Am. Chem. Soc. 79, 974–979 (1957).

    CAS  Google Scholar 

  17. Lewis, L. N. & Lewis, N. Platinum-catalyzed hydrosilylation — colloid formation as the essential step. J. Am. Chem. Soc. 108, 7228–7231 (1986).

    Article  CAS  Google Scholar 

  18. Stein, J., Lewis, L. N., Gao, L. & Scott, R. A. In situ determination of the active catalyst in hydrosilylation reactions using highly reactive Pt(0) catalyst precursors. J. Am. Chem. Soc. 121, 3693–3703 (1999).

    Article  CAS  Google Scholar 

  19. Markó, I. E. et al. Selective and efficient platinum(0)–carbene complexes as hydrosilylation catalysts. Science 298, 204–206 (2002). This study demonstrates that strongly coordinating carbene ligands on Pt suppress Pt nanoparticle formation, which typically results in the formation of unwanted by-products in alkene hydrosilylation.

    Article  CAS  PubMed  Google Scholar 

  20. Berthon-Gelloz, G. et al. Expedient, direct synthesis of (L)Pt(0)(1,6-diene) complexes from H2PtCl6. Organometallics 26, 5731–5734 (2007).

    Article  CAS  Google Scholar 

  21. Bai, H. In situ platinum recovery and color removal from organosilicon streams. Ind. Eng. Chem. Res. 51, 16457–16466 (2012).

    Article  CAS  Google Scholar 

  22. Holwell, A. J. Optimised technologies are emerging which reduce platinum usage in silicone curing. Platin. Met. Rev. 52, 243–246 (2008).

    Article  Google Scholar 

  23. Chirik, P. J. & Weighardt, K. Radical ligands confer nobility on base-metal catalysts. Science 327, 794–795 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Chirik, P. J. Iron- and cobalt-catalyzed alkene hydrogenation: catalysis with both redox-active and strong field ligands. Acc. Chem. Res. 48, 1687–1695 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Fürstner, A. Iron catalysis in organic synthesis: a critical assessment of what it takes to make this base metal a multitasking champion. ACS Cent. Sci. 2, 778–789 (2016).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Sun, J. & Deng, L. Cobalt complex-catalyzed hydrosilylation of alkenes and alkynes. ACS Catal. 6, 290–300 (2016).

    Article  CAS  Google Scholar 

  27. Du, X. & Huang, Z. Advances in base-metal-catalyzed alkene hydrosilylation. ACS Catal. 7, 1227–1243 (2017).

    Article  CAS  Google Scholar 

  28. Nesmeyanov, A. N., Freidlina, Kh,R., Chukovskaya, E. C., Petrova, R. G. & Belyavsky, A. B. Addition, substitution, and telomerization reactions of olefins in the presence of metal carbonyls or colloidal iron. Tetrahedron 17, 61–68 (1962).

    Article  CAS  Google Scholar 

  29. Schroeder, M. A. & Wrighton, M. S. Pentacarbonyliron(0) photocatalyzed reactions of trialkylsilanes with alkenes. J. Organomet. Chem. 128, 345–358 (1977).

    Article  CAS  Google Scholar 

  30. Mitchener, J. C. & Wrighton, M. S. Photogeneration of very active homogeneous catalysts using laser light excitation of iron carbonyl precursors. J. Am. Chem. Soc. 103, 975–977 (1981).

    Article  CAS  Google Scholar 

  31. Whetten, R. L., Fu, K. J. & Grant, E. R. Pulsed-laser photocatalytic isomerization and hydrogenation of olefins. J. Am. Chem. Soc. 104, 4270–4272 (1982).

    Article  CAS  Google Scholar 

  32. Small, B. L., Brookhart, M. & Bennett, A. M. A. Highly active iron and cobalt catalysts for the polymerization of ethylene. J. Am. Chem. Soc. 120, 4049–4050 (1998).

    Article  CAS  Google Scholar 

  33. Chirik, P. J. Preface: forum on redox-active ligands. Inorg. Chem. 50, 9737–9740 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Gibson, V. C., Redshaw, C. & Solan, G. A. Bis(imino)pyridines: surprisingly reactive ligands and a gateway to new families of catalysts. Chem. Rev. 107, 1745–1776 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Darmon, J. M., Turner, Z. R., Lobkovsky, E. & Chirik, P. J. Electronic effects in 4-substituted bis(iminopyridines) and the corresponding reduced iron compounds. Organometallics 31, 2275–2285 (2012).

    Article  CAS  Google Scholar 

  36. Bart, S. C., Lobkovsky, E. & Chirik, P. J. Preparation and molecular and electronic structures of iron(0) dinitrogen and silane complexes and their application to catalytic hydrogenation and hydrosilylation. J. Am. Chem. Soc. 126, 13794–13807 (2004). This work reports the synthesis of a well-defined Fe dinitrogen complex and provides a proof-of-principle that Fe, when in the appropriate coordination geometry and spin state, can be highly active, similar to precious metals, in a variety of catalytic reactions.

    Article  CAS  PubMed  Google Scholar 

  37. Archer, A. M., Bouwkamp, M. W., Cortez, M., Lobkovsky, E. & Chirik, P. J. Arene coordination in bis(imino)pyridine iron complexes: identification of catalyst deactivation pathways in iron-catalyzed hydrogenation and hydrosilation. Organometallics 25, 4269–4278 (2006).

    Article  CAS  Google Scholar 

  38. Meciejewski, H., Marciniec, B. & Kownacki, I. Catalysis of hydrosilylation part xxxiv. High catalytic efficiency of the nickel equivalent of Karstedt catalyst [{Ni-CH2 = CHSiMe2)2O}2 -CH2 = CHSiMe2)2O}]. J. Organomet. Chem. 597, 175–181 (2000).

    Article  Google Scholar 

  39. LaPointe, A. M., Rix, F. C. & Brookhart, M. Mechanistic studies of palladium(II)-catalyzed hydrosilation and dehydrogenative silation reactions. J. Am. Chem. Soc. 119, 906–917 (1997).

    Article  CAS  Google Scholar 

  40. Russell, S. K., Darmon, J. M., Lobkovsky, E. & Chirik, P. J. Synthesis of aryl-substituted bis(imino)pyridine iron dinitrogen complexes. Inorg. Chem. 49, 2782–2792 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Tondreau, A. M. et al. Iron catalysts for selective anti-Markovnikov alkene hydrosilylation using tertiary silanes. Science 335, 567–570 (2012). This work reports that well-defined Fe precatalysts effect the anti-Markovnikov hydrosilylation of commercially relevant substrates, with selectivities that exceed those of state-of-the-art Pt catalysts.

    Article  CAS  PubMed  Google Scholar 

  42. Plueddemann, E. P. Silane Coupling Agents 2nd edn (Plenum Press, New York, 1991).

    Book  Google Scholar 

  43. Petrea, R. D. & Schuette, R. L. Finish for textile fibers containing silahydrocarbon lubricants and nonionic emulsifiers having a plurality of hydrocarbon chains. US Patent 5288416A (1994).

  44. Plonsker, L. Textile lubrication. US Patent 4932976 A (1990).

  45. Sprengers, J. W., de Greef, M., Duin, M. A. & Elsevier, C. J. Stable platinum(0) catalysts for catalytic hydrosilylation of styrene and synthesis of [Pt(Ar-bian)(η 2-alkene)] complexes. Eur. J. Inorg. Chem. 2003, 3811–3819 (2003).

    Article  CAS  Google Scholar 

  46. Momentive Performance Materials. SilForce SL6000 Technical Data Sheet. HCD-10896. Momentive https://www.momentive.com/products/show-technical-datasheet.aspx?id=10896 (2016).

  47. Atienza, C. C. H. et al. High selectivity bis(imino)pyridine iron catalysts for the hydrosilylation of 1,2,4-trivinylcyclohexane. ACS Catal. 2, 2169–2172 (2012).

    Article  CAS  Google Scholar 

  48. Tondreau, A. M. et al. Synthesis, electronic structure, and alkene hydrosilylation activity of terpyridine and bis(imino)pyridine iron dialkyl complexes. Organometallics 31, 4886–4893 (2012).

    Article  CAS  Google Scholar 

  49. Momentive Performance Materials. CoatOSil* 1770 Technical Data Sheet. HCD-10012. Momentive https://www.momentive.com/en-us/products/tds/coatosil-1770-silane/ (2016).

  50. Toya, Y., Hayasaka, K. & Nakazawa, H. Hydrosilylation of olefins catalyzed by iron complexes bearing ketimine-type iminobipyridine ligands. Organometallics 36, 1727–1735 (2017).

    Article  CAS  Google Scholar 

  51. Bouwkamp, M. W., Bowman, A. C., Lobkovsky, E. & Chirik, P. J. Iron-catalyzed [2π + 2π] cycloaddition of α, ω-dienes: the importance of redox-active supporting ligands. J. Am. Chem. Soc. 128, 13340–13341 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Chirik, P. J. et al. In-situ activation of metal complexes containing terdentate nitrogen ligands used as hydrosilylation catalysts. US Patent 8765987 B2 (2010).

  53. Ryan, J. W. Redistribution and reduction reactions of alkoxysilanes. J. Am. Chem. Soc. 84, 4730–4734 (1962).

    Article  CAS  Google Scholar 

  54. Buchwald, S. L. Silane disproportionation results in spontaneous ignition. Chem. Eng. News 71, 2 (1993).

    Article  CAS  Google Scholar 

  55. Berk, S. C. & Buchwald, S. L. An air-stable catalyst system for the conversion of esters to alcohols. J. Org. Chem. 57, 3751–3753 (1992).

    Article  CAS  Google Scholar 

  56. Buslov, I., Keller, S. C. & Hu, X. Alkoxy hydrosilanes as surrogates of gaseous silanes for hydrosilation of alkenes. Org. Lett. 18, 1928–1931 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Greenhalgh, M. D., Frank, D. J. & Thomas, S. P. Iron-catalyzed chemo-, regio-, and stereoselective hydrosilylation of alkenes and alkynes using a bench-stable iron(II) pre-catalyst. Adv. Synth. Catal. 356, 584–590 (2014).

    Article  CAS  Google Scholar 

  58. Brandstadt, K. et al. Nickel containing hydrosilylation catalysts and compositions containing the catalysts. US Patent 9545624 B2 (2011).

  59. Docherty, J. H., Peng, J., Dominey, A. P. & Thomas, S. P. Activation and discovery of earth-abundant metal catalysts using sodium tert-butoxide. Nat. Chem. 9, 595–600 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Gibson, V. C., Tellman, K. P., Humphries, M. J. & Wass, D. F. Bis(imino)pyridine cobalt alkyl complexes and their reactivity towards ethylene: a model system for β-hydrogen chain transfer. Chem. Commun. 2316–2317 (2002).

  61. Friedfeld, M. R. et al. Cobalt precursors for high-throughput discovery of base metal asymmetric alkene hydrogenation catalysts. Science 342, 1076–1080 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Atienza, C. C. H. et al. Bis(imino)pyridine cobalt-catalyzed dehydrogenative silylation of alkenes: scope, mechanism, and origins of selective allylsilane formation. J. Am. Chem. Soc. 136, 12108–12118 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. McAtee, J. R., Martin, S. E. S., Ahneman, D. T., Johnson, K. A. & Watson, D. A. Preparation of allyl and vinyl silanes by the palladium-catalyzed silylation of terminal olefins: a silyl-Heck reaction. Angew. Chem. Int. Ed. 51, 3663–3667 (2012).

    Article  CAS  Google Scholar 

  64. Brookhart, M. & Grant, B. E. Mechanism of a cobalt(III)-catalyzed olefin hydrosilation reaction: direct evidence for a silyl migration pathway. J. Am. Chem. Soc. 115, 2151–2156 (1993).

    Article  CAS  Google Scholar 

  65. Schuster, C. H., Diao, T., Pappas, I. & Chirik, P. J. Bench-stable, substrate-activated cobalt carboxylate pre-catalysts for alkene hydrosilylation with tertiary silanes. ACS Catal. 6, 2632–2636 (2016). This paper describes air-stable Co carboxylates that enable the efficient hydrosilylation of commercially relevant substrates without the need for external activators and also describes the catalyst design features to enable hydrosilylation over dehydrogenative silylation with Co.

    Article  CAS  Google Scholar 

  66. Chen, C. et al. Rapid, regioconvergent, solvent-free alkene hydrosilylation with a cobalt catalyst. J. Am. Chem. Soc. 137, 13244–13247 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Ibrahim, A. D., Entsminger, S. W., Zhu, L. & Fout, A. R. A highly chemoselective cobalt catalyst for the hydrosilylation of alkenes using tertiary silanes and hydrosiloxanes. ACS Catal. 6, 3589–3593 (2016).

    Article  CAS  Google Scholar 

  68. Scheuermann, M. L., Johnson, E. J. & Chirik, P. J. Alkene isomerization–hydroboration promoted by phosphine–ligated cobalt catalysts. Org. Lett. 17, 2716–2719 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Noda, D., Tahara, A., Sunada, Y. & Nagashima, H. Non-precious-metal catalytic systems involving iron or cobalt carboxylates and alkyl isocyanides for hydrosilylation of alkenes with hydrosiloxanes. J. Am. Chem. Soc. 138, 2480–2483 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Momentive Performance Materials. Silquest* A-1871 Technical Data Sheet. HCD-10053. Momentive https://www.momentive.com/en-us/products/tds/silquest-a-1871/ (2011).

  71. Marciniec, B., Kownacka, A., Kownacki, I., Hoffmann, M. & Taylor, R. Hydrosilylation versus dehydrogenative silylation of styrene catalyzed by iron(0) carbonyl complexes with multivinylsilicon ligands — mechanistic implications. J. Organomet. Chem. 791, 58–65 (2015).

    Article  CAS  Google Scholar 

  72. Sunada, Y., Soejima, H. & Nagashima, H. Disilaferracycle dicarbonyl complex containing weakly coordinated η2-(H–Si) ligands: application to C–H functionalization of indoles and arenes. Organometallics 33, 5936–5939 (2014).

    Article  CAS  Google Scholar 

  73. Sunada, Y. et al. Catalyst design for iron-promoted reductions: an iron–disilyl–dicarbonyl complex bearing weakly coordinating η2-(H–Si) moieties. Dalton Trans. 42, 16687–16692 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Raya, B., Jing, S., Balasanthiran, V. & RajanBabu, T. V. Control of selectivity through synergy between catalysts, silanes, and reaction conditions in cobalt-catalyzed hydrosilylation of dienes and terminal alkenes. ACS Catal. 7, 2275–2283 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Liu, Y. & Deng, L. Mode of activation of cobalt(II) amides for catalytic hydrosilylation of alkenes with tertiary silanes. J. Am. Chem. Soc. 139, 1798–1801 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Buslov, I., Becouse, J., Mazza, S., Montandon-Clerc, M. & Hu, X. Chemoselective alkene hydrosilylation catalyzed by nickel pincer complexes. Angew. Chem. Int. Ed. 54, 14523–14526 (2015).

    Article  CAS  Google Scholar 

  77. Pappas, I., Treacy, S. & Chirik, P. J. Alkene hydrosilylation using tertiary silanes with α-diimine nickel catalysts. Redox-active ligands promote a distinct mechanistic pathway from platinum catalysts. ACS Catal. 6, 4105–4109 (2016).

    Article  CAS  Google Scholar 

  78. Dong, Q. et al. Synthesis and reactivity of nickel hydride complexes of an α-diimine ligand. Inorg. Chem. 51, 13162–13170 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Roy, A. K. & Taylor, R. B. The first alkene–platinum–silyl complexes: lifting the hydrosilylation mechanism shroud with long-lived precatalytic intermediates and true Pt catalysts. J. Am. Chem. Soc. 124, 9510–9524 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Meister, T. K. et al. Platinum catalysis revisited — unraveling principles of catalytic olefin hydrosilylation. ACS Catal. 6, 1274–1284 (2016).

    Article  CAS  Google Scholar 

  81. Roy, A. et al. Platinum catalyzed hydrosilylation reactions utilizing cyclodiene additives. US Patent Application WO2015192029 A (2014).

  82. Kiso, Y., Kumada, M., Tamao, K. & Umeno, M. Silicon hydrides and nickel complexes: I. Phosphine–nickel(II) complexes as hydrosilylation catalysts. J. Organomet. Chem. 50, 297–310 (1973).

    Article  CAS  Google Scholar 

  83. Lappert, M. F., Nile, T. A. & Takahashi, S. Homogeneous catalysis: II. Ziegler systems as catalysts for hydrosilylation. J. Organomet. Chem. 72, 425–439 (1974).

    Article  CAS  Google Scholar 

  84. Srinivas, V., Nakajima, Y., Ando, W., Sato, K. & Shimada, S. Bis(acetylacetonato)Ni(II)/NaHBEt3-catalyzed hydrosilylation of 1,3-dienes, alkenes and alkynes. J. Organomet. Chem. 809, 57–62 (2016).

    Article  CAS  Google Scholar 

  85. Buslov, I., Song, F. & Hu, X. An easily accessed nickel nanoparticle catalyst for alkene hydrosilylation with tertiary silanes. Angew. Chem. Int. Ed. 55, 12295–12299 (2016).

    Article  CAS  Google Scholar 

  86. Yu, R. P., Hesk, D., Rivera, N., Pelczer, I. & Chirik, P. J. Iron-catalyzed tritiation of pharmaceuticals. Nature 529, 195–199 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Obligacion, J. V., Semproni, S. P. & Chirik, P. J. Cobalt-catalyzed C–H borylation. J. Am. Chem. Soc. 136, 4133–4136 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Obligacion, J. V., Bezdek, M. J. & Chirik, P. J. C(sp 2)–H borylation of fluorinated arenes using an air-stable cobalt precatalyst: electronically enhanced site selectivity enables synthetic opportunities. J. Am. Chem. Soc. 139, 2825–2832 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Darmon, J. M. et al. Oxidative addition of carbon–carbon bonds with a redox-active bis(imino)pyridine iron complex. J. Am. Chem. Soc. 134, 17125–17137 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Brown, H. C. & Subba Rao, B. C. A new powerful reducing agent — sodium borohydride in the presence of aluminum chloride and other polyvalent metal halides. J. Am. Chem. Soc. 78, 2582–2588 (1956).

    Article  CAS  Google Scholar 

  91. Carroll, A.-M., O’Sullivan, T. P. & Guiry, P. J. The development of enantioselective rhodium-catalyzed hydroboration of olefins. Adv. Synth. Catal. 347, 609–631 (2005).

    Article  CAS  Google Scholar 

  92. Evans, D. A., Ratz, A. M., Huff, B. E. & Sheppard, G. S. Total synthesis of the polyether antibiotic lonomycin A (emericid). J. Am. Chem. Soc. 117, 3448–3467 (1995).

    Article  CAS  Google Scholar 

  93. Volpicelli, R., Maragni, P., Cotarca, L., Foletto, J. & Massaccesi, F. Process for preparing nebivolol. US Patent 8258323 B2 (2012).

  94. Beletskaya, I. & Pelter, A. Hydroborations catalyzed by transition metal complexes. Tetrahedron 53, 4957–5026 (1997).

    Article  CAS  Google Scholar 

  95. Evans, D. A., Fu, G. C. & Hoveyda, A. H. Rhodium(I)- and iridium(I)-catalyzed hydroboration reactions: scope and synthetic applications. J. Am. Chem. Soc. 114, 6671–6679 (1992).

    Article  CAS  Google Scholar 

  96. Männig, D. & Nöth, H. Catalytic hydroboration with rhodium complexes. Angew. Chem. Int. Ed. 24, 878–879 (1985).

    Article  Google Scholar 

  97. Yamamoto, Y., Fujikawa, R., Umemoto, T. & Miyaura, N. Iridium-catalyzed hydroboration of alkenes with pinacolborane. Tetrahedron 60, 10695–10700 (2004).

    Article  CAS  Google Scholar 

  98. Burgess, K. et al. Reactions of catecholborane with Wilkinson’s catalyst: implications for transition metal-catalyzed hydroborations of alkenes. J. Am. Chem. Soc. 114, 9350–9359 (1992).

    Article  CAS  Google Scholar 

  99. Hayashi, T., Matsumoto, Y. & Ito, Y. Catalytic asymmetric hydroboration of styrenes. J. Am. Chem. Soc. 111, 3426–3428 (1989).

    Article  CAS  Google Scholar 

  100. Evans, D. A., Fu, G. C. & Anderson, B. A. Mechanistic study of the rhodium(I)-catalyzed hydroboration reaction. J. Am. Chem. Soc. 114, 6679–6685 (1992).

    Article  CAS  Google Scholar 

  101. Pereira, S. & Srebnik, M. Transition metal-catalyzed hydroboration of and CCl4 addition to alkenes. J. Am. Chem. Soc. 118, 909–910 (1996).

    Article  CAS  Google Scholar 

  102. Lata, C. J. & Crudden, C. M. Dramatic effect of Lewis acids on the rhodium-catalyzed hydroboration of olefins. J. Am. Chem. Soc. 132, 131–137 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Pereira, S. & Srebnik, M. A study of hydroboration of alkenes and alkynes with pinacolborane catalyzed by transition metals. Tetrahedron Lett. 37, 3283–3286 (1996).

    Article  CAS  Google Scholar 

  104. Hadebe, S. W. & Robinson, R. S. Microwave mediated rhodium-catalysed hydroboration of trans-4-octene with pinacolborane. Tetrahedron Lett. 47, 1299–1302 (2006).

    Article  CAS  Google Scholar 

  105. Wu, J. Y., Moreau, B. & Ritter, T. Iron-catalyzed 1,4-hydroboration of 1,3-dienes. J. Am. Chem. Soc. 131, 12915–12917 (2009). This is a pioneering report demonstrating that C–B bond formation reactions are possible with reduced Fe complexes.

    Article  CAS  PubMed  Google Scholar 

  106. Monfette, S., Turner, Z. R., Semproni, S. P. & Chirik, P. J. Enantiopure C 1-symmetric bis(imino)pyridine cobalt complexes for asymmetric alkene hydrogenation. J. Am. Chem. Soc. 134, 4561–4564 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Zhang, L., Peng, D., Leng, X. & Huang, Z. Iron-catalyzed, atom-economical, chemo- and regioselective alkene hydroboration with pinacolborane. Angew. Chem. Int. Ed. 52, 3676–3680 (2013). This study includes the first example of a catalytic hydroboration of terminal alkenes with an Fe catalyst.

    Article  CAS  Google Scholar 

  108. Balaraman, E., Gnanaprakasam, B., Shimon, L. J. W. & Milstein, D. Direct hydrogenation of amides to alcohols and amines under mild conditions. J. Am. Chem. Soc. 132, 16756–16758 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Zhang, L., Zuo, Z., Leng, X. & Huang, Z. A cobalt-catalyzed alkene hydroboration with pinacolborane. Angew. Chem. Int. Ed. 53, 2696–2700 (2014).

    Article  CAS  Google Scholar 

  110. Obligacion, J. V. & Chirik, P. J. Highly selective bis(imino)pyridine iron-catalyzed alkene hydroboration. Org. Lett. 15, 2680–2683 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Ruddy, A. J., Sydora, O. L., Small, B. L., Stradiotto, M. & Turculet, L. (N-phosphinoamidate)cobalt-catalyzed hydroboration: alkene isomerization affords terminal selectivity. Chem. Eur. J. 20, 13918–13922 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Tseng, K.-N. T., Kampf, J. W. & Szymczak, N. K. Regulation of iron-catalyzed olefin hydroboration by ligand modifications at a remote site. ACS Catal. 5, 411–415 (2015).

    Article  CAS  Google Scholar 

  113. Zheng, J., Sortais, J.-B. & Darcel, C. [(NHC)Fe(CO)4] efficient pre-catalyst for selective hydroboration of alkenes. ChemCatChem 6, 763–766 (2014).

    Article  CAS  Google Scholar 

  114. Obligacion, J. V. & Chirik, P. J. Bis(imino)pyridine cobalt-catalyzed alkene isomerization–hydroboration: a strategy for remote hydrofunctionalization with terminal selectivity. J. Am. Chem. Soc. 135, 19107–19110 (2013). This report describes Co precatalysts that offer unprecedented activity and selectivity in catalytic alkene hydroboration through an isomerization–hydroboration sequence.

    Article  CAS  PubMed  Google Scholar 

  115. Weliange, N. M., McGuinness, D. S., Gardiner, M. G. & Patel, J. Cobalt-bis(imino)pyridine complexes as catalysts for hydroalumination–isomerization of internal olefins. Dalton Trans. 45, 10842–10849 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. de Klerk, A. et al. Linear α-olefins from linear internal olefins by a boron-based continuous double-bond isomerization process. Ind. Eng. Chem. Res. 46, 400–410 (2007).

    Article  CAS  Google Scholar 

  117. Palmer, W. N., Diao, T., Pappas, I. & Chirik, P. J. High-activity cobalt catalysts for alkene hydroboration with electronically responsive terpyridine and α-diimine ligands. ACS Catal. 5, 622–626 (2015).

    Article  CAS  Google Scholar 

  118. Sacco, A. & Rossi, M. Hydride and nitrogen complexes of cobalt. Chem. Commun., 316 (1967).

  119. Lee et al. Stereoselective hydroboration of diynes and triyne to give products containing multiple vinylene bridges: a versatile application to fluorescent dyes and light-emitting copolymers. Organometallics 23, 4659–4575 (2004).

    Google Scholar 

  120. Nielson, B. M. & Bielawski, C. W. Photoswitchable metal-mediated catalysis: remotely tuned alkene and alkyne hydroborations. Organometallics 32, 3121–3128 (2013).

    Article  CAS  Google Scholar 

  121. Pereira, S. & Srebnik, M. Hydroboration of alkynes with pinacolborane catalyzed by HZrCp2Cl. Organometallics 14, 3127–3128 (1995).

    Article  CAS  Google Scholar 

  122. He, X. & Hartwig, J. F. True metal-catalyzed hydroboration with titanium. J. Am. Chem. Soc. 118, 1696–1702 (1996).

    Article  CAS  Google Scholar 

  123. Otsuka, S. & Nakamura, A. Acetylene and allene complexes: their implication in homogeneous catalysis. Adv. Organomet. Chem. 14, 245–283 (1976).

    Article  CAS  Google Scholar 

  124. Hermann, W. A. & Prinz, M. in Applied Homogeneous Catalysis with Organometallic Compounds 2nd edn (eds Cornils, B. & Herrmann, W. A.) 1119–1124 (Wiley, 2002).

  125. Ohmura, T., Yamamoto, Y. & Miyaura, N. Rhodium- or iridium-catalyzed trans-hydroboration of terminal alkynes giving (Z)-1-alkenylboron compounds. J. Am. Chem. Soc. 122, 4990–4991 (2000).

    Article  CAS  Google Scholar 

  126. Gunanathan, C., Hölscher, M., Pan, F. & Leitner, W. Ruthenium catalyzed hydroboration of terminal alkynes to Z-vinylboronates. J. Am. Chem. Soc. 134, 14349–14352 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Bruneau, C. & Dixneuf, P. H. Metal vinylidenes and allenylidenes in catalysis: applications in anti-Markovnikov additions to terminal alkynes and alkene metathesis. Angew. Chem. Int. Ed. 45, 2176–2203 (2006).

    Article  CAS  Google Scholar 

  128. Obligacion, J. V., Neely, J. M., Yazdani, A. N., Pappas, I. & Chirik, P. J. Cobalt catalyzed Z-selective hydroboration of terminal alkynes and elucidation of the origin of selectivity. J. Am. Chem. Soc. 137, 5855–5858 (2015). This work highlights that the steric and electronic modularity of [pyridine(diimine)]Co catalysts can switch the mode of precatalyst activation, which eventually leads to a switch in stereoselectivity in terminal alkyne hydroboration with pinacolborane.

    Article  CAS  PubMed  Google Scholar 

  129. Gorgas, N. et al. Stable, yet highly reactive nonclassical iron(II) polyhydride pincer complexes: Z-selective dimerization and hydroboration of terminal alkynes. J. Am. Chem. Soc. 139, 8130–8133 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Krautwald, S., Bezdek, M. J. & Chirik, P. J. Cobalt-catalyzed 1,1-diboration of terminal alkynes: scope, mechanism, and synthetic applications. J. Am. Chem. Soc. 139, 3868–3875 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Gilbert-Wilson, R., Chu, W.-Y. & Rauchfuss, T. B. Phosphine-iminopyridines as platforms for hydrofunctionalization of alkenes. Inorg. Chem. 54, 5596–5603 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Espinal-Viguri, M., Woof, C. R. & Webster, R. L. Iron-catalyzed hydroboration: unlocking reactivity through ligand modulation. Chem. Eur. J. 22, 11605–11608 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. MacNair, A. J., Millet, C. R. P., Nichol, G. S., Ironmonger, A. & Thomas, S. P. Markovnikov-selective, activator-free iron-catalyzed vinylarene hydroboration. ACS Catal. 6, 7217–7221 (2016).

    Article  CAS  Google Scholar 

  134. Reilly, S. W., Webster, C. E., Hollis, T. K. & Valle, H. U. Transmetallation from CCC-NHC pincer Zr complexes in the synthesis of air-stable CCC-NHC pincer Co(III) complexes and initial hydroboration trials. Dalton Trans. 45, 2823–2828 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Ibrahim, A. D., Entsminger, S. W. & Fout, A. R. Insights into a chemoselective cobalt catalyst for the hydroboration of alkenes and nitriles. ACS Catal. 7, 3730–3734 (2017).

    Article  CAS  Google Scholar 

  136. Zhang, T., Manna, K. & Lin, W. Metal–organic frameworks stabilize solution-inaccessible cobalt catalysts for highly efficient broad-scope organic transformations. J. Am. Chem. Soc. 138, 3241–3249 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Touney, E. E. et al. Heteroleptic nickel complexes for the Markovnikov-selective hydroboration of styrenes. Organometallics 35, 3436–3439 (2016).

    Article  CAS  Google Scholar 

  138. Zhang, G. et al. Highly selective hydroboration of alkenes, ketones and aldehydes catalyzed by a well-defined manganese complex. Angew. Chem. Int. Ed. 55, 14369–14372 (2016).

    Article  CAS  Google Scholar 

  139. Rauch, M., Ruccolo, S. & Parkin, G. Synthesis, structure, and reactivity of a terminal magnesium hydride compound with a carbatrane motif, [TismPriBenz]MgH: a multifunctional catalyst for hydrosilylation and hydroboration. J. Am. Chem. Soc. 139, 13264–13267 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Zhang, L. & Huang, Z. Synthesis of 1,1,1-tris(boronates) from vinylarenes by Co-catalyzed dehydrogenative borylations–hydroboration. J. Am. Chem. Soc. 137, 15600–15603 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Zhang, L., Zuo, Z., Wan, X. & Huang, Z. Cobalt-catalyzed enantioselective hydroboration of 1,1-disubstituted aryl alkenes. J. Am. Chem. Soc. 136, 15501–15504 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Chen, J., Xi, T. & Lu, Z. Iminopyridine oxazoline iron catalyst for asymmetric hydroboration of 1,1-disubstituted aryl alkenes. Org. Lett. 16, 6452–6455 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Masamune, S. et al. Organoboron compounds in organic synthesis. 1. Asymmetric hydroboration. J. Am. Chem. Soc. 107, 4549–4551 (1985).

    Article  CAS  Google Scholar 

  144. Mazet, C. & Gérard, D. Highly regio- and enantioselective catalytic asymmetric hydroboration of α-substituted styrenyl derivatives. Chem. Commun. 47, 298–300 (2011).

    Article  CAS  Google Scholar 

  145. Bianchini, C. et al. Oligomerisation of ethylene to linear α-olefins by C S and C 1-symmetric [2,6-bis(imino)pyridyl]iron and -cobalt dichloride complexes. Eur. J. Inorg. Chem. 2003, 1620–1631 (2003).

    Article  Google Scholar 

  146. Tondreau, A. M. et al. Enantiopure pyridine bis(oxazoline) “pybox” and bis(oxazoline) “box” iron dialkyl complexes: comparison to bis(imino)pyridine compounds and application to catalytic hydrosilylation of ketones. Organometallics 28, 3928–3940 (2009).

    Article  CAS  Google Scholar 

  147. Wile, B. M. et al. Reduction chemistry of aryl- and alkyl-substituted bis(imino)pyridine iron dihalide compounds: molecular and electronic structures of [(PDI)2Fe] derivatives. Inorg. Chem. 48, 4190–4200 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Guo, J., Cheng, B., Shen, X. & Lu, Z. Cobalt-catalyzed asymmetric sequential hydroboration/ hydrogenation of internal alkynes. J. Am. Chem. Soc. 139, 15316–15319 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Yu, S., Wu, C. & Ge, S. Cobalt-catalyzed asymmetric hydroboration/cyclization of 1,6-enynes with pinacolborane. J. Am. Chem. Soc. 139, 6526–6529 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Jang, W. J., Song, S. M., Moon, J. H., Lee, J. Y. & Yun, J. Copper-catalyzed enantioselective hydroboration of unactivated 1,1-disubstituted alkenes. J. Am. Chem. Soc. 139, 13660–13663 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Kerchner, H. A. & Montgomery, J. Synthesis of secondary and tertiary alkylboranes via formal hydroboration of terminal and 1,1-disubstituted alkenes. Org. Lett. 18, 5760–5763 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  152. Jang, H., Zhugralin, A. R., Lee, Y. & Hoveyda, A. H. Highly selective methods for synthesis of internal (α-) vinylboronates through efficient NHC–Cu-catalyzed hydroboration of terminal alkynes. Utility in chemical synthesis and mechanistic basis for selectivity. J. Am. Chem. Soc. 133, 7859–7871 (2011).

    Article  CAS  PubMed  Google Scholar 

  153. Corberán, R., Mszar, N. W. & Hoveyda, A. H. NHC-Cu-catalyzed enantioselective hydroboration of acyclic and exocyclic 1,1-disubstituted aryl alkenes. Angew. Chem. Int. Ed. 50, 7079–7082 (2011).

    Article  CAS  Google Scholar 

  154. Smith, J. R. et al. Enantioselective rhodium(III)-catalyzed Markovnikov hydroboration of unactivated terminal alkenes. J. Am. Chem. Soc. 139, 9148–9151 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Princeton University for financial support. J.V.O. acknowledges the Howard Hughes Medical Institute International Student Research Fellowship and the 2016 Harold W. Dodds Honourific Fellowship (awarded by the Graduate School at Princeton University).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Jennifer V. Obligacion or Paul J. Chirik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obligacion, J.V., Chirik, P.J. Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration. Nat Rev Chem 2, 15–34 (2018). https://doi.org/10.1038/s41570-018-0001-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-018-0001-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing