Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Extending the application of biocatalysis to meet the challenges of drug development

Abstract

The pharmaceutical industry, driven by an increasing need to deliver new and more effective medicines to patients, is increasingly turning to the use of engineered biocatalysts for both lead generation of active compounds and the sustainable manufacture of active pharmaceutical ingredients. Advances in enzyme discovery, high-throughput screening and protein engineering have substantially expanded the available biocatalysts, and consequently, many more synthetic transformations are now possible. Enzymes can be fine-tuned for practical applications with greater speed and likelihood of success than before, thereby leading to greater predictability and confidence when scaling up these processes. Coupled with a greater awareness of which reactions are suitable for biocatalysis (for example, biocatalytic retrosynthesis), new chemoenzymatic and multi-enzyme processes have been designed and applied to the synthesis of a range of important pharmaceutical target molecules. Increasingly, researchers are exploring opportunities for using immobilized biocatalysts in flow conditions. In this Review, we discuss some of the key drivers and scientific developments that are expanding the application of biocatalysis in the pharmaceutical industry and highlight potential future developments that likely will continue to increase the impact of biocatalysis in drug development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Developments in biocatalysis research that are having an impact on the synthesis of pharmaceutical compounds.
Fig. 2: Biocatalytic routes to the synthesis of (S)-pregabalin.
Fig. 3: New reactions enabled by biocatalysis: transfers of carbene and nitrene intermediates and synthesis of amines.
Fig. 4: New reaction chemistries enabled by biocatalysis: synthesis and conversions of carboxyl and organic halide functionalities.
Fig. 5: New reaction chemistries enabled by biocatalysis: miscellaneous chemistry.
Fig. 6: Lead diversification through late-stage functionalization using biocatalysts.
Fig. 7: Cascade reactions incorporating biocatalytic retrosynthesis.
Fig. 8: A biocatalytic cascade process for the synthesis of chiral piperidines and pyrrolidines.
Fig. 9: Multistep synthesis using immobilized biocatalysts in flow format.

Similar content being viewed by others

References

  1. Turner, N. J. & Kumar, R. Editorial overview: biocatalysis and biotransformation: the golden age of biocatalysis. Curr. Opin. Chem. Biol. 43, A1–A3 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Li, G., Wang, J. B. & Reetz, M. T. Biocatalysts for the pharmaceutical industry created by structure-guided directed evolution of stereoselective enzymes. Bioorg. Med. Chem. 26, 1241–1251 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Sheldon, R. A. & Pereira, P. C. Biocatalysis engineering: the big picture. Chem. Soc. Rev. 46, 2678–2691 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Savile, C. K. et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329, 305–309 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Wells, A. S., Finch, G. L., Michels, P. C. & Wong, J. W. Use of enzymes in the manufacture of active pharmaceutical ingredients — a science and safety-based approach to ensure patient safety and drug quality. Org. Proc. Res. Dev. 16, 1986–1993 (2012).

    Article  CAS  Google Scholar 

  7. Wells, A. S. et al. Case studies illustrating a science and risk-based approach to ensuring drug quality when using enzymes in the manufacture of active pharmaceuticals ingredients for oral dosage form. Org. Proc. Res. Dev. 20, 594–601 (2016).

    Article  CAS  Google Scholar 

  8. Welch, C. J. et al. MISER chromatography (multiple injections in a single experimental run): the chromatogram is the graph. Tetrahedron Asymmetry 21, 1674–1681 (2010).

    Article  CAS  Google Scholar 

  9. Truppo, M. D. Biocatalysis in the pharmaceutical industry: the need for speed. ACS Med. Chem. Lett. 8, 476–480 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Davis, A. M., Plowright, A. T. & Valeur, E. Directing evolution: the next revolution in drug discovery? Nat. Rev. Drug Discov. 16, 681–698 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Eastgate, M. D., Schmidt, M. A. & Fandrick, K. R. On the design of complex drug candidate syntheses in the pharmaceutical industry. Nat. Rev. Chem. 1, 0016 (2017).

    Article  CAS  Google Scholar 

  12. Brown, F. K., Sherer, E. C., Johnson, S. A., Holloway, M. K. & Sherborne, B. S. The evolution of drug design at Merck research laboratories. J. Comp. Mol. Des. 31, 255–266 (2017).

    Article  CAS  Google Scholar 

  13. Koenig, S. G. & Dillon, B. Driving toward greener chemistry in the pharmaceutical industry. Curr. Opin. Green Sus. Chem. 7, 56–59 (2017).

    Google Scholar 

  14. Sheldon, R. A. & Woodley, J. M. Role of biocatalysis in sustainable chemistry. Chem. Rev. 118, 801–838 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Badenhorst, C. P. & Bornscheuer, U. T. Getting momentum: from biocatalysis to advanced synthetic biology. Trend. Biochem. Sci. 43, 180–198 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Madhavan, A., Sindhu, R., Parameswaran, B., Sukumaran, R. K. & Pandey, A. Metagenome analysis: a powerful tool for enzyme bioprospecting. Appl. Biochem. Biotechnol. 183, 636–651 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Steinkellner, G. et al. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations. Nat. Commun. 5, 4150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weise, N. J. et al. Zymophore identification enables the discovery of novel phenylalanine ammonia lyase enzymes. Sci. Rep. 7, 13691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chovancova, E. et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLOS Comput. Biol. 8, e1002708 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Colin, P. Y. et al. Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat. Commun. 6, 10008 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ferrandi, E. E. et al. Discovery and characterization of thermophilic limonene-1, 2-epoxide hydrolases from hot spring metagenomic libraries. FEBS J. 282, 2879–2894 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Huang, P. S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Obexer, R. et al. Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase. Nat. Chem. 9, 50–56 (2017).

    CAS  PubMed  Google Scholar 

  24. Fox, R. J. et al. Improving catalytic function by ProSAR-driven enzyme evolution. Nat. Biotechnol. 25, 338 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Romero-Rivera, A., Garcia-Borràs, M. & Osuna, S. Computational tools for the evaluation of laboratory-engineered biocatalysts. Chem. Commun. 53, 284–297 (2017).

    Article  CAS  Google Scholar 

  26. Copley, S. D. Shining a light on enzyme promiscuity. Curr. Opin. Struct. Biol. 47, 167–175 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Alcalde, M. When directed evolution met ancestral enzyme resurrection. Microb. Biotechnol. 10, 22–24 (2017).

    Article  PubMed  Google Scholar 

  28. Devamani, T. et al. Catalytic promiscuity of ancestral esterases and hydroxynitrile lyases. J. Am. Chem. Soc. 138, 1046–1056 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wilding, M. et al. Reverse engineering: transaminase biocatalyst development using ancestral sequence reconstruction. Green Chem. 19, 5375–5380 (2017).

    Article  CAS  Google Scholar 

  30. Porter, J. L., Rusli, R. A. & Ollis, D. L. Directed evolution of enzymes for industrial biocatalysis. ChemBioChem 17, 197–203 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Tyzack, J. D., Furnham, N., Sillitoe, I., Orengo, C. M. & Thornton, J. M. Understanding enzyme function evolution from a computational perspective. Curr. Opin. Struct. Biol. 47, 131–139 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Acevedo-Rocha, C. G. et al. P450-catalyzed regio- and diastereoselective steroid hydroxylation: efficient directed evolution enabled by mutability landscaping. ACS Catal. 8, 3395–3410 (2018).

    Article  CAS  Google Scholar 

  33. Budisa, N. et al. Xenobiology meets enzymology: exploring the potential of unnatural building blocks in biocatalysis. Angew. Chem. Int. Ed. 56, 9680–9703 (2017).

    Article  CAS  Google Scholar 

  34. Reetz, M. T., Kahakeaw, D. & Lohmer, R. Addressing the numbers problem in directed evolution. ChemBioChem 9, 1797–1804 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Pavlidis, I. V. et al. Identification of (S)-selective transaminases for the asymmetric synthesis of bulky chiral amines. Nat. Chem. 8, 1076–1082 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Diefenbach, X. W. et al. Enabling biocatalysis by high-throughput protein engineering: using droplet microfluidics coupled to mass spectrometry. ACS Omega 3, 1498–1508 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yan, C. et al. Real-time screening of biocatalysts in live bacterial colonies. J. Am. Chem. Soc. 139, 1408–1411 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Turner, N. J. & Humphreys, L. Biocatalysis in Organic Synthesis: the Retrosynthesis Approach (Royal Society of Chemistry, London, 2018).

  39. Turner, N. J. & O’Reilly, E. Biocatalytic retrosynthesis. Nat. Chem. Biol. 9, 285–288 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Green, A. P. & Turner, N. J. Biocatalytic retrosynthesis: redesigning synthetic routes to high-value chemicals. Perspec. Sci. 9, 42–48 (2016).

    Article  Google Scholar 

  41. Hönig, M., Sondermann, P., Turner, N. J. & Carreira, E. M. Enantioselective chemo- and biocatalysis: partners in retrosynthesis. Angew. Chem. Int. Ed. 56, 8942–8973 (2017).

    Article  CAS  Google Scholar 

  42. de Souza, R. O. M. A., Miranda, L. S. M. & Bornscheuer, U. T. A retrosynthesis approach for biocatalysis in organic synthesis. Chemistry 23, 12040–12063 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. France, S. P. et al. Biocatalytic routes to enantiomerically enriched dibenz[c, e]azepines. Angew. Chem. Int. Ed. 56, 15589–15593 (2017).

    Article  CAS  Google Scholar 

  44. Fuchs, C. S. et al. Asymmetric amination of α-chiral aliphatic aldehydes via dynamic kinetic resolution to access stereocomplementary brivaracetam and pregabalin precursors. Adv. Synth. Cat. 360, 768–778 (2018).

    Article  CAS  Google Scholar 

  45. Valeur, E. et al. New modalities for challenging targets in drug discovery. Angew. Chem. Int. Ed. 56, 10294–10323 (2017).

    Article  CAS  Google Scholar 

  46. Milczek, E. Commercial applications for enzyme-mediated protein conjugation: new developments in enzymatic processes to deliver functionalized proteins on the commercial scale. Chem. Rev. 118, 119–141 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Rannes, J. B. et al. Glycoprotein labeling using engineered variants of galactose oxidase obtained by directed evolution. J. Am. Chem. Soc. 133, 8436–8439 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, X., Gou, D. & Xu, S.-Y. Polymerase-Endonuclease Amplification Reaction (PEAR) for large-scale enzymatic production of antisense oligonucleotides. PLOS ONE 5, e8430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, B. et al. Preparation of 5ʹ-O-(1-thiotriphosphate)-modified oligonucleotides using Polymerase-Endonuclease Amplification Reaction (PEAR). PLOS ONE 8, e67558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hammer, S. C., Knight, A. M. & Arnold, F. H. Design and evolution of enzymes for non-natural chemistry. Curr. Opin. Green Sust. Chem. 7, 23–30 (2017).

    Article  Google Scholar 

  51. Renata, H., Wang, Z. J. & Arnold, F. H. Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew. Chem. Int. Ed. 54, 3351–3367 (2015).

    Article  CAS  Google Scholar 

  52. Coelho, P. S., Brustad, E. M., Kannan, A. & Arnold, F. H. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339, 307–310 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, Z. J. et al. Cyclopropanation activity of histidine-ligated cytochrome P450 enables the enantioselective formal synthesis of levomilnacipran. Angew. Chem. Int. Ed. 53, 6810–6813 (2014).

    Article  CAS  Google Scholar 

  54. Bajaj, P., Sreenilayam, G., Tyagi, V. & Fasan, R. Gram-scale synthesis of chiral cyclopropane-containing drugs and drug precursors with engineered myoglobin catalysts featuring complementary stereoselectivity. Angew. Chem. Int. Ed. 55, 16110–16114 (2016).

    Article  CAS  Google Scholar 

  55. Key, H. M., Dydio, P., Clark, D. S. & Hartwig, J. F. Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Nature 534, 534–537 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Dydio, P. et al. An artificial metalloenzyme with the kinetics of native enzymes. Science 354, 102–106 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Tyagi, V. & Fasan, R. Myoglobin-catalyzed olefination of aldehydes. Angew. Chem. Int. Ed. 55, 2512–2516 (2016).

    Article  CAS  Google Scholar 

  58. McIntosh, J. A. et al. Enantioselective intramolecular C–H amination catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo. Angew. Chem. Int. Ed. 52, 9309–9312 (2013).

    Article  CAS  Google Scholar 

  59. Prier, C. K., Zhang, R. K., Buller, A. R., Brinkmann-Chen, S. & Arnold, F. H. Enantioselective, intermolecular benzylic C–H amination catalysed by an engineered iron-haem enzyme. Nat. Chem. 9, 629–634 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ren, X., O’Hanlon, J. A., Morris, M., Robertson, J. & Wong, L. L. Synthesis of imidazolidin-4-ones via a cytochrome P450-catalyzed intramolecular C–H amination. ACS Catal. 6, 6833–6837 (2016).

    Article  CAS  Google Scholar 

  61. Kan, S. B. J., Lewis, R. D., Chen, K. & Arnold, F. H. Directed evolution of cytochrome c for carbon–silicon bond formation: bringing silicon to life. Science 354, 1048–1051 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kan, S. B. J., Huang, X., Gumulya, Y., Chen, K. & Arnold, F. H. Genetically programmed chiral organoborane synthesis. Nature 552, 132–136 (2017).

    CAS  PubMed  Google Scholar 

  63. Mitsukura, K., Suzuki, M., Tada, K., Yoshida, T. & Nagasawa, T. Asymmetric synthesis of chiral cyclic amine from cyclic imine by bacterial whole-cell catalyst of enantioselective imine reductase. Org. Biomol. Chem. 8, 4533–4535 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Mangas-Sanchez, J. et al. Imine reductases (IREDs). Curr. Opin. Chem. Biol. 37, 19–25 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Aleku, G. A. et al. A reductive aminase from Aspergillus oryzae. Nat. Chem. 29, 961–969 (2017).

    Article  CAS  Google Scholar 

  66. Roiban, G. D. et al. Efficient biocatalytic reductive aminations by extending the imine reductase toolbox. ChemCatChem 9, 4475–4479 (2017).

    Article  CAS  Google Scholar 

  67. Bennett, M. R., Shepherd, S. A., Cronin, V. A. & Micklefield, J. Recent advances in methyltransferase biocatalysis. Curr. Opin. Chem. Biol. 37, 97–106 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Mordhorst, S., Siegrist, J., Müller, M., Richter, M. & Andexer, J. N. Catalytic alkylation using a cyclic S-adenosylmethionine regeneration system. Angew. Chem. Int. Ed. 56, 4037–4041 (2017).

    Article  CAS  Google Scholar 

  69. Payer, S. E. et al. Regioselective para-carboxylation of catechols with a prenylated flavin dependent decarboxylase. Angew. Chem. Int. Ed. 56, 13893–13897 (2017).

    Article  CAS  Google Scholar 

  70. Gaßmeyer, S. K. et al. Arylmalonate decarboxylase-catalyzed asymmetric synthesis of both enantiomers of optically pure flurbiprofen. ChemCatChem 8, 916–921 (2016).

    Article  CAS  Google Scholar 

  71. Winkler, M. Carboxylic acid reductase enzymes (CARs). Curr. Opin. Chem. Biol. 43, 23–29 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Gahloth, D. et al. Structures of carboxylic acid reductase reveal domain dynamics underlying catalysis. Nat. Chem. Biol. 13, 975–981 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wood, A. J. et al. Adenylation activity of carboxylic acid reductases enables the synthesis of amides. Angew. Chem. Int. Ed. 56, 14498–14501 (2017).

    Article  CAS  Google Scholar 

  74. Dorr, B. M. & Fuerst, D. E. Enzymatic amidation for industrial applications. Curr. Opin. Chem. Biol. 43, 127–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Gkotsi, D. S., Dhaliwal, J., McLachlan, M. M., Mulholand, K. R. & Goss, R. J. Halogenases: powerful tools for biocatalysis (mechanisms applications and scope). Curr. Opin. Chem. Biol. 43, 119–126 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Frese, M. & Sewald, N. Enzymatic halogenation of tryptophan on a gram scale. Angew. Chem. Int. Ed. 54, 298–301 (2018).

    Article  CAS  Google Scholar 

  77. Latham, J. et al. Integrated catalysis opens new arylation pathways via regiodivergent enzymatic C–H activation. Nat. Commun. 7, 11873 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sharma, S. V. et al. Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo. Nat. Commun 8, 229 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Payne, J. T. et al. Enantioselective desymmetrization of methylenedianilines via enzyme-catalyzed remote halogenation. J. Am. Chem. Soc. 140, 546–549 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Emmanuel, M. A., Greenberg, N. R., Oblinsky, D. G. & Hyster, T. K. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540, 414–417 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Sandoval, B. A., Meichan, A. J. & Hyster, T. K. Enantioselective hydrogen atom transfer: discovery of catalytic promiscuity in flavin-dependent ‘ene’-reductases. J. Am. Chem. Soc. 139, 11313–11316 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Thompson, S. et al. A localized tolerance in the substrate specificity of the fluorinase enzyme enables “last-step” 18F fluorination of a RGD peptide under ambient aqueous conditions. Angew. Chem. Int. Ed. 53, 8913–8918 (2014).

    Article  CAS  Google Scholar 

  83. Carvalho, M. F. & Oliveira, R. S. Natural production of fluorinated compounds and biotechnological prospects of the fluorinase enzyme. Crit. Rev. Biotechnol. 37, 880–897 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Syrén, P. O., Henche, S., Eichler, A., Nestl, B. M. & Hauer, B. Squalene–hopene cyclases — evolution, dynamics and catalytic scope. Curr. Opin. Struct. Biol. 41, 73–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Simon, R. C. et al. Biocatalytic trifluoromethylation of unprotected phenols. Nat. Commun. 7, 13323 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schmidt, N. G. et al. Biocatalytic Friedel–Crafts acylation and Fries reaction. Angew. Chem. Int. Ed. 56, 7615–7619 (2017).

    Article  CAS  Google Scholar 

  87. Demming, R. M., Fischer, M. P., Schmid, J. & Hauer, B. (De)hydratases — recent developments and future perspectives. Curr. Opin. Chem. Biol. 43, 43–50 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Payer, S. E., Pollak, H., Glueck, S. M. & Faber, K. A rational active-site redesign converts a decarboxylase into a C–C hydratase: “tethered acetate” supports enantioselective hydration of 4-hydroxystyrenes. ACS Catal. 8, 2438–2442 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nestl, B. M. et al. Structural and functional insights into asymmetric enzymatic dehydration of alkenols. Nat. Chem. Biol. 13, 275–281 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Wang, Y., Lan, D., Durrani, R. & Hollmann, F. Peroxygenases en route to becoming dream catalysts. What are the opportunities and challenges? Curr. Opin. Chem. Biol. 37, 1–9 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, W. et al. Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations. Nat. Catal. 1, 55–62 (2018).

    Article  PubMed  Google Scholar 

  92. Hammer, S. C. et al. Anti-Markovnikov alkene oxidation by metal-oxo-mediated enzyme catalysis. Science 358, 215–218 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Schwizer, F. et al. Artificial metalloenzymes: reaction scope and optimization strategies. Chem. Rev. 118, 142–231 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Bos, J. & Roelfes, G. Artificial metalloenzymes for enantioselective catalysis. Curr. Opin. Chem. Biol. 19, 135–143 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Jeschek, M. et al. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537, 661–665 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Abu, R. & Woodley, J. M. Application of enzyme coupling reactions to shift thermodynamically limited biocatalytic reactions. ChemCatChem 7, 3094–3105 (2015).

    Article  CAS  Google Scholar 

  97. Zuhse, R., Leggewie, C., Hollmann, F. & Kara, S. Scaling-up of “smart cosubstrate” 1,4-butanediol promoted asymmetric reduction of ethyl-4,4,4-trifluoroacetoacetate in organic media. Org. Process Res. Dev. 19, 369–372 (2015).

    Article  CAS  Google Scholar 

  98. Green, A. P., Turner, N. J. & O’Reilly, E. Chiral amine synthesis using ω-transaminases: an amine donor that displaces equilibria and enables high-throughput screening. Angew. Chem. Int. Ed. 53, 10714–10717 (2014).

    Article  CAS  Google Scholar 

  99. Gomm, A., Lewis, W., Green, A. P. & O’Reilly, E. A new generation of smart amine donors for transaminase-mediated biotransformations. Chem. Eur. J. 22, 12692–12695 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Payer, S. E., Schrittwieser, J. H. & Kroutil, W. Vicinal diamines as smart cosubstrates in the transaminase-catalyzed asymmetric amination of ketones. Eur. J. Org. Chem. 17, 2553–2559 (2017).

    Article  CAS  Google Scholar 

  101. Stepan, A. F. et al. Late-stage microsomal oxidation reduces drug−drug interaction and identifies phosphodiesterase 2A inhibitor PF-06815189. ACS Med. Chem. Lett. 9, 68–72 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kolev, J. N., O’Dwyer, K. M., Jordan, C. T. & Fasan, R. Discovery of potent parthenolide-based antileukemic agents enabled by late-stage P450-mediated C–H functionalization. ACS Chem. Biol. 9, 164–173 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Obach, R. S. et al. Lead diversification at the nanomole scale using liver microsomes and quantitative nuclear magnetic resonance spectroscopy: application to phosphodiesterase 2 inhibitors. J. Med. Chem. 61, 3626–3640 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Rentmeister, A., Arnold, F. H. & Fasan, R. Chemo-enzymatic fluorination of unactivated organic compounds. Nat. Chem. Biol. 5, 26–28 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Obach, R. S., Walker, G. S. & Brodney, M. A. Biosynthesis of fluorinated analogs of drugs using human cytochrome P450 enzymes followed by deoxyfluorination and quantitative nuclear magnetic resonance spectroscopy to improve metabolic stability. Drug Metab. Dispos. 44, 634–646 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Altreuter, D. H. & Clark, D. S. Combinatorial biocatalysis: taking the lead from nature. Curr. Opin. Biotechnol. 10, 130–136 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Thomas, B. et al. Application of biocatalysis to on-DNA carbohydrate library synthesis. ChemBioChem 18, 858–863 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Rowan, A. S. et al. Preparative access to medicinal chemistry related chiral alcohols using carbonyl reductase technology. Tetrahedron Asymmetry 24, 1369–1381 (2013).

    Article  CAS  Google Scholar 

  109. Herter, S. et al. Mapping the substrate scope of monoamine oxidase (MAO-N) as a synthetic tool for the enantioselective synthesis of chiral amines. Bioorg. Med. Chem. 26, 1338–1346 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. France, S. P., Hepworth, L. J., Turner, N. J. & Flitsch, S. L. Constructing biocatalytic cascades: in vitro and in vivo approaches to de novo multi-enzyme pathways. ACS Catal. 7, 710–724 (2017).

    Article  CAS  Google Scholar 

  111. Rudroff, F. et al. Opportunities and challenges for combining chemo- and biocatalysis. Nat. Catal. 1, 12–22 (2018).

    Article  Google Scholar 

  112. Schrittwieser, J. H., Velikogne, S., Hall, M. & Kroutil, W. Artificial biocatalytic linear cascades for preparation of organic molecules. Chem. Rev. 118, 270–348 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Wu, S. & Li, Z. Whole-cell cascade biotransformations for one-pot multistep organic synthesis. ChemCatChem 10, 2164–2178 (2018).

    Article  CAS  Google Scholar 

  114. Thodey, K., Galanie, S. & Smolke, C. D. A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat. Chem. Biol. 10, 837–844 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. France, S. P. et al. One-pot cascade synthesis of mono- and disubstituted piperidines and pyrrolidines using carboxylic acid reductase (CAR), ω-transaminase (ω-TA), and imine reductase (IRED) biocatalysts. ACS Catal. 6, 3753–3759 (2016).

    Article  CAS  Google Scholar 

  116. Köhler, V. et al. Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes. Nat. Chem. 5, 93–99 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Wang, Z. J., Clary, K. N., Bergman, R. G., Raymond, K. N. & Toste, F. D. A supramolecular approach to combining enzymatic and transition metal catalysis. Nat. Chem. 5, 100–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Mutti, F. G., Knaus, T., Scrutton, N. S., Breuer, M. & Turner, N. J. Conversion of alcohols to enantiopure amines through dual enzyme hydrogen-borrowing cascades. Science 349, 1525–1529 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Montgomery, S. L. et al. Direct alkylation of amines with primary and secondary alcohols through biocatalytic hydrogen borrowing. Angew. Chem. Int. Ed. 56, 10491–10494 (2017).

    Article  CAS  Google Scholar 

  120. Tamborini, L., Fernandes, P., Paradisi, F. & Molinari, F. Flow bioreactors as complementary tools for biocatalytic process intensification. Trends Biotechnol. 36, 73–88 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Yuryev, R., Strompen, S. & Liese, A. Coupled chemo(enzymatic) reactions in continuous flow. Beilstein J. Org. Chem. 7, 1449–1467 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chapman, M. R. et al. Simple and versatile laboratory scale CSTR for multiphasic continuous-flow chemistry and long residence times. Org. Proc. Res. Dev, 21, 1294–1301 (2017).

    Article  CAS  Google Scholar 

  123. Böhmer, W., Knaus, T. & Mutti, F. G. Hydrogen-borrowing alcohol bioamination with coimmobilized dehydrogenases. ChemCatChem 10, 731–735 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Hughes, R. A. & Ellington, A. D. Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology. Cold Spring Harb. Perspect. Biol. 9, a023812 (2017).

    Article  PubMed  Google Scholar 

  126. Ebert, M. C. & Pelletier, J. N. Computational tools for enzyme improvement: why everyone can — and should — use them. Curr. Opin. Chem. Biol. 37, 89–96 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Lenz, M. et al. Asymmetric ketone reduction by imine reductases. ChemBioChem 18, 253–256 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Richardson, S. M. et al. Design of a synthetic yeast genome. Science 355, 1040–1044 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Shendure, J. et al. DNA sequencing at 40: past, present and future. Nature 550, 345–353 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Mijalis, A. J. et al. A fully automated flow-based approach for accelerated peptide synthesis. Nat. Chem. Biol. 13, 464–466 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Hahm, H. S. et al. Automated glycan assembly using the Glyconeer 2.1 synthesizer. Proc. Natl Acad. Sci. USA 114, E3385–E3389 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N.J.T. acknowledges the European Research Council (ERC) for the award of an Advanced Grant.

Reviewer information

Nature Reviews Chemistry thanks J. Janey and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Nicholas J. Turner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

3DM: https://3dm.bio-prodict.com/

c-LEcta: https://www.c-lecta.com

CodeEvolver: https://www.codexis.com/codeevolver/

Prozomix: https://www.prozomix.com

Glossary

Metagenomics

The genome-wide sequencing of organisms in environmental samples.

Directed evolution

An iterative process involving the mutagenesis of a gene and screening for or selection of protein variants that have the activity of interest.

Parallel medicinal chemistry

(PMC). A routinely used technique for generating libraries of isolated targets from sets of monomers undergoing the same chemistry in parallel.

Biologics

Pharmaceutical drug products or mixtures of compounds that are partially or entirely manufactured in a living organism and are often complex molecules of incompletely defined structure.

Warhead

The cytotoxic drug in an antibody–drug conjugate.

Linker

A chemical moiety that connects the antibody to the warhead in an antibody–drug conjugate.

Continuous flow

Carrying out a number of chemical processes in a continuous flowing stream.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devine, P.N., Howard, R.M., Kumar, R. et al. Extending the application of biocatalysis to meet the challenges of drug development. Nat Rev Chem 2, 409–421 (2018). https://doi.org/10.1038/s41570-018-0055-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-018-0055-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing