Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Late-stage C–H functionalization offers new opportunities in drug discovery

Abstract

Over the past decade, the landscape of molecular synthesis has gained major impetus by the introduction of late-stage functionalization (LSF) methodologies. C–H functionalization approaches, particularly, set the stage for new retrosynthetic disconnections, while leading to improvements in resource economy. A variety of innovative techniques have been successfully applied to the C–H diversification of pharmaceuticals, and these key developments have enabled medicinal chemists to integrate LSF strategies in their drug discovery programmes. This Review highlights the significant advances achieved in the late-stage C–H functionalization of drugs and drug-like compounds, and showcases how the implementation of these modern strategies allows increased efficiency in the drug discovery process. Representative examples are examined and classified by mechanistic patterns involving directed or innate C–H functionalization, as well as emerging reaction manifolds, such as electrosynthesis and biocatalysis, among others. Structurally complex bioactive entities beyond small molecules are also covered, including diversification in the new modalities sphere. The challenges and limitations of current LSF methods are critically assessed, and avenues for future improvements of this rapidly expanding field are discussed. We, hereby, aim to provide a toolbox for chemists in academia as well as industrial practitioners, and introduce guiding principles for the application of LSF strategies to access new molecules of interest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Opportunities for modern chemistry to enable late-stage C–H functionalization strategies in drug discovery.
Fig. 2: Directed late-stage C–H functionalization of drug-like molecules.
Fig. 3: Late-stage C–H functionalization of drugs controlled by steric and electronic effects.
Fig. 4: Late-stage C–H functionalization of drugs exploiting innate reactivity.
Fig. 5: Late-stage C–H functionalization of pharmaceuticals involving radical chemistry.
Fig. 6: Late-stage C–H functionalization of drug-like compounds and natural products involving emerging reaction manifolds.
Fig. 7: Late-stage C–H diversification in the new modalities sphere.
Fig. 8: Limitations and perspectives of late-stage C–H functionalization strategies.

Similar content being viewed by others

References

  1. Bergman, R. G. C–H activation. Nature 446, 391–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Ackermann, L., Vicente, R. & Kapdi, A. R. Transition-metal-catalyzed direct arylation of (hetero)arenes by C–H bond cleavage. Angew. Chem. Int. Ed. 48, 9792–9826 (2009).

    Article  CAS  Google Scholar 

  3. McMurray, L., O’Hara, F. & Gaunt, M. J. Recent developments in natural product synthesis using metal-catalysed C–H bond functionalisation. Chem. Soc. Rev. 40, 1885–1898 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012).

    Article  CAS  Google Scholar 

  5. Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Wencel-Delord, J. & Glorius, F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 5, 369–375 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Caro-Diaz, E. J. E., Urbano, M., Buzard, D. J. & Jones, R. M. C–H activation reactions as useful tools for medicinal chemists. Bioorg. Med. Chem. Lett. 26, 5378–5383 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Abrams, D. J., Provencher, P. A. & Sorensen, E. J. Recent applications of C–H functionalization in complex natural product synthesis. Chem. Soc. Rev. 47, 8925–8967 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Hong, B., Luo, T. & Lei, X. Late-stage diversification of natural products. ACS Cent. Sci. 6, 622–635 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Börgel, J. & Ritter, T. Late-stage functionalization. Chem 6, 1877–1887 (2020).

    Article  CAS  Google Scholar 

  11. Tellis, J. C. et al. Single-electron transmetalation via photoredox/nickel dual catalysis: unlocking a new paradigm for sp3sp2 cross-coupling. Acc. Chem. Res. 49, 1429–1439 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article  CAS  Google Scholar 

  13. Milligan, J. A., Phelan, J. P., Badir, S. O. & Molander, G. A. Alkyl carbon–carbon bond formation by nickel/photoredox cross-coupling. Angew. Chem. Int. Ed. 58, 6152–6163 (2019).

    Article  CAS  Google Scholar 

  14. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Eastgate, M. D., Schmidt, M. A. & Fandrick, K. R. On the design of complex drug candidate syntheses in the pharmaceutical industry. Nat. Rev. Chem. 1, 0016 (2017).

    Article  CAS  Google Scholar 

  17. Wu, G. et al. Overview of recent strategic advances in medicinal chemistry. J. Med. Chem. 62, 9375–9414 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Boström, J., Brown, D. G., Young, R. J. & Keserü, G. M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov. 17, 709–727 (2018).

    Article  PubMed  CAS  Google Scholar 

  19. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Friis, S. D., Johansson, M. J. & Ackermann, L. Cobalt-catalysed C–H methylation for late-stage drug diversification. Nat. Chem. 12, 511–519 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Moir, M., Danon, J. J., Reekie, T. A. & Kassiou, M. An overview of late-stage functionalization in today’s drug discovery. Expert Opin. Drug Discov. 14, 1137–1149 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Pouliot, J.-R., Grenier, F., Blaskovits, J. T., Beaupré, S. & Leclerc, M. Direct (hetero)arylation polymerization: simplicity for conjugated polymer synthesis. Chem. Rev. 116, 14225–14274 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Ackermann, L. in Directed Metallation. Topics in Organometallic Chemistry Vol. 24 (ed. Chatani, N.) 35–60 (Springer, 2007).

  24. Brückl, T., Baxter, R. D., Ishihara, Y. & Baran, P. S. Innate and guided C–H functionalization logic. Acc. Chem. Res. 45, 826–839 (2012).

    Article  PubMed  CAS  Google Scholar 

  25. Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schlosser, M. The 2×3 toolbox of organometallic methods for regiochemically exhaustive functionalization. Angew. Chem. Int. Ed. 44, 376–393 (2005).

    Article  CAS  Google Scholar 

  27. Gandeepan, P. et al. 3d Transition metals for C–H activation. Chem. Rev. 119, 2192–2452 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Dai, H.-X., Stepan, A. F., Plummer, M. S., Zhang, Y.-H. & Yu, J.-Q. Divergent C–H functionalizations directed by sulfonamide pharmacophores: late-stage diversification as a tool for drug discovery. J. Am. Chem. Soc. 133, 7222–7228 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Catellani, M., Motti, E. & Della Ca’, N. Catalytic sequential reactions involving palladacycle-directed aryl coupling steps. Acc. Chem. Res. 41, 1512–1522 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, X.-C. et al. Ligand-enabled meta-C–H activation using a transient mediator. Nature 519, 334–338 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ye, J. & Lautens, M. Palladium-catalysed norbornene-mediated C–H functionalization of arenes. Nat. Chem. 7, 863–870 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Jiao, L., Herdtweck, E. & Bach, T. Pd(II)-catalyzed regioselective 2-alkylation of indoles via a norbornene-mediated C–H activation: mechanism and applications. J. Am. Chem. Soc. 134, 14563–14572 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Das, S., Incarvito, C. D., Crabtree, R. H. & Brudvig, G. W. Molecular recognition in the selective oxygenation of saturated C–H bonds by a dimanganese catalyst. Science 312, 1941–1943 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Leow, D., Li, G., Mei, T.-S. & Yu, J.-Q. Activation of remote meta-C–H bonds assisted by an end-on template. Nature 486, 518–522 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Breslow, R. Biomimetic control of chemical selectivity. Acc. Chem. Res. 13, 170–177 (1980).

    Article  CAS  Google Scholar 

  36. Meng, G. et al. Achieving site-selectivity for C–H activation processes based on distance and geometry: a carpenter’s approach. J. Am. Chem. Soc. 142, 10571–10591 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hofmann, N. & Ackermann, L. meta-Selective C–H bond alkylation with secondary alkyl halides. J. Am. Chem. Soc. 135, 5877–5884 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, W. & Ackermann, L. Ortho- and para-selective ruthenium-catalyzed C(sp2)–H oxygenations of phenol derivatives. Org. Lett. 15, 3484–3486 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Li, J. et al. N-Acyl amino acid ligands for ruthenium(II)-catalyzed meta-C–H tert-alkylation with removable auxiliaries. J. Am. Chem. Soc. 137, 13894–13901 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Leitch, J. A. & Frost, C. G. Ruthenium-catalysed σ-activation for remote meta-selective C–H functionalisation. Chem. Soc. Rev. 46, 7145–7153 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, J., Li, R., Dong, Z., Liu, P. & Dong, G. Complementary site-selectivity in arene functionalization enabled by overcoming the ortho constraint in palladium/norbornene catalysis. Nat. Chem. 10, 866–872 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Lv, W., Chen, Y., Wen, S., Ba, D. & Cheng, G. Modular and stereoselective synthesis of C-aryl glycosides via Catellani reaction. J. Am. Chem. Soc. 142, 14864–14870 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, Y.-J. et al. Overcoming the limitations of directed C–H functionalizations of heterocycles. Nature 515, 389–393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, H., Lorion, M. M. & Ackermann, L. Overcoming the limitations of C–H activation with strongly coordinating N-heterocycles by cobalt catalysis. Angew. Chem. Int. Ed. 55, 10386–10390 (2016).

    Article  CAS  Google Scholar 

  45. Tomberg, A. et al. Relative strength of common directing groups in palladium-catalyzed aromatic C–H activation. iScience 20, 373–391 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Simonetti, M., Cannas, D. M., Just-Baringo, X., Vitorica-Yrezabal, I. J. & Larrosa, I. Cyclometallated ruthenium catalyst enables late-stage directed arylation of pharmaceuticals. Nat. Chem. 10, 724–731 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Kaplaneris, N. et al. Late-stage diversification through manganese-catalyzed C–H activation: access to acyclic, hybrid, and stapled peptides. Angew. Chem. Int. Ed. 58, 3476–3480 (2019).

    Article  CAS  Google Scholar 

  48. Oeschger, R. et al. Diverse functionalization of strong alkyl C–H bonds by undirected borylation. Science 368, 736–741 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Topczewski, J. J., Cabrera, P. J., Saper, N. I. & Sanford, M. S. Palladium-catalysed transannular C–H functionalization of alicyclic amines. Nature 531, 220–224 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rej, S., Ano, Y. & Chatani, N. Bidentate directing groups: an efficient tool in C–H bond functionalization chemistry for the expedient construction of C–C bonds. Chem. Rev. 120, 1788–1887 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Gandeepan, P. & Ackermann, L. Transient directing groups for transformative C–H activation by synergistic metal catalysis. Chem 4, 199–222 (2018).

    Article  CAS  Google Scholar 

  52. Rodrigalvarez, J. et al. Catalytic C(sp3)–H bond activation in tertiary alkylamines. Nat. Chem. 12, 76–81 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Ishiyama, T. et al. Mild iridium-catalyzed borylation of arenes. High turnover numbers, room temperature reactions, and isolation of a potential intermediate. J. Am. Chem. Soc. 124, 390–391 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Cho, J.-Y., Tse, M. K., Holmes, D., Maleczka, R. E. & Smith, M. R. Remarkably selective iridium catalysts for the elaboration of aromatic C–H bonds. Science 295, 305–308 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Larsen, M. A. & Hartwig, J. F. Iridium-catalyzed C–H borylation of heteroarenes: scope, regioselectivity, application to late-stage functionalization, and mechanism. J. Am. Chem. Soc. 136, 4287–4299 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. He, Z.-T., Li, H., Haydl, A. M., Whiteker, G. T. & Hartwig, J. F. Trimethylphosphate as a methylating agent for cross coupling: a slow-release mechanism for the methylation of arylboronic esters. J. Am. Chem. Soc. 140, 17197–17202 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Partridge, B. M. & Hartwig, J. F. Sterically controlled iodination of arenes via iridium-catalyzed C–H borylation. Org. Lett. 15, 140–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Ros, A., Fernández, R. & Lassaletta, J. M. Functional group directed C–H borylation. Chem. Soc. Rev. 43, 3229–3243 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Scott, J. S. et al. Addition of fluorine and a late-stage functionalization (LSF) of the oral SERD AZD9833. ACS Med. Chem. Lett. 11, 2519–2525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shi, H. et al. Differentiation and functionalization of remote C–H bonds in adjacent positions. Nat. Chem. 12, 399–404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mathi, G. R., Kweon, B., Moon, Y., Jeong, Y. & Hong, S. Regioselective C–H functionalization of heteroarene N-oxides enabled by a traceless nucleophile. Angew. Chem. Int. Ed. 59, 22675–22683 (2020).

    Article  CAS  Google Scholar 

  62. Pony, Yu, R., Hesk, D., Rivera, N., Pelczer, I. & Chirik, P. J. Iron-catalysed tritiation of pharmaceuticals. Nature 529, 195–199 (2016).

    Article  CAS  Google Scholar 

  63. Hesk, D., Das, P. R. & Evans, B. Deuteration of acetanilides and other substituted aromatics using [Ir(COD)(Cy3P)(Py)]PF6 as catalyst. J. Label. Compd. Radiopharm. 36, 497–502 (1995).

    Article  CAS  Google Scholar 

  64. Nilsson, G. N. & Kerr, W. J. The development and use of novel iridium complexes as catalysts for ortho-directed hydrogen isotope exchange reactions. J. Label. Compd. Radiopharm. 53, 662–667 (2010).

    Article  CAS  Google Scholar 

  65. Müller, V., Weck, R., Derdau, V. & Ackermann, L. Ruthenium(II)-catalyzed hydrogen isotope exchange of pharmaceutical drugs by C–H deuteration and C–H tritiation. ChemCatChem 12, 100–104 (2020).

    Article  CAS  Google Scholar 

  66. Rodriguez, R. A. et al. Palau’chlor: a practical and reactive chlorinating reagent. J. Am. Chem. Soc. 136, 6908–6911 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Song, S., Sun, X., Li, X., Yuan, Y. & Jiao, N. Efficient and practical oxidative bromination and iodination of arenes and heteroarenes with DMSO and hydrogen halide: a mild protocol for late-stage functionalization. Org. Lett. 17, 2886–2889 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Song, S. et al. DMSO-catalysed late-stage chlorination of (hetero)arenes. Nat. Catal. 3, 107–115 (2020).

    Article  CAS  Google Scholar 

  69. Gillis, E. P., Eastman, K. J., Hill, M. D., Donnelly, D. J. & Meanwell, N. A. Applications of fluorine in medicinal chemistry. J. Med. Chem. 58, 8315–8359 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Fier, P. S. & Hartwig, J. F. Selective C–H fluorination of pyridines and diazines inspired by a classic amination reaction. Science 342, 956–960 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Fier, P. S. & Hartwig, J. F. Synthesis and late-stage functionalization of complex molecules through C–H fluorination and nucleophilic aromatic substitution. J. Am. Chem. Soc. 136, 10139–10147 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hilton, M. C., Dolewski, R. D. & McNally, A. Selective functionalization of pyridines via heterocyclic phosphonium salts. J. Am. Chem. Soc. 138, 13806–13809 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Dolewski, R. D., Hilton, M. C. & McNally, A. 4-Selective pyridine functionalization reactions via heterocyclic phosphonium salts. Synlett 29, 08–14 (2018).

    Article  CAS  Google Scholar 

  74. Dolewski, R. D., Fricke, P. J. & McNally, A. Site-selective switching strategies to functionalize polyazines. J. Am. Chem. Soc. 140, 8020–8026 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fier, P. S., Kim, S. & Cohen, R. D. A multifunctional reagent designed for the site-selective amination of pyridines. J. Am. Chem. Soc. 142, 8614–8618 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. D’Amato, E. M., Börgel, J. & Ritter, T. Aromatic C–H amination in hexafluoroisopropanol. Chem. Sci. 10, 2424–2428 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Börgel, J., Tanwar, L., Berger, F. & Ritter, T. Late-stage aromatic C–H oxygenation. J. Am. Chem. Soc. 140, 16026–16031 (2018).

    Article  PubMed  CAS  Google Scholar 

  78. Boursalian, G. B., Ham, W. S., Mazzotti, A. R. & Ritter, T. Charge-transfer-directed radical substitution enables para-selective C–H functionalization. Nat. Chem. 8, 810–815 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Citterio, A. et al. Polar effects in free radical reactions. Homolytic aromatic amination by the amino radical cation, .cntdot.+NH3: reactivity and selectivity. J. Org. Chem. 49, 4479–4482 (1984).

    Article  CAS  Google Scholar 

  80. Fischer, H. & Radom, L. Factors controlling the addition of carbon-centered radicals to alkenes — an experimental and theoretical perspective. Angew. Chem. Int. Ed. 40, 1340–1371 (2001).

    Article  CAS  Google Scholar 

  81. Berger, F. et al. Site-selective and versatile aromatic C–H functionalization by thianthrenation. Nature 567, 223–228 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Kafuta, K., Korzun, A., Böhm, M., Golz, C. & Alcarazo, M. Synthesis, structure, and reactivity of 5-(aryl)dibenzothiophenium triflates. Angew. Chem. Int. Ed. 59, 1950–1955 (2020).

    Article  CAS  Google Scholar 

  83. Aukland, M. H., Šiaucˇiulis, M., West, A., Perry, G. J. P. & Procter, D. J. Metal-free photoredox-catalysed formal C–H/C–H coupling of arenes enabled by interrupted Pummerer activation. Nat. Catal. 3, 163–169 (2020).

    Article  CAS  Google Scholar 

  84. Fosu, S. C., Hambira, C. M., Chen, A. D., Fuchs, J. R. & Nagib, D. A. Site-selective C–H functionalization of (hetero)arenes via transient, non-symmetric iodanes. Chem 5, 417–428 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Huang, X., Bergsten, T. M. & Groves, J. T. Manganese-catalyzed late-stage aliphatic C–H azidation. J. Am. Chem. Soc. 137, 5300–5303 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Liu, W. et al. Oxidative aliphatic C–H fluorination with fluoride ion catalyzed by a manganese porphyrin. Science 337, 1322–1325 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Huang, X. et al. Late stage benzylic C–H fluorination with [18F]fluoride for PET imaging. J. Am. Chem. Soc. 136, 6842–6845 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Sharma, A. & Hartwig, J. F. Metal-catalysed azidation of tertiary C–H bonds suitable for late-stage functionalization. Nature 517, 600–604 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Karimov, R. R., Sharma, A. & Hartwig, J. F. Late stage azidation of complex molecules. ACS Cent. Sci. 2, 715–724 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Clark, J. R., Feng, K., Sookezian, A. & White, M. C. Manganese-catalysed benzylic C(sp3)–H amination for late-stage functionalization. Nat. Chem. 10, 583–591 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Que, L. & Tolman, W. B. Biologically inspired oxidation catalysis. Nature 455, 333–340 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. White, M. C. & Zhao, J. Aliphatic C–H oxidations for late-stage functionalization. J. Am. Chem. Soc. 140, 13988–14009 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhao, J., Nanjo, T., de Lucca, E. C. & White, M. C. Chemoselective methylene oxidation in aromatic molecules. Nat. Chem. 11, 213–221 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Feng, K. et al. Late-stage oxidative C(sp3)–H methylation. Nature 580, 621–627 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chan, J. Z. et al. Direct conversion of N-alkylamines to N-propargylamines through C–H activation promoted by Lewis acid/organocopper catalysis: application to late-stage functionalization of bioactive molecules. J. Am. Chem. Soc. 142, 16493–16505 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Minisci, F., Bernardi, R., Bertini, F., Galli, R. & Perchinummo, M. Nucleophilic character of alkyl radicals — VI: a new convenient selective alkylation of heteroaromatic bases. Tetrahedron 27, 3575–3579 (1971).

    Article  CAS  Google Scholar 

  97. Duncton, M. A. J. Minisci reactions: versatile CH-functionalizations for medicinal chemists. MedChemComm 2, 1135–1161 (2011).

    Article  CAS  Google Scholar 

  98. Minisci, F., Galli, R., Cecere, M., Malatesta, V. & Caronna, T. Nucleophilic character of alkyl radicals: new syntheses by alkyl radicals generated in redox processes. Tetrahedron Lett. 9, 5609–5612 (1968).

    Article  Google Scholar 

  99. Proctor, R. S. J. & Phipps, R. J. Recent advances in Minisci-type reactions. Angew. Chem. Int. Ed. 58, 13666–13699 (2019).

    Article  CAS  Google Scholar 

  100. O’Hara, F., Blackmond, D. G. & Baran, P. S. Radical-based regioselective C–H functionalization of electron-deficient heteroarenes: scope, tunability, and predictability. J. Am. Chem. Soc. 135, 12122–12134 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Seiple, I. B. et al. Direct C–H arylation of electron-deficient heterocycles with arylboronic acids. J. Am. Chem. Soc. 132, 13194–13196 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Smith, J. M., Dixon, J. A., deGruyter, J. N. & Baran, P. S. Alkyl sulfinates: radical precursors enabling drug discovery. J. Med. Chem. 62, 2256–2264 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Ji, Y. et al. Innate C–H trifluoromethylation of heterocycles. Proc. Natl Acad. Sci. USA 108, 14411–14415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fujiwara, Y. et al. Practical and innate carbon–hydrogen functionalization of heterocycles. Nature 492, 95–99 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gutiérrez-Bonet, Á., Remeur, C., Matsui, J. K. & Molander, G. A. Late-stage C–H alkylation of heterocycles and 1,4-quinones via oxidative homolysis of 1,4-dihydropyridines. J. Am. Chem. Soc. 139, 12251–12258 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Kim, I., Park, S. & Hong, S. Functionalization of pyridinium derivatives with 1,4-dihydropyridines enabled by photoinduced charge transfer. Org. Lett. 22, 8730–8734 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Proctor, R. S. J., Davis, H. J. & Phipps, R. J. Catalytic enantioselective Minisci-type addition to heteroarenes. Science 360, 419–422 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Sun, A. C., McClain, E. J., Beatty, J. W. & Stephenson, C. R. J. Visible light-mediated decarboxylative alkylation of pharmaceutically relevant heterocycles. Org. Lett. 20, 3487–3490 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. McAtee, R. C., Beatty, J. W., McAtee, C. C. & Stephenson, C. R. J. Radical chlorodifluoromethylation: providing a motif for (hetero)arene diversification. Org. Lett. 20, 3491–3495 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. McClain, E. J., Monos, T. M., Mori, M., Beatty, J. W. & Stephenson, C. R. J. Design and implementation of a catalytic electron donor–acceptor complex platform for radical trifluoromethylation and alkylation. ACS Catal. 10, 12636–12641 (2020).

    Article  CAS  Google Scholar 

  111. Hu, H. et al. Copper-catalysed benzylic C–H coupling with alcohols via radical relay enabled by redox buffering. Nat. Catal. 3, 358–367 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Guillemard, L. & Wencel-Delord, J. When metal-catalyzed C–H functionalization meets visible-light photocatalysis. Beilstein J. Org. Chem. 16, 1754–1804 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Douglas, J. J., Sevrin, M. J. & Stephenson, C. R. J. Visible light photocatalysis: applications and new disconnections in the synthesis of pharmaceutical agents. Org. Process Res. Dev. 20, 1134–1147 (2016).

    Article  CAS  Google Scholar 

  117. Kariofillis, S. K. & Doyle, A. G. Synthetic and mechanistic implications of chlorine photoelimination in nickel/photoredox C(sp3)–H cross-coupling. Acc. Chem. Res. 54, 988–1000 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ruffoni, A. et al. Practical and regioselective amination of arenes using alkyl amines. Nat. Chem. 11, 426–433 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Rössler, S. L. et al. Pyridyl radical cation for C–H amination of arenes. Angew. Chem. Int. Ed. 58, 526–531 (2019).

    Article  CAS  Google Scholar 

  120. Ham, W. S., Hillenbrand, J., Jacq, J., Genicot, C. & Ritter, T. Divergent late-stage (hetero)aryl C–H amination by the pyridinium radical cation. Angew. Chem. Int. Ed. 58, 532–536 (2019).

    Article  CAS  Google Scholar 

  121. Sarver, P. J. et al. The merger of decatungstate and copper catalysis to enable aliphatic C(sp3)–H trifluoromethylation. Nat. Chem. 12, 459–467 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Feng, P., Lee, K. N., Lee, J. W., Zhan, C. & Ngai, M.-Y. Access to a new class of synthetic building blocks via trifluoromethoxylation of pyridines and pyrimidines. Chem. Sci. 7, 424–429 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Lee, K. N., Lei, Z., Morales-Rivera, C. A., Liu, P. & Ngai, M.-Y. Mechanistic studies on intramolecular C–H trifluoromethoxylation of (hetero)arenes via OCF3-migration. Org. Biomol. Chem. 14, 5599–5605 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zheng, W., Morales-Rivera, C. A., Lee, J. W., Liu, P. & Ngai, M.-Y. Catalytic C–H trifluoromethoxylation of arenes and heteroarenes. Angew. Chem. Int. Ed. 57, 9645–9649 (2018).

    Article  CAS  Google Scholar 

  125. Zheng, W., Lee, J. W., Morales-Rivera, C. A., Liu, P. & Ngai, M.-Y. Redox-active reagents for photocatalytic generation of the OCF3 radical and (hetero)aryl C–H trifluoromethoxylation. Angew. Chem. Int. Ed. 57, 13795–13799 (2018).

    Article  CAS  Google Scholar 

  126. Jelier, B. J. et al. Radical trifluoromethoxylation of arenes triggered by a visible-light-mediated N–O bond redox fragmentation. Angew. Chem. Int. Ed. 57, 13784–13789 (2018).

    Article  CAS  Google Scholar 

  127. Lee, J. W., Zheng, W., Morales-Rivera, C. A., Liu, P. & Ngai, M.-Y. Catalytic radical difluoromethoxylation of arenes and heteroarenes. Chem. Sci. 10, 3217–3222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lee, J. W., Lim, S., Maienshein, D. N., Liu, P. & Ngai, M.-Y. Redox-neutral TEMPO catalysis: direct radical (hetero)aryl C–H di- and trifluoromethoxylation. Angew. Chem. Int. Ed. 59, 21475–21480 (2020).

    Article  CAS  Google Scholar 

  129. Lee, J. W., Spiegowski, D. N. & Ngai, M.-Y. Selective C–O bond formation via a photocatalytic radical coupling strategy: access to perfluoroalkoxylated (ORF) arenes and heteroarenes. Chem. Sci. 8, 6066–6070 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Loh, Y. Y. et al. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science 358, 1182–1187 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Li, J. et al. Photoredox catalysis with aryl sulfonium salts enables site-selective late-stage fluorination. Nat. Chem. 12, 56–62 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Wappes, E. A., Vanitcha, A. & Nagib, D. A. β C–H di-halogenation via iterative hydrogen atom transfer. Chem. Sci. 9, 4500–4504 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).

    Article  CAS  Google Scholar 

  134. Lewis, J. C., Coelho, P. S. & Arnold, F. H. Enzymatic functionalization of carbon–hydrogen bonds. Chem. Soc. Rev. 40, 2003–2021 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Fryszkowska, A. & Devine, P. N. Biocatalysis in drug discovery and development. Curr. Opin. Chem. Biol. 55, 151–160 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Li, F., Zhang, X. & Renata, H. Enzymatic C–H functionalizations for natural product synthesis. Curr. Opin. Chem. Biol. 49, 25–32 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Chakrabarty, S., Wang, Y., Perkins, J. C. & Narayan, A. R. H. Scalable biocatalytic C–H oxyfunctionalization reactions. Chem. Soc. Rev. 49, 8137–8155 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Roiban, G.-D. & Reetz, M. T. Expanding the toolbox of organic chemists: directed evolution of P450 monooxygenases as catalysts in regio- and stereoselective oxidative hydroxylation. Chem. Commun. 51, 2208–2224 (2015).

    Article  CAS  Google Scholar 

  139. Wang, J., Li, G. & Reetz, M. T. Enzymatic site-selectivity enabled by structure-guided directed evolution. Chem. Commun. 53, 3916–3928 (2017).

    Article  CAS  Google Scholar 

  140. Zhang, R. K., Huang, X. & Arnold, F. H. Selective C–H bond functionalization with engineered heme proteins: new tools to generate complexity. Curr. Opin. Chem. Biol. 49, 67–75 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Peters, M. W., Meinhold, P., Glieder, A. & Arnold, F. H. Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3. J. Am. Chem. Soc. 125, 13442–13450 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Kille, S., Zilly, F. E., Acevedo, J. P. & Reetz, M. T. Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution. Nat. Chem. 3, 738–743 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Zhang, K., Shafer, B. M., Demars, M. D., Stern, H. A. & Fasan, R. Controlled oxidation of remote sp3 C–H bonds in artemisinin via P450 catalysts with fine-tuned regio- and stereoselectivity. J. Am. Chem. Soc. 134, 18695–18704 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kolev, J. N., O’Dwyer, K. M., Jordan, C. T. & Fasan, R. Discovery of potent parthenolide-based antileukemic agents enabled by late-stage P450-mediated C–H functionalization. ACS Chem. Biol. 9, 164–173 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Loskot, S. A., Romney, D. K., Arnold, F. H. & Stoltz, B. M. Enantioselective total synthesis of nigelladine A via late-stage C–H oxidation enabled by an engineered P450 enzyme. J. Am. Chem. Soc. 139, 10196–10199 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lowell, A. N. et al. Chemoenzymatic total synthesis and structural diversification of tylactone-based macrolide antibiotics through late-stage polyketide assembly, tailoring, and C–H functionalization. J. Am. Chem. Soc. 139, 7913–7920 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Rentmeister, A., Arnold, F. H. & Fasan, R. Chemo-enzymatic fluorination of unactivated organic compounds. Nat. Chem. Biol. 5, 26–28 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Wang, Y., Lan, D., Durrani, R. & Hollmann, F. Peroxygenases en route to becoming dream catalysts. What are the opportunities and challenges? Curr. Opin. Chem. Biol. 37, 1–9 (2017).

    Article  PubMed  CAS  Google Scholar 

  149. Renata, H. Exploration of iron- and α-ketoglutarate-dependent dioxygenases as practical biocatalysts in natural product synthesis. Synlett 32, 775–784 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hayashi, T. et al. Evolved aliphatic halogenases enable regiocomplementary C–H functionalization of a pharmaceutically relevant compound. Angew. Chem. Int. Ed. 58, 18535–18539 (2019).

    Article  CAS  Google Scholar 

  151. Jia, Z.-J., Gao, S. & Arnold, F. H. Enzymatic primary amination of benzylic and allylic C(sp3)–H bonds. J. Am. Chem. Soc. 142, 10279–10283 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Prier, C. K., Zhang, R. K., Buller, A. R., Brinkmann-Chen, S. & Arnold, F. H. Enantioselective, intermolecular benzylic C–H amination catalysed by an engineered iron-haem enzyme. Nat. Chem. 9, 629–634 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ren, X. et al. Drug oxidation by cytochrome P450BM3: metabolite synthesis and discovering new P450 reaction types. Chem. Eur. J. 21, 15039–15047 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Zetzsche, L. E. & Narayan, A. R. H. Broadening the scope of biocatalytic C–C bond formation. Nat. Rev. Chem. 4, 334–346 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Guengerich, F. P. & Yoshimoto, F. K. Formation and cleavage of C–C bonds by enzymatic oxidation–reduction reactions. Chem. Rev. 118, 6573–6655 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Sandoval, B. A. & Hyster, T. K. Emerging strategies for expanding the toolbox of enzymes in biocatalysis. Curr. Opin. Chem. Biol. 55, 45–51 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Schmermund, L. et al. Photo-biocatalysis: biotransformations in the presence of light. ACS Catal. 9, 4115–4144 (2019).

    Article  CAS  Google Scholar 

  158. Biegasiewicz, K. F. et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364, 1166–1169 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Huang, X. et al. Photoenzymatic enantioselective intermolecular radical hydroalkylation. Nature 584, 69–74 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Samanta, R. C., Meyer, T. H., Siewert, I. & Ackermann, L. Renewable resources for sustainable metallaelectro-catalysed C–H activation. Chem. Sci. 11, 8657–8670 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sauermann, N., Meyer, T. H., Tian, C. & Ackermann, L. Electrochemical cobalt-catalyzed C–H oxygenation at room temperature. J. Am. Chem. Soc. 139, 18452–18455 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Gandeepan, P., Finger, L. H., Meyer, T. H. & Ackermann, L. 3d metallaelectrocatalysis for resource economical syntheses. Chem. Soc. Rev. 49, 4254–4272 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Sauermann, N., Mei, R. & Ackermann, L. Electrochemical C–H amination by cobalt catalysis in a renewable solvent. Angew. Chem. Int. Ed. 57, 5090–5094 (2018).

    Article  CAS  Google Scholar 

  164. Kathiravan, S., Suriyanarayanan, S. & Nicholls, I. A. Electrooxidative amination of sp2 C–H bonds: coupling of amines with aryl amides via copper catalysis. Org. Lett. 21, 1968–1972 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Zhang, S.-K., Struwe, J., Hu, L. & Ackermann, L. Nickela-electrocatalyzed C–H alkoxylation with secondary alcohols: oxidation-induced reductive elimination at nickel(III). Angew. Chem. Int. Ed. 59, 3178–3183 (2020).

    Article  CAS  Google Scholar 

  166. Lennox, A. J. J. et al. Electrochemical aminoxyl-mediated α-cyanation of secondary piperidines for pharmaceutical building block diversification. J. Am. Chem. Soc. 140, 11227–11231 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yan, H., Hou, Z.-W. & Xu, H.-C. Photoelectrochemical C–H alkylation of heteroarenes with organotrifluoroborates. Angew. Chem. Int. Ed. 58, 4592–4595 (2019).

    Article  CAS  Google Scholar 

  168. Qiu, Y., Scheremetjew, A., Finger, L. H. & Ackermann, L. Electrophotocatalytic undirected C–H trifluoromethylations of (het)arenes. Chem. Eur. J. 26, 3241–3246 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. Zhang, L. et al. Photoelectrocatalytic arene C–H amination. Nat. Catal. 2, 366–373 (2019).

    Article  CAS  Google Scholar 

  170. Valeur, E. et al. New modalities for challenging targets in drug discovery. Angew. Chem. Int. Ed. 56, 10294–10323 (2017).

    Article  CAS  Google Scholar 

  171. Wang, W., Lorion, M. M., Shah, J., Kapdi, A. R. & Ackermann, L. Late-stage peptide diversification by position-selective C–H activation. Angew. Chem. Int. Ed. 57, 14700–14717 (2018).

    Article  CAS  Google Scholar 

  172. Noisier, A. F. M. & Brimble, M. A. C–H functionalization in the synthesis of amino acids and peptides. Chem. Rev. 114, 8775–8806 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Reddy, B. V. S., Reddy, L. R. & Corey, E. J. Novel acetoxylation and C–C coupling reactions at unactivated positions in α-amino acid derivatives. Org. Lett. 8, 3391–3394 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Mendive-Tapia, L. et al. New peptide architectures through C–H activation stapling between tryptophan–phenylalanine/tyrosine residues. Nat. Commun. 6, 7160 (2015).

    Article  PubMed  Google Scholar 

  175. Weng, Y. et al. Peptide late-stage C(sp3)–H arylation by native asparagine assistance without exogenous directing groups. Chem. Sci. 11, 9290–9295 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Tang, J., He, Y., Chen, H., Sheng, W. & Wang, H. Synthesis of bioactive and stabilized cyclic peptides by macrocyclization using C(sp3)–H activation. Chem. Sci. 8, 4565–4570 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Gong, W., Zhang, G., Liu, T., Giri, R. & Yu, J.-Q. Site-selective C(sp3)–H functionalization of di-, tri-, and tetrapeptides at the N-terminus. J. Am. Chem. Soc. 136, 16940–16946 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Li, B. et al. Construction of natural-product-like cyclophane-braced peptide macrocycles via sp3 C–H arylation. J. Am. Chem. Soc. 141, 9401–9407 (2019).

    Article  PubMed  CAS  Google Scholar 

  179. Zhang, X. et al. A general strategy for synthesis of cyclophane-braced peptide macrocycles via palladium-catalysed intramolecular sp3 C–H arylation. Nat. Chem. 10, 540–548 (2018).

    Article  CAS  PubMed  Google Scholar 

  180. Zhan, B.-B. et al. Site-selective δ-C(sp3)–H alkylation of amino acids and peptides with maleimides via a six-membered palladacycle. Angew. Chem. Int. Ed. 57, 5858–5862 (2018).

    Article  CAS  Google Scholar 

  181. Bauer, M., Wang, W., Lorion, M. M., Dong, C. & Ackermann, L. Internal peptide late-stage diversification: peptide-isosteric triazoles for primary and secondary C(sp3)–H activation. Angew. Chem. Int. Ed. 57, 203–207 (2018).

    Article  CAS  Google Scholar 

  182. Wang, W., Lorion, M. M., Martinazzoli, O. & Ackermann, L. BODIPY peptide labeling by late-stage C(sp3)–H activation. Angew. Chem. Int. Ed. 57, 10554–10558 (2018).

    Article  CAS  Google Scholar 

  183. Smith, J. M., Harwood, S. J. & Baran, P. S. Radical retrosynthesis. Acc. Chem. Res. 51, 1807–1817 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Noisier, A. F. M. et al. Late-stage functionalization of histidine in unprotected peptides. Angew. Chem. Int. Ed. 58, 19096–19102 (2019).

    Article  CAS  Google Scholar 

  185. Chen, X. et al. Histidine-specific peptide modification via visible-light-promoted C–H alkylation. J. Am. Chem. Soc. 141, 18230–18237 (2019).

    Article  CAS  PubMed  Google Scholar 

  186. Kim, J. et al. Site-selective functionalization of methionine residues via photoredox catalysis. J. Am. Chem. Soc. 142, 21260–21266 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kim, J. Y. et al. Rhodium-catalyzed intermolecular amidation of arenes with sulfonyl azides via chelation-assisted C–H bond activation. J. Am. Chem. Soc. 134, 9110–9113 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Korvorapun, K., Kuniyil, R. & Ackermann, L. Late-stage diversification by selectivity switch in meta-C–H activation: evidence for singlet stabilization. ACS Catal. 10, 435–440 (2020).

    Article  CAS  Google Scholar 

  189. Fan, Z. et al. Merging C(sp3)–H activation with DNA-encoding. Chem. Sci. 11, 12282–12288 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. He, J., Hamann, L. G., Davies, H. M. L. & Beckwith, R. E. J. Late-stage C–H functionalization of complex alkaloids and drug molecules via intermolecular rhodium-carbenoid insertion. Nat. Commun. 6, 5943 (2015).

    Article  PubMed  CAS  Google Scholar 

  191. Park, Y., Park, K. T., Kim, J. G. & Chang, S. Mechanistic studies on the Rh(III)-mediated amido transfer process leading to robust C–H amination with a new type of amidating reagent. J. Am. Chem. Soc. 137, 4534–4542 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Hermann, G. N. & Bolm, C. Mechanochemical rhodium(III)-catalyzed C–H bond amidation of arenes with dioxazolones under solventless conditions in a ball mill. ACS Catal. 7, 4592–4596 (2017).

    Article  CAS  Google Scholar 

  193. Scamp, R. J., deRamon, E., Paulson, E. K., Miller, S. J. & Ellman, J. A. Cobalt(III)-catalyzed C–H amidation of dehydroalanine for the site-selective structural diversification of thiostrepton. Angew. Chem. Int. Ed. 59, 890–895 (2020).

    Article  CAS  Google Scholar 

  194. Anastas, P. T. & Zimmerman, J. B. The molecular basis of sustainability. Chem 1, 10–12 (2016).

    Article  CAS  Google Scholar 

  195. Trost, B. M. The atom economy — a search for synthetic efficiency. Science 254, 1471–1477 (1991).

    Article  CAS  PubMed  Google Scholar 

  196. Kelly, C. B. & Padilla-Salinas, R. Late stage C–H functionalization via chalcogen and pnictogen salts. Chem. Sci. 11, 10047–10060 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Holenz, J. & Stoy, P. Advances in lead generation. Bioorg. Med. Chem. Lett. 29, 517–524 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. Collins, K. D. & Glorius, F. A robustness screen for the rapid assessment of chemical reactions. Nat. Chem. 5, 597–601 (2013).

    Article  CAS  PubMed  Google Scholar 

  199. Schmink, J., Bellomo, A. & Berritt, S. Scientist-led high-throughput experimentation (HTE) and its utility in academia and industry. Aldrichimica Acta 46, 71–80 (2013).

    Google Scholar 

  200. Collins, K. D., Gensch, T. & Glorius, F. Contemporary screening approaches to reaction discovery and development. Nat. Chem. 6, 859–871 (2014).

    Article  CAS  PubMed  Google Scholar 

  201. Mennen, S. M. et al. The evolution of high-throughput experimentation in pharmaceutical development and perspectives on the future. Org. Process. Res. Dev. 23, 1213–1242 (2019).

    Article  CAS  Google Scholar 

  202. DiRocco, D. A. et al. Late-stage functionalization of biologically active heterocycles through photoredox catalysis. Angew. Chem. Int. Ed. 53, 4802–4806 (2014).

    Article  CAS  Google Scholar 

  203. Santanilla, A. B. et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science 347, 49–53 (2015).

    Article  CAS  Google Scholar 

  204. Cernak, T. et al. Microscale high-throughput experimentation as an enabling technology in drug discovery: application in the discovery of (piperidinyl)pyridinyl-1H-benzimidazole diacylglycerol acyltransferase 1 inhibitors. J. Med. Chem. 60, 3594–3605 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. Gesmundo, N. J. et al. Nanoscale synthesis and affinity ranking. Nature 557, 228–232 (2018).

    Article  CAS  PubMed  Google Scholar 

  206. Cambié, D., Bottecchia, C., Straathof, N. J. W., Hessel, V. & Noël, T. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem. Rev. 116, 10276–10341 (2016).

    Article  PubMed  CAS  Google Scholar 

  207. Santoro, S., Ferlin, F., Ackermann, L. & Vaccaro, L. C–H functionalization reactions under flow conditions. Chem. Soc. Rev. 48, 2767–2782 (2019).

    Article  CAS  PubMed  Google Scholar 

  208. Govaerts, S., Nyuchev, A. & Noel, T. Pushing the boundaries of C–H bond functionalization chemistry using flow technology. J. Flow Chem. 10, 13–71 (2020).

    Article  CAS  Google Scholar 

  209. Engkvist, O. et al. Computational prediction of chemical reactions: current status and outlook. Drug Discov. Today 23, 1203–1218 (2018).

    Article  CAS  PubMed  Google Scholar 

  210. Rosales, A. R. et al. Application of Q2MM to predictions in stereoselective synthesis. Chem. Commun. 54, 8294–8311 (2018).

    Article  CAS  Google Scholar 

  211. Struble, T. J., Coley, C. W. & Jensen, K. F. Multitask prediction of site selectivity in aromatic C–H functionalization reactions. React. Chem. Eng. 5, 896–902 (2020).

    Article  CAS  Google Scholar 

  212. Jorner, K., Tomberg, A., Bauer, C., Sköld, C. & Norrby, P. O. Organic reactivity from mechanism to machine learning. Nat. Rev. Chem. 5, 240–255 (2021).

    Article  CAS  Google Scholar 

  213. Santoro, S., Kalek, M., Huang, G. & Himo, F. Elucidation of mechanisms and selectivities of metal-catalyzed reactions using quantum chemical methodology. Acc. Chem. Res. 49, 1006–1018 (2016).

    Article  CAS  PubMed  Google Scholar 

  214. Zahrt, A. F. et al. Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning. Science 363, eaau5631 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Pflüger, P. M. & Glorius, F. Molecular machine learning: the future of synthetic chemistry? Angew. Chem. Int. Ed. 59, 18860–18865 (2020).

    Article  CAS  Google Scholar 

  216. Eyke, N. S., Koscher, B. A. & Jensen, K. F. Toward machine learning-enhanced high-throughput experimentation. Trends Chem. 3, 120–132 (2021).

    Article  CAS  Google Scholar 

  217. Shields, B. J. et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 590, 89–96 (2021).

    Article  CAS  PubMed  Google Scholar 

  218. Troshin, K. & Hartwig, J. F. Snap deconvolution: an informatics approach to high-throughput discovery of catalytic reactions. Science 357, 175–181 (2017).

    Article  CAS  PubMed  Google Scholar 

  219. Burai Patrascu, M. et al. From desktop to benchtop with automated computational workflows for computer-aided design in asymmetric catalysis. Nat. Catal. 3, 574–584 (2020).

    Article  CAS  Google Scholar 

  220. Schultz, D. & Campeau, L.-C. Harder, better, faster. Nat. Chem. 12, 661–664 (2020).

    Article  PubMed  Google Scholar 

  221. Le, C., Liang, Y., Evans, R. W., Li, X. & MacMillan, D. W. C. Selective sp3 C–H alkylation via polarity-match-based cross-coupling. Nature 547, 79–83 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Sawayama, A. M. et al. A panel of cytochrome P450 BM3 variants to produce drug metabolites and diversify lead compounds. Chem. Eur. J. 15, 11723–11729 (2009).

    Article  CAS  PubMed  Google Scholar 

  223. Qiu, Y., Struwe, J., Meyer, T. H., Oliveira, J. C. A. & Ackermann, L. Catalyst- and reagent-free electrochemical azole C–H amination. Chem. Eur. J. 24, 12784–12789 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. A. Hayes and A. Tomberg for helpful discussions, as well as R. Sheppard and D. Antermite for valuable advice on the preparation of this manuscript. L.G. and M.J.J. acknowledge AstraZeneca and the AstraZeneca Postdoc Programme for their financial support. N.K. and L.A. are grateful to the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation), the Onassis Foundation (fellowship to N.K.) and acknowledge the Georg-August-Universität Göttingen.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Lutz Ackermann or Magnus J. Johansson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks C. Kelly and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillemard, L., Kaplaneris, N., Ackermann, L. et al. Late-stage C–H functionalization offers new opportunities in drug discovery. Nat Rev Chem 5, 522–545 (2021). https://doi.org/10.1038/s41570-021-00300-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00300-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing