Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gastrointestinal biofilms in health and disease

Abstract

Microorganisms colonize various ecological niches in the human habitat, as they do in nature. Predominant forms of multicellular communities called biofilms colonize human tissue surfaces. The gastrointestinal tract is home to a profusion of microorganisms with intertwined, but not identical, lifestyles: as isolated planktonic cells, as biofilms and in biofilm-dispersed form. It is therefore of major importance in understanding homeostatic and altered host–microorganism interactions to consider not only the planktonic lifestyle, but also biofilms and biofilm-dispersed forms. In this Review, we discuss the natural organization of microorganisms at gastrointestinal surfaces, stratification of microbiota taxonomy, biogeographical localization and trans-kingdom interactions occurring within the biofilm habitat. We also discuss existing models used to study biofilms. We assess the contribution of the host–mucosa biofilm relationship to gut homeostasis and to diseases. In addition, we describe how host factors can shape the organization, structure and composition of mucosal biofilms, and how biofilms themselves are implicated in a variety of homeostatic and pathological processes in the gut. Future studies characterizing biofilm nature, physical properties, composition and intrinsic communication could shed new light on gut physiology and lead to potential novel therapeutic options for gastrointestinal diseases.

Key points

  • Bacteria adopt different lifestyles in their natural habitats, from single planktonic cells to biofilm communities.

  • Polymicrobial biofilms naturally grow throughout the gastrointestinal tract, both at the epithelial surface and in the lumen as mucin-attached and food particle-attached colonies.

  • The biofilm lifestyle influences metabolic behaviour of the microbiota but more research is needed to characterize gut biofilm-specific metabolites and their effects on the host response in health and disease.

  • Polymicrobial and trans-kingdom interactions occur in gut biofilms; deciphering the nature of such interactions might improve our current understanding of the homeostatic relationship between the host and its gut microbiota.

  • Abnormal biofilm features are associated with gastrointestinal diseases; characterization of biofilm alterations and cause-to-effect studies are warranted to elucidate their role in pathophysiology.

  • Investigating biogeographical redistribution of biofilms at mucosal surfaces might provide new tools to characterize microbial alterations associated with gastrointestinal diseases and options for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the three possible bacterial lifestyles at the gut mucosal surface under healthy conditions and their relationship with the host.
Fig. 2: Homeostatic gut microbiota biofilms throughout the gastrointestinal tract.
Fig. 3: Schematic of biofilm biogeography: a marker of mucosal health in the distal colon.
Fig. 4: Endogenous actors in biofilm–host interactions.
Fig. 5: Mucosa-associated biofilms: a biological factory.

Similar content being viewed by others

References

  1. Costerton, J. W., Geesey, G. G. & Cheng, K.-J. How bacteria stick. Sci. Am. 238, 86–95 (1978).

    Article  CAS  PubMed  Google Scholar 

  2. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Flemming, H. C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019). A review that offers quantitative proof for the dominance of biofilms in natural environments and proposes a comprehensive definition of biofilms.

    Article  CAS  PubMed  Google Scholar 

  4. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187–209 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. O’Toole, G., Kaplan, H. B. & Kolter, R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54, 49–79 (2000).

    Article  PubMed  Google Scholar 

  6. Bjarnsholt, T. et al. The in vivo biofilm. Trends Microbiol. 21, 466–474 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Li, S., Konstantinov, S. R., Smits, R. & Peppelenbosch, M. P. Bacterial biofilms in colorectal cancer initiation and progression. Trends Mol. Med. 23, 18–30 (2017). A review that summarizes the contribution of microbial biofilms to the physiopathology of CRC.

    Article  PubMed  Google Scholar 

  8. von Rosenvinge, E. C., O’May, G. A., Macfarlane, S., Macfarlane, G. T. & Shirtliff, M. E. Microbial biofilms and gastrointestinal diseases. Pathog. Dis. 67, 25–38 (2013).

    Article  CAS  Google Scholar 

  9. Tytgat, H. L. P., Nobrega, F. L., van der Oost, J. & de Vos, W. M. Bowel biofilms: tipping points between a healthy and compromised gut? Trends Microbiol. 27, 17–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. de Vos, W. M. Microbial biofilms and the human intestinal microbiome. NPJ Biofilms Microbiomes 1, 15005 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Yasuda, K. et al. Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 17, 385–391 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zoetendal, E. G. et al. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl. Env. Microbiol. 68, 3401–3407 (2002).

    Article  CAS  Google Scholar 

  14. Wang, Y. et al. Laser capture microdissection and metagenomic analysis of intact mucosa-associated microbial communities of human colon. Appl. Microbiol. Biotechnol. 88, 1333–1342 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Nava, G. M., Friedrichsen, H. J. & Stappenbeck, T. S. Spatial organization of intestinal microbiota in the mouse ascending colon. ISME J. 5, 627–638 (2011). A study revealing the taxonomic specificity of mucosa-associated and lumenal microbiota in the mouse proximal colon.

    Article  CAS  PubMed  Google Scholar 

  16. Pantanella, F., Valenti, P., Natalizi, T., Passeri, D. & Berlutti, F. Analytical techniques to study microbial biofilm on abiotic surfaces: pros and cons of the main techniques currently in use. Ann. Ig. 25, 31–42 (2013).

    CAS  PubMed  Google Scholar 

  17. Johnson, C. H. et al. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab. 21, 891–897 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Motta, J. P. et al. Iron sequestration in microbiota biofilms as a novel strategy for treating inflammatory bowel disease. Inflamm. Bowel Dis. 24, 1493–1502 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Couto, N., Schooling, S. R., Dutcher, J. R. & Barber, J. Proteome profiles of outer membrane vesicles and extracellular matrix of Pseudomonas aeruginosa biofilms. J. Proteome Res. 14, 4207–4222 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Gil, C. et al. Biofilm matrix exoproteins induce a protective immune response against Staphylococcus aureus biofilm infection. Infect. Immun. 82, 1017–1029 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Muthukrishnan, G. et al. Exoproteome of Staphylococcus aureus reveals putative determinants of nasal carriage. J. Proteome Res. 10, 2064–2078 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Santos, T. et al. MALDI mass spectrometry imaging and in situ microproteomics of Listeria monocytogenes biofilms. J. Proteom. 187, 152–160 (2018).

    Article  CAS  Google Scholar 

  23. Chua, S. L. et al. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat. Commun. 5, 4462 (2014). This study sheds light on the distinct properties of the biofilm-dispersed phenotype in comparison to planktonic and biofilm lifestyles.

    Article  CAS  PubMed  Google Scholar 

  24. Guilhen, C. et al. Transcriptional profiling of Klebsiella pneumoniae defines signatures for planktonic, sessile and biofilm-dispersed cells. BMC Genomics 17, 237 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Williamson, K. S. et al. Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. J. Bacteriol. 194, 2062–2073 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. O’Toole, G. A. & Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30, 295–304 (1998).

    Article  PubMed  Google Scholar 

  27. Ceri, H. et al. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 37, 1771–1776 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sproule-Willoughby, K. M. et al. In vitro anaerobic biofilms of human colonic microbiota. J. Microbiol. Methods 83, 296–301 (2010). This study demonstrates the ability to grow human colon microbiota under its natural polymicrobial biofilm lifestyle using a microtitre-derived model (Calgary biofilm device).

    Article  CAS  PubMed  Google Scholar 

  29. Motta, J. P. et al. Hydrogen sulfide protects from colitis and restores intestinal microbiota biofilm and mucus production. Inflamm. Bowel Dis. 21, 1006–1017 (2015).

    Article  PubMed  Google Scholar 

  30. Beatty, J. K. et al. Giardia duodenalis induces pathogenic dysbiosis of human intestinal microbiota biofilms. Int. J. Parasitol. 47, 311–326 (2017).

    Article  PubMed  Google Scholar 

  31. Motta, J. P. et al. Active thrombin produced by the intestinal epithelium controls mucosal biofilms. Nat. Commun. 10, 3224 (2019). This study demonstrates that a host mediator (protease) control the physical properties of gut biofilms and its spatial exclusion from the gut epithelium.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Goeres, D. M. et al. A method for growing a biofilm under low shear at the air-liquid interface using the drip flow biofilm reactor. Nat. Protoc. 4, 783–788 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Lawrence, J. R., Swerhone, G. D. & Neu, T. R. A simple rotating annular reactor for replicated biofilm studies. J. Microbiol. Methods 42, 215–224 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Macfarlane, S. & Macfarlane, G. T. Composition and metabolic activities of bacterial biofilms colonizing food residues in the human gut. Appl. Env. Microb. 72, 6204–6211 (2006).

    Article  CAS  Google Scholar 

  35. Fehlbaum, S. et al. Design and investigation of polyferms in vitro continuous fermentation models inoculated with immobilized fecal microbiota mimicking the elderly colon. PLoS ONE 10, e0142793 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Van den Abbeele, P. et al. Arabinoxylans, inulin and Lactobacillus reuteri 1063 repress the adherent-invasive Escherichia coli from mucus in a mucosa-comprising gut model. NPJ Biofilms Microbiomes 2, 16016 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Van de Wiele, T., Van den Abbeele, P., Ossieur, W., Possemiers, A. & Marzorati, M. in The Impact of Food Bioactives on Health (eds Verhoeckx, K. et al.) 305–317 (Springer, 2015).

  38. Lee, J. H., Kaplan, J. B. & Lee, W. Y. Microfluidic devices for studying growth and detachment of Staphylococcus epidermidis biofilms. Biomed. Microdevices 10, 489–498 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Yawata, Y., Nguyen, J., Stocker, R. & Rusconi, R. Microfluidic studies of biofilm formation in dynamic environments. J. Bacteriol. 198, 2589–2595 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barroso, E., Cueva, C., Peláez, C., Martinez-Cuesta, M. C. & Requena, T. in The Impact of Food Bioactives on Health (eds Verhoeckx, K. et al.) 319–327 (Springer, 2015).

  41. McDonald, J. A. et al. Simulating distal gut mucosal and luminal communities using packed-column biofilm reactors and an in vitro chemostat model. J. Microbiol. Methods 108, 36–44 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Jalili-Firoozinezhad, S. et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3, 520–531 (2019). This technologically innovative study demonstrates the co-culture of human intestinal organoids mounted on a chip-based model together with complex anaerobic gut microbiota.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Diard, M. et al. Caenorhabditis elegans as a simple model to study phenotypic and genetic virulence determinants of extraintestinal pathogenic Escherichia coli. Microbes Infect. 9, 214–223 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Gerbaba, T. K., Gupta, P., Rioux, K., Hansen, D. & Buret, A. G. Giardia duodenalis-induced alterations of commensal bacteria kill Caenorhabditis elegans: a new model to study microbial-microbial interactions in the gut. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G550–G561 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Purdy, A. E. & Watnick, P. I. Spatially selective colonization of the arthropod intestine through activation of Vibrio cholerae biofilm formation. Proc. Natl Acad. Sci. USA 108, 19737–19742 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl Acad. Sci. USA 109, 11002–11007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rendueles, O. et al. A new zebrafish model of oro-intestinal pathogen colonization reveals a key role for adhesion in protection by probiotic bacteria. PLoS Pathog. 8, e1002815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lutz, H. L. et al. A simple microbiome in the European common cuttlefish, Sepia officinalis. mSystems 4, e00177–19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lewis, K. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 5, 48–56 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Ha, K. R., Psaltis, A. J., Tan, L. & Wormald, P. J. A sheep model for the study of biofilms in rhinosinusitis. Am. J. Rhinol. 21, 339–345 (2007).

    Article  PubMed  Google Scholar 

  51. Dohar, J. E. et al. Mucosal biofilm formation on middle-ear mucosa in a nonhuman primate model of chronic suppurative otitis media. Laryngoscope 115, 1469–1472 (2005).

    Article  PubMed  Google Scholar 

  52. Buret, A., Ward, K. H., Olson, M. E. & Costerton, J. W. An in vivo model to study the pathobiology of infectious biofilms on biomaterial surfaces. J. Biomed. Mater. Res. 25, 865–874 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Palestrant, D. et al. Microbial biofilms in the gut: visualization by electron microscopy and by acridine orange staining. Ultrastruct. Pathol. 28, 23–27 (2004).

    Article  PubMed  Google Scholar 

  54. Bollinger, R. R. et al. Human secretory immunoglobulin A may contribute to biofilm formation in the gut. Immunology 109, 580–587 (2003). This study suggests a role for host IgA in the formation of gut biofilms and discusses the concept of ‘immune-inclusion/exclusion’ for IgA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Banwell, J. G., Howard, R., Cooper, D. & Costerton, J. W. Intestinal microbial flora after feeding phytohemagglutinin lectins (Phaseolus vulgaris) to rats. Appl. Env. Microbiol. 50, 68–80 (1985).

    Article  CAS  Google Scholar 

  56. Johansson, M. E., Larsson, J. M. & Hansson, G. C. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc. Natl Acad. Sci. USA 108, 4659–4665 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Swidsinski, A., Loening-Baucke, V., Lochs, H. & Hale, L. P. Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. World J. Gastroenterol. 11, 1131–1140 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Swidsinski, A., Weber, J., Loening-Baucke, V., Hale, L. P. & Lochs, H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol. 43, 3380–3389 (2005). Together with Swidsinski et al. (2005), this study demonstrates the use of microscopy approaches to characterize gut biofilms in the healthy and inflamed colon in mice and humans.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Saafan, M. E., Ibrahim, W. S. & Tomoum, M. O. Role of adenoid biofilm in chronic otitis media with effusion in children. Eur. Arch. Otorhinolaryngol. 270, 2417–2425 (2013).

    Article  PubMed  Google Scholar 

  60. Dejea, C. M. et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl Acad. Sci. USA 111, 18321–18326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mark Welch, J. L., Hasegawa, Y., McNulty, N. P., Gordon, J. I. & Borisy, G. G. Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice. Proc. Natl Acad. Sci. USA 114, E9105–E9114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kotze, S. H. et al. Spontaneous bacterial cell lysis and biofilm formation in the colon of the Cape Dune mole-rat and the laboratory rabbit. Appl. Microbiol. Biotechnol. 90, 1773–1783 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Frese, S. A. et al. Molecular characterization of host-specific biofilm formation in a vertebrate gut symbiont. PLoS Genet. 9, e1004057 (2013). This study shows the presence of Lactobacilli biofilms forming at the mucosal surface of the stomach in mice.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Thaiss, C. A. et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167, 1495–1510.e12 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Bergstrom, K. et al. Proximal colon–derived O-glycosylated mucus encapsulates and modulates the microbiota. Science 370, 467–472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Smith, H. F. et al. Comparative anatomy and phylogenetic distribution of the mammalian cecal appendix. J. Evol. Biol. 22, 1984–1999 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Tomkovich, S. et al. Human colon mucosal biofilms and murine host communicate via altered mRNA and microRNA expression during cancer. mSystems 5, e00451-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Udden, S. M., Waliullah, S., Harris, M. & Zaki, H. The ex vivo colon organ culture and its use in antimicrobial host defense studies. J. Vis. Exp. https://doi.org/10.3791/55347 (2017).

  69. Johansson, M. E. et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 63, 281–291 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Birchenough, G. M., Nystrom, E. E., Johansson, M. E. & Hansson, G. C. A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science 352, 1535–1542 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zagato, E. et al. Lactobacillus paracasei CBA L74 metabolic products and fermented milk for infant formula have anti-inflammatory activity on dendritic cells in vitro and protective effects against colitis and an enteric pathogen in vivo. PLoS ONE 9, e87615 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Tsilingiri, K. et al. Probiotic and postbiotic activity in health and disease: comparison on a novel polarised ex-vivo organ culture model. Gut 61, 1007–1015 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Hicks, S., Candy, D. C. & Phillips, A. D. Adhesion of enteroaggregative Escherichia coli to pediatric intestinal mucosa in vitro. Infect. Immun. 64, 4751–4760 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Grassart, A. et al. Bioengineered human organ-on-chip reveals intestinal microenvironment and mechanical forces impacting shigella infection. Cell Host Microbe 26, 435–444.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Sidar, B. et al. Long-term flow through human intestinal organoids with the gut organoid flow chip (GOFlowChip). Lab. Chip 20, 3552–3562 (2019).

    Article  Google Scholar 

  76. Rumbaugh, K. P. & Sauer, K. Biofilm dispersion. Nat. Rev. Microbiol. 10, 571–586 (2020).

    Article  CAS  Google Scholar 

  77. Jefferson, K. K. What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 236, 163–173 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Jensen, E. T., Kharazmi, A., Hoiby, N. & Costerton, J. W. Some bacterial parameters influencing the neutrophil oxidative burst response to Pseudomonas aeruginosa biofilms. APMIS 100, 727–733 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. Lockhart, J. S. et al. Mixed species biofilms of Fusobacterium necrophorum and Porphyromonas levii impair the oxidative response of bovine neutrophils in vitro. Anaerobe 47, 157–164 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Kernien, J. F., Johnson, C. J. & Nett, J. E. Conserved inhibition of neutrophil extracellular trap release by clinical Candida albicans biofilms. J. Fungi 3, 49 (2017).

    Article  CAS  Google Scholar 

  81. Guilhen, C. et al. Colonization and immune modulation properties of Klebsiella pneumoniae biofilm-dispersed cells. NPJ Biofilms Microbiomes 5, 25 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Buret, A. G., Motta, J. P., Allain, T., Ferraz, J. & Wallace, J. L. Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: a role for iron? J. Biomed. Sci. 26, 1 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Macfarlane, S., Bahrami, B. & Macfarlane, G. T. Mucosal biofilm communities in the human intestinal tract. Adv. Appl. Microbiol. 75, 111–143 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Macfarlane, S., McBain, A. J. & Macfarlane, G. T. Consequences of biofilm and sessile growth in the large intestine. Adv. Dent. Res. 11, 59–68 (1997). This study is the origin of our perception of the gut microbiota as a biofilm community, and proposes that a biofilm phenotype influences the microbially cooperative metabolism of carbohydrates within the gastrointestinal tract.

    Article  CAS  PubMed  Google Scholar 

  85. Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016). A review of the microbial biogeography throughout the gastrointestinal tract and its relevance in health and disease.

    Article  CAS  PubMed  Google Scholar 

  86. Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Article  CAS  Google Scholar 

  88. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lepage, P. et al. Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm. Bowel Dis. 11, 473–480 (2005).

    Article  PubMed  Google Scholar 

  90. Charlson, E. S. et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am. J. Respir. Crit. Care Med. 184, 957–963 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Segata, N. et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 13, R42 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gu, S. et al. Bacterial community mapping of the mouse gastrointestinal tract. PLoS ONE 8, e74957 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ghoul, M. & Mitri, S. The ecology and evolution of microbial competition. Trends Microbiol. 24, 833–845 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Madsen, J. S. et al. Coexistence facilitates interspecific biofilm formation in complex microbial communities. Env. Microbiol. 18, 2565–2574 (2016).

    Article  CAS  Google Scholar 

  96. Donelli, G., Vuotto, C., Cardines, R. & Mastrantonio, P. Biofilm-growing intestinal anaerobic bacteria. FEMS Immunol. Med. Microbiol. 65, 318–325 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e21 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174, 1406–1423.e16 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Randal Bollinger, R., Barbas, A. S., Bush, E. L., Lin, S. S. & Parker, W. Biofilms in the large bowel suggest an apparent function of the human vermiform appendix. J. Theor. Biol. 249, 826–831 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Kamada, N., Chen, G. Y., Inohara, N. & Nunez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14, 685–690 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Raffatellu, M. Learning from bacterial competition in the host to develop antimicrobials. Nat. Med. 24, 1097–1103 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Cassat, J. E. & Skaar, E. P. Iron in infection and immunity. Cell Host Microbe 13, 509–519 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Da, Re,S. et al. Identification of commensal Escherichia coli genes involved in biofilm resistance to pathogen colonization. PLoS ONE 8, e61628 (2013).

    Article  CAS  Google Scholar 

  104. Chudnovskiy, A. et al. Host-protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell 167, 444–456.e14 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Pfeiffer, J. K. & Virgin, H. W. Viral immunity. Transkingdom control of viral infection and immunity in the mammalian intestine. Science 351, aad5872 (2016).

    Article  PubMed  CAS  Google Scholar 

  107. Earle, K. A. et al. Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe 18, 478–488 (2015). This paper describe the microbial biogeography in the colon and stomach of mice, and demonstrates its alteration in the context of a carbohydrate-rich diet.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Thaiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Liu, C. Y., Dube, P. E., Girish, N., Reddy, A. T. & Polk, D. B. Optical reconstruction of murine colorectal mucosa at cellular resolution. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G721–G735 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Srinandan, C. S., Elango, M., Gnanadhas, D. P. & Chakravortty, D. Infiltration of matrix-non-producers weakens the Salmonella biofilm and impairs its antimicrobial tolerance and pathogenicity. Front. Microbiol. 6, 1468 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Jinno, A. & Park, P. W. Role of glycosaminoglycans in infectious disease. Methods Mol. Biol. 1229, 567–585 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Murofushi, Y. et al. The toll-like receptor family protein RP105/MD1 complex is involved in the immunoregulatory effect of exopolysaccharides from Lactobacillus plantarum N14. Mol. Immunol. 64, 63–75 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Bylund, J., Burgess, L. A., Cescutti, P., Ernst, R. K. & Speert, D. P. Exopolysaccharides from Burkholderia cenocepacia inhibit neutrophil chemotaxis and scavenge reactive oxygen species. J. Biol. Chem. 281, 2526–2532 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Raffatellu, M. et al. The Vi capsular antigen of Salmonella enterica serotype Typhi reduces Toll-like receptor-dependent interleukin-8 expression in the intestinal mucosa. Infect. Immun. 73, 3367–3374 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Speziale, P., Pietrocola, G., Foster, T. J. & Geoghegan, J. A. Protein-based biofilm matrices in Staphylococci. Front. Cell Infect. Microbiol. 4, 171 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kaplan, J. B. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J. Dent. Res. 89, 205–218 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Passmore, I. J. et al. Mep72, a metzincin protease that is preferentially secreted by biofilms of Pseudomonas aeruginosa. J. Bacteriol. 197, 762–773 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Purschke, F. G., Hiller, E., Trick, I. & Rupp, S. Flexible survival strategies of Pseudomonas aeruginosa in biofilms result in increased fitness compared with Candida albicans. Mol. Cell Proteom. 11, 1652–1669 (2012).

    Article  CAS  Google Scholar 

  120. Wentworth, C. C., Jones, R. M., Kwon, Y. M., Nusrat, A. & Neish, A. S. Commensal-epithelial signaling mediated via formyl peptide receptors. Am. J. Pathol. 177, 2782–2790 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sadowska, B., Wieckowska-Szakiel, M., Paszkiewicz, M. & Rozalska, B. The immunomodulatory activity of Staphylococcus aureus products derived from biofilm and planktonic cultures. Arch. Immunol. Ther. Exp. 61, 413–420 (2013).

    Article  CAS  Google Scholar 

  122. Brady, R. A., Leid, J. G., Camper, A. K., Costerton, J. W. & Shirtliff, M. E. Identification of Staphylococcus aureus proteins recognized by the antibody-mediated immune response to a biofilm infection. Infect. Immun. 74, 3415–3426 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Schooling, S. R. & Beveridge, T. J. Membrane vesicles: an overlooked component of the matrices of biofilms. J. Bacteriol. 188, 5945–5957 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kulp, A. & Kuehn, M. J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163–184 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ellis, T. N., Leiman, S. A. & Kuehn, M. J. Naturally produced outer membrane vesicles from Pseudomonas aeruginosa elicit a potent innate immune response via combined sensing of both lipopolysaccharide and protein components. Infect. Immun. 78, 3822–3831 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Morris, J. D. et al. Imaging and analysis of Pseudomonas aeruginosa swarming and rhamnolipid production. Appl. Env. Microbiol. 77, 8310–8317 (2011).

    Article  CAS  Google Scholar 

  127. Bonnichsen, L. et al. Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms. Microbiology 161, 2289–2297 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Periasamy, S. et al. How Staphylococcus aureus biofilms develop their characteristic structure. Proc. Natl Acad. Sci. USA 109, 1281–1286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Das, T., Sehar, S. & Manefield, M. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Env. Microbiol. Rep. 5, 778–786 (2013).

    Article  CAS  Google Scholar 

  130. Fuxman Bass, J. I. et al. Extracellular DNA: a major proinflammatory component of Pseudomonas aeruginosa biofilms. J. Immunol. 184, 6386–6395 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Mulcahy, H., Charron-Mazenod, L. & Lewenza, S. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog. 4, e1000213 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Blenkiron, C. et al. Uropathogenic Escherichia coli releases extracellular vesicles that are associated with RNA. PLoS ONE 11, e0160440 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Koeppen, K. et al. A novel mechanism of host-pathogen interaction through sRNA in bacterial outer membrane vesicles. PLoS Pathog. 12, e1005672 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Mukherjee, S. & Bassler, B. L. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 17, 371–382 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Smith, R. S. et al. IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is transcriptionally regulated by NF-κB and activator protein-2. J. Immunol. 167, 366–374 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Shiner, E. K. et al. Pseudomonas aeruginosa autoinducer modulates host cell responses through calcium signalling. Cell Microbiol. 8, 1601–1610 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Tateda, K. et al. The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect. Immun. 71, 5785–5793 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lyte, M. et al. Norepinephrine-induced expression of the K99 pilus adhesin of enterotoxigenic Escherichia coli. Biochem. Biophys. Res. Commun. 232, 682–686 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Sperandio, V., Torres, A. G., Jarvis, B., Nataro, J. P. & Kaper, J. B. Bacteria-host communication: the language of hormones. Proc. Natl Acad. Sci. USA 100, 8951–8956 (2003). This study reveals that host hormones can activate microbial quorum sensing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Karavolos, M. H. et al. Adrenaline modulates the global transcriptional profile of Salmonella revealing a role in the antimicrobial peptide and oxidative stress resistance responses. BMC Genomics 9, 458 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zaborina, O. et al. Dynorphin activates quorum sensing quinolone signaling in Pseudomonas aeruginosa. PLoS Pathog. 3, e35 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Naresh, R. & Hampson, D. J. Exposure to norepinephrine enhances Brachyspira pilosicoli growth, attraction to mucin and attachment to Caco-2 cells. Microbiology 157, 543–547 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Korner, M. & Gebbers, J. O. Clinical significance of human intestinal spirochetosis–a morphologic approach. Infection 31, 341–349 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Freestone, P. P., Sandrini, S. M., Haigh, R. D. & Lyte, M. Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol. 16, 55–64 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. McGuckin, M. A., Linden, S. K., Sutton, P. & Florin, T. H. Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol. 9, 265–278 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Tu, Q. V., McGuckin, M. A. & Mendz, G. L. Campylobacter jejuni response to human mucin MUC2: modulation of colonization and pathogenicity determinants. J. Med. Microbiol. 57, 795–802 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Dwivedi, R. et al. L-fucose influences chemotaxis and biofilm formation in Campylobacter jejuni. Mol. Microbiol. 101, 575–589 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Liu, Z. et al. Vibrio cholerae represses polysaccharide synthesis to promote motility in mucosa. Infect. Immun. 83, 1114–1121 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Kamphuis, J. B. J., Mercier-Bonin, M., Eutamene, H. & Theodorou, V. Mucus organisation is shaped by colonic content; a new view. Sci. Rep. 7, 8527 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sonnenburg, E. D. et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell 141, 1241–1252 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Co, J. Y. et al. Mucins trigger dispersal of Pseudomonas aeruginosa biofilms. NPJ Biofilms Microbiomes 4, 23 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Batoni, G., Maisetta, G. & Esin, S. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochim. Biophys. Acta 1858, 1044–1060 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. de la Fuente-Nunez, C. et al. D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem. Biol. 22, 196–205 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Segev-Zarko, L., Saar-Dover, R., Brumfeld, V., Mangoni, M. L. & Shai, Y. Mechanisms of biofilm inhibition and degradation by antimicrobial peptides. Biochem. J. 468, 259–270 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. de la Fuente-Nunez, C. et al. Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob. Agents Chemother. 56, 2696–2704 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Overhage, J. et al. Human host defence peptide LL-37 prevents bacterial biofilm formation. Infect. Immun. 76, 4176–4182 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Chu, H. et al. Human α-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science 337, 477–481 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Schroeder, B. O. et al. Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1. Nature 469, 419–423 (2011).

    Article  CAS  PubMed  Google Scholar 

  160. Wallace, J. L. Physiological and pathophysiological roles of hydrogen sulfide in the gastrointestinal tract. Antioxid. Redox Signal. 12, 1125–1133 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Goubern, M., Andriamihaja, M., Nubel, T., Blachier, F. & Bouillaud, F. Sulfide, the first inorganic substrate for human cells. FASEB J. 21, 1699–1706 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Rowan, F. E., Docherty, N. G., Coffey, J. C. & O’Connell, P. R. Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis. Br. J. Surg. 96, 151–158 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Cai, W. J., Wang, M. J., Ju, L. H., Wang, C. & Zhu, Y. C. Hydrogen sulfide induces human colon cancer cell proliferation: role of Akt, ERK and p21. Cell Biol. Int. 34, 565–572 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Ankri, S. & Mirelman, D. Antimicrobial properties of allicin from garlic. Microbes Infect. 1, 125–129 (1999).

    Article  CAS  PubMed  Google Scholar 

  165. Ross, Z. M., O’Gara, E. A., Hill, D. J., Sleightholme, H. V. & Maslin, D. J. Antimicrobial properties of garlic oil against human enteric bacteria: evaluation of methodologies and comparisons with garlic oil sulfides and garlic powder. Appl. Env. Microbiol. 67, 475–480 (2001).

    Article  CAS  Google Scholar 

  166. Pabst, O. New concepts in the generation and functions of IgA. Nat. Rev. Immunol. 12, 821–832 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Palm, N. W. et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158, 1000–1010 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Levites, Y. et al. A human monoclonal IgG that binds Aβ assemblies and diverse amyloids exhibits anti-amyloid activities in vitro and in vivo. J. Neurosci. 35, 6265–6276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Tursi, S. A. et al. Salmonella typhimurium biofilm disruption by a human antibody that binds a pan-amyloid epitope on curli. Nat. Commun. 11, 1007 (2020). This study demonstrates the ability of human immunoglobulins to alter the formation of deleterious biofilms on medical implants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Barnhart, M. M. & Chapman, M. R. Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131–147 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wold, A. E. et al. Secretory immunoglobulin A carries oligosaccharide receptors for Escherichia coli type 1 fimbrial lectin. Infect. Immun. 58, 3073–3077 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Boren, T., Falk, P., Roth, K. A., Larson, G. & Normark, S. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262, 1892–1895 (1993).

    Article  CAS  PubMed  Google Scholar 

  173. Moshier, A., Reddy, M. S. & Scannapieco, F. A. Role of type 1 fimbriae in the adhesion of Escherichia coli to salivary mucin and secretory immunoglobulin A. Curr. Microbiol. 33, 200–208 (1996).

    Article  CAS  PubMed  Google Scholar 

  174. Harris, L. G., Nigam, Y., Sawyer, J., Mack, D. & Pritchard, D. I. Lucilia sericata chymotrypsin disrupts protein adhesin-mediated staphylococcal biofilm formation. Appl. Env. Microb. 79, 1393–1395 (2013).

    Article  CAS  Google Scholar 

  175. Xu, W. et al. Host and bacterial proteases influence biofilm formation and virulence in a murine model of enterococcal catheter-associated urinary tract infection. NPJ Biofilms Microbiomes 3, 28 (2017). This study shows that a host protease can act as a defence mechanism against deleterious biofilm growth in mouse bladder.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Iwase, T. et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465, 346–349 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. Krishnaswamy, V. R., Mintz, D. & Sagi, I. Matrix metalloproteinases: the sculptors of chronic cutaneous wounds. Biochim. Biophys. Acta Mol. Cell Res. 1864, 2220–2227 (2017).

    Article  CAS  PubMed  Google Scholar 

  178. Selan, L. et al. Serratiopeptidase: a well-known metalloprotease with a new non-proteolytic activity against S. aureus biofilm. BMC Microbiol. 15, 207 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Tseng, B. S. et al. A biofilm matrix-associated protease inhibitor protects Pseudomonas aeruginosa from proteolytic attack. mBio 9, 2 (2018).

    Article  Google Scholar 

  180. Eggers, C. T., Murray, I. A., Delmar, V. A., Day, A. G. & Craik, C. S. The periplasmic serine protease inhibitor ecotin protects bacteria against neutrophil elastase. Biochem. J. 379, 107–118 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Vergnolle, N. Protease inhibition as new therapeutic strategy for GI diseases. Gut 65, 1215–1224 (2016).

    Article  CAS  PubMed  Google Scholar 

  182. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004). A review of the different strategies used for biofilm eradication and control for human health purposes.

    Article  CAS  PubMed  Google Scholar 

  183. Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P. & Hall-Stoodley, L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat. Rev. Microbiol. 15, 740–755 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Hathroubi, S., Servetas, S. L., Windham, I., Merrell, D. S. & Ottemann, K. M. Helicobacter pylori biofilm formation and its potential role in pathogenesis. Microbiol. Mol. Biol. Rev. 82, e00001-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Koteish, A., Kannangai, R., Abraham, S. C. & Torbenson, M. Colonic spirochetosis in children and adults. Am. J. Clin. Pathol. 120, 828–832 (2003).

    Article  PubMed  Google Scholar 

  186. Kaakoush, N. O., Castano-Rodriguez, N., Man, S. M. & Mitchell, H. M. Is Campylobacter to esophageal adenocarcinoma as Helicobacter is to gastric adenocarcinoma? Trends Microbiol. 23, 455–462 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. Erickson, L. A. & Torbenson, M. S. Intestinal spirochetosis. Mayo Clin. Proc. 95, 427–428 (2020).

    Article  PubMed  Google Scholar 

  188. Donskey, C. J. et al. Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. N. Engl. J. Med. 343, 1925–1932 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Smits, W. K., Lyras, D., Lacy, D. B., Wilcox, M. H. & Kuijper, E. J. Clostridium difficile infection. Nat. Rev. Dis. Primers 2, 16020 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Yonezawa, H. et al. Assessment of in vitro biofilm formation by Helicobacter pylori. J. Gastroenterol. Hepatol. 25, S90–S94 (2010).

    Article  PubMed  Google Scholar 

  191. Joshua, G. W., Guthrie-Irons, C., Karlyshev, A. V. & Wren, B. W. Biofilm formation in Campylobacter jejuni. Microbiology 152, 387–396 (2006).

    Article  CAS  PubMed  Google Scholar 

  192. Ethapa, T. et al. Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J. Bacteriol. 195, 545–555 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Heikens, E., Bonten, M. J. & Willems, R. J. Enterococcal surface protein Esp is important for biofilm formation of Enterococcus faecium E1162. J. Bacteriol. 189, 8233–8240 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Dubois, T. et al. A microbiota-generated bile salt induces biofilm formation in Clostridium difficile. NPJ Biofilms Microbiomes 5, 14 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Grimm, I., Dumke, J., Dreier, J., Knabbe, C. & Vollmer, T. Biofilm formation and transcriptome analysis of Streptococcus gallolyticus subsp. gallolyticus in response to lysozyme. PLoS ONE 13, e0191705 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Tan, S., Noto, J. M., Romero-Gallo, J., Peek, R. M. Jr. & Amieva, M. R. Helicobacter pylori perturbs iron trafficking in the epithelium to grow on the cell surface. PLoS Pathog. 7, e1002050 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sigal, M. et al. Helicobacter pylori activates and expands Lgr5(+) stem cells through direct colonization of the gastric glands. Gastroenterology 148, 1392–1404.e21 (2015). This study demonstrates the presence of H. pylori biofilms in the gastric glands of mice and their contribution to the pathophysiology of cancer.

    Article  CAS  PubMed  Google Scholar 

  198. He, Z. et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut 68, 289–300 (2019).

    Article  CAS  PubMed  Google Scholar 

  199. Warren, R. L. et al. Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome 1, 16 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Stahl, M. et al. A novel mouse model of Campylobacter jejuni gastroenteritis reveals key pro-inflammatory and tissue protective roles for Toll-like receptor signaling during infection. PLoS Pathog. 10, e1004264 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Semenyuk, E. G. et al. Analysis of bacterial communities during Clostridium difficile infection in the mouse. Infect. Immun. 83, 4383–4391 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Soavelomandroso, A. P. et al. Biofilm structures in a mono-associated mouse model of Clostridium difficile infection. Front. Microbiol. 8, 2086 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Coticchia, J. M. et al. Presence and density of Helicobacter pylori biofilms in human gastric mucosa in patients with peptic ulcer disease. J. Gastrointest. Surg. 10, 883–889 (2006).

    Article  PubMed  Google Scholar 

  204. Walker, M. M. et al. Colonic spirochetosis is associated with colonic eosinophilia and irritable bowel syndrome in a general population in Sweden. Hum. Pathol. 46, 277–283 (2015).

    Article  PubMed  Google Scholar 

  205. Goodsall, T. M. et al. Unique pathology of colonic spirochaetosis characterised by mucosal eosinophilia is linked to diarrhoea and IBS. Gut 66, 978–979 (2017).

    Article  PubMed  Google Scholar 

  206. Kalischuk, L. D. & Buret, A. G. A role for campylobacter jejuni-induced enteritis in inflammatory bowel disease? Am. J. Physiol. Gastrointest. Liver Physiol 298, G1–G9 (2010).

    Article  CAS  PubMed  Google Scholar 

  207. Spiller, R. & Garsed, K. Postinfectious irritable bowel syndrome. Gastroenterology 136, 1979–1988 (2009).

    Article  PubMed  Google Scholar 

  208. Castano-Rodriguez, N., Kaakoush, N. O., Lee, W. S. & Mitchell, H. M. Dual role of Helicobacter and Campylobacter species in IBD: a systematic review and meta-analysis. Gut 66, 235–249 (2017).

    Article  CAS  PubMed  Google Scholar 

  209. Kumar, R. et al. Streptococcus gallolyticus subsp. gallolyticus promotes colorectal tumor development. PLoS Pathog. 13, e1006440 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Dejea, C. M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359, 592–597 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Tjalsma, H., Boleij, A., Marchesi, J. R. & Dutilh, B. E. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat. Rev. Microbiol. 10, 575–582 (2012).

    Article  CAS  PubMed  Google Scholar 

  212. Drewes, J. L. et al. High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes 3, 34 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195–206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Hajishengallis, G., Darveau, R. P. & Curtis, M. A. The keystone-pathogen hypothesis. Nat. Rev. Microbiol. 10, 717–725 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Tomkovich, S. et al. Human colon mucosal biofilms from healthy or colon cancer hosts are carcinogenic. J. Clin. Invest. 129, 1699–1712 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Chung, L. et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe 23, 421 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Castellarin, M. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22, 299–306 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Swidsinski, A. et al. Mucosal flora in inflammatory bowel disease. Gastroenterology 122, 44–54 (2002).

    Article  PubMed  Google Scholar 

  221. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Swidsinski, A., Loening-Baucke, V., Vaneechoutte, M. & Doerffel, Y. Active Crohn’s disease and ulcerative colitis can be specifically diagnosed and monitored based on the biostructure of the fecal flora. Inflamm. Bowel Dis. 14, 147–161 (2008).

    Article  PubMed  Google Scholar 

  223. Glasser, A. L. et al. Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. Infect. Immun. 69, 5529–5537 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Wang, M., Molin, G., Ahrne, S., Adawi, D. & Jeppsson, B. High proportions of proinflammatory bacteria on the colonic mucosa in a young patient with ulcerative colitis as revealed by cloning and sequencing of 16S rRNA genes. Dig. Dis. Sci. 52, 620–627 (2007).

    Article  CAS  PubMed  Google Scholar 

  225. Palmela, C. et al. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 67, 574–587 (2018).

    Article  CAS  PubMed  Google Scholar 

  226. Macfarlane, S., Furrie, E., Cummings, J. H. & Macfarlane, G. T. Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis. Clin. Infect. Dis. 38, 1690–1699 (2004).

    Article  PubMed  Google Scholar 

  227. Golinska, E. et al. Virulence factors of Enterococcus strains isolated from patients with inflammatory bowel disease. World J. Gastroenterol. 19, 3562–3572 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Martinez-Medina, M. et al. Biofilm formation as a novel phenotypic feature of adherent-invasive Escherichia coli (AIEC). BMC Microbiol. 9, 202 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Png, C. W. et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 105, 2420–2428 (2010).

    Article  CAS  PubMed  Google Scholar 

  230. Hickey, C. A. et al. Colitogenic bacteroides thetaiotaomicron antigens access host immune cells in a sulfatase-dependent manner via outer membrane vesicles. Cell Host Microbe 17, 672–680 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Gibold, L. et al. The Vat-AIEC protease promotes crossing of the intestinal mucus layer by Crohn’s disease-associated Escherichia coli. Cell Microbiol. 18, 617–631 (2016).

    Article  CAS  PubMed  Google Scholar 

  232. Lidell, M. E., Moncada, D. M., Chadee, K. & Hansson, G. C. Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel. Proc. Natl Acad. Sci. USA 103, 9298–9303 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. van der Post, S. et al. Site-specific O-glycosylation on the MUC2 mucin protein inhibits cleavage by the Porphyromonas gingivalis secreted cysteine protease (RgpB). J. Biol. Chem. 288, 14636–14646 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Kerckhoffs, A. P. M. et al. Molecular analysis of faecal and duodenal samples reveals significantly higher prevalence and numbers of Pseudomonas aeruginosa in irritable bowel syndrome. J. Med. Microbiol. 60, 236–245 (2011).

    Article  PubMed  Google Scholar 

  235. Caminero, A. et al. Duodenal bacteria from patients with celiac disease and healthy subjects distinctly affect gluten breakdown and immunogenicity. Gastroenterology 151, 670–683 (2016).

    Article  CAS  PubMed  Google Scholar 

  236. Reti, K. L., Tymensen, L. D., Davis, S. P., Amrein, M. W. & Buret, A. G. Campylobacter jejuni increases flagellar expression and adhesion of noninvasive Escherichia coli: effects on enterocytic Toll-like receptor 4 and CXCL-8 expression. Infect. Immun. 83, 4571–4581 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Yuki, N. et al. Colonization of the stratified squamous epithelium of the nonsecreting area of horse stomach by lactobacilli. Appl. Env. Microbiol. 66, 5030–5034 (2000).

    Article  CAS  Google Scholar 

  238. Savage, D. C. & Blumershine, R. V. Surface-surface associations in microbial communities populating epithelial habitats in the murine gastrointestinal ecosystem: scanning electron microscopy. Infect. Immun. 10, 240–250 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Wang, Z. H. et al. Bacterial biofilm bioinspired persistent luminescence nanoparticles with gut-oriented drug delivery for colorectal cancer imaging and chemotherapy. ACS Appl. Mater. Interfaces 11, 40 (2019). This study suggests the use of the biofilm-forming capacity of gut microorganisms to locally deliver a therapeutic molecule of medical interest.

    Google Scholar 

  240. Suez, J., Zmora, N., Segal, E. & Elinav, E. The pros, cons, and many unknowns of probiotics. Nat. Med. 25, 716–729 (2019).

    Article  CAS  PubMed  Google Scholar 

  241. Alav, I., Sutton, J. M. & Rahman, K. M. Role of bacterial efflux pumps in biofilm formation. J. Antimicrob. Chemother. 73, 2003–2020 (2018).

    Article  CAS  PubMed  Google Scholar 

  242. Ramiro, R. S., Durao, P., Bank, C. & Gordo, I. Low mutational load and high mutation rate variation in gut commensal bacteria. PLoS Biol. 18, e3000617 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Oliver, A., Canton, R., Campo, P., Baquero, F. & Blazquez, J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288, 1251–1254 (2000).

    Article  CAS  PubMed  Google Scholar 

  244. Sorensen, S. J., Bailey, M., Hansen, L. H., Kroer, N. & Wuertz, S. Studying plasmid horizontal transfer in situ: a critical review. Nat. Rev. Microbiol. 3, 700–710 (2005).

    Article  CAS  PubMed  Google Scholar 

  245. Donlan, R. M. Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol. 17, 66–72 (2009).

    Article  CAS  PubMed  Google Scholar 

  246. Vinodkumar, C. S., Neelagund, Y. F. & Kalsurmath, S. Bacteriophage in the treatment of experimental septicemic mice from a clinical isolate of multidrug resistant Klebsiella pneumoniae. J. Commun. Dis. 37, 18–29 (2005).

    CAS  PubMed  Google Scholar 

  247. Biswas, B. et al. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect. Immun. 70, 204–210 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Lu, T. K. & Collins, J. J. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl Acad. Sci. USA 104, 11197–11202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Singh, R., Sahore, S., Kaur, P., Rani, A. & Ray, P. Penetration barrier contributes to bacterial biofilm-associated resistance against only select antibiotics, and exhibits genus-, strain- and antibiotic-specific differences. Pathog. Dis. 74, ftw056 (2016).

    Article  CAS  PubMed  Google Scholar 

  250. Booijink, C. C. et al. Metatranscriptome analysis of the human fecal microbiota reveals subject-specific expression profiles, with genes encoding proteins involved in carbohydrate metabolism being dominantly expressed. Appl. Env. Microbiol. 76, 5533–5540 (2010).

    Article  CAS  Google Scholar 

  251. Wan, N. et al. Bacterial metabolism during biofilm growth investigated by (13)C tracing. Front. Microbiol. 9, 2657 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Heffernan, B., Murphy, C. D. & Casey, E. Comparison of planktonic and biofilm cultures of Pseudomonas fluorescens DSM 8341 cells grown on fluoroacetate. Appl. Env. Microbiol. 75, 2899–2907 (2009).

    Article  CAS  Google Scholar 

  253. Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. & Davies, D. G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184, 1140–1154 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Floyd, K. A. et al. Adhesive fiber stratification in uropathogenic Escherichia coli biofilms unveils oxygen-mediated control of type 1 pili. PLoS Pathog. 11, e1004697 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Khan, M. T. et al. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. ISME J. 6, 1578–1585 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Cummings, J. H. & Macfarlane, G. T. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 70, 443–459 (1991).

    Article  CAS  PubMed  Google Scholar 

  257. Chambers, E. S., Preston, T., Frost, G. & Morrison, D. J. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr. Nutr. Rep. 7, 198–206 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Rios-Covian, D. et al. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 7, 185 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Bach Knudsen, K. E., Jensen, B. B., Andersen, J. O. & Hansen, I. Gastrointestinal implications in pigs of wheat and oat fractions. 2. Microbial activity in the gastrointestinal tract. Br. J. Nutr. 65, 233–248 (1991).

    Article  CAS  PubMed  Google Scholar 

  260. Suzuki, I., Shimizu, T. & Senpuku, H. Role of SCFAs for fimbrillin-dependent biofilm formation of Actinomyces oris. Microorganisms 6, 114 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  261. Yoneda, S. et al. Effects of short-chain fatty acids on Actinomyces naeslundii biofilm formation. Mol. Oral Microbiol. 28, 354–365 (2013).

    Article  CAS  PubMed  Google Scholar 

  262. Davies, D. G. & Marques, C. N. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol. 191, 1393–1403 (2009).

    Article  CAS  PubMed  Google Scholar 

  263. Chen, T. et al. Efficient biofilm-based fermentation strategies for l-threonine production by Escherichia coli. Front. Microbiol. 10, 1773 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Mafra, D., Barros, A. F. & Fouque, D. Dietary protein metabolism by gut microbiota and its consequences for chronic kidney disease patients. Future Microbiol. 8, 1317–1323 (2013).

    Article  CAS  PubMed  Google Scholar 

  265. Mirvish, S. S. Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett. 93, 17–48 (1995).

    Article  CAS  PubMed  Google Scholar 

  266. Pitcher, M. C., Beatty, E. R. & Cummings, J. H. The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis. Gut 46, 64–72 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Attene-Ramos, M. S., Wagner, E. D., Gaskins, H. R. & Plewa, M. J. Hydrogen sulfide induces direct radical-associated DNA damage. Mol. Cancer Res. 5, 455–459 (2007).

    Article  CAS  PubMed  Google Scholar 

  268. Wallace, J. L., Motta, J. P. & Buret, A. G. Hydrogen sulfide: an agent of stability at the microbiome-mucosa interface. Am. J. Physiol. Gastrointest. Liver Physiol. 314, G143–G149 (2018).

    Article  PubMed  CAS  Google Scholar 

  269. Warren, M. J., Raux, E., Schubert, H. L. & Escalante-Semerena, J. C. The biosynthesis of adenosylcobalamin (vitamin B12). Nat. Prod. Rep. 19, 390–412 (2002).

    Article  CAS  PubMed  Google Scholar 

  270. Crespo, A., Blanco-Cabra, N. & Torrents, E. Aerobic vitamin B12 biosynthesis is essential for Pseudomonas aeruginosa class II ribonucleotide reductase activity during planktonic and biofilm growth. Front. Microbiol. 9, 986 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Crespo, A., Pedraz, L., Astola, J. & Torrents, E. Pseudomonas aeruginosa exhibits deficient biofilm formation in the absence of class II and III ribonucleotide reductases due to hindered anaerobic growth. Front. Microbiol. 7, 688 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Ward, M. G. et al. Prevalence and risk factors for functional vitamin B12 deficiency in patients with Crohn’s disease. Inflamm. Bowel Dis. 21, 2839–2847 (2015).

    Article  PubMed  Google Scholar 

  273. Hooper, C. A., Haney, B. B. & Stone, H. H. Gastrointestinal bleeding due to vitamin K deficiency in patients on parenteral cefamandole. Lancet 1, 39–40 (1980).

    Article  CAS  PubMed  Google Scholar 

  274. Mahdinia, E., Demirci, A. & Berenjian, A. Strain and plastic composite support (PCS) selection for vitamin K (menaquinone-7) production in biofilm reactors. Bioprocess. Biosyst. Eng. 40, 1507–1517 (2017).

    Article  CAS  PubMed  Google Scholar 

  275. Mahdinia, E., Demirci, A. & Berenjian, A. Optimization of Bacillus subtilis natto growth parameters in glycerol-based medium for vitamin K (menaquinone-7) production in biofilm reactors. Bioprocess. Biosyst. Eng. 41, 195–204 (2018).

    Article  CAS  PubMed  Google Scholar 

  276. Roberfroid, M. B. Prebiotics and probiotics: are they functional foods? Am. J. Clin. Nutr. 71, 1682S–1687S (2000).

    Article  CAS  PubMed  Google Scholar 

  277. Takeno, S. & Sakai, T. Involvement of the intestinal microflora in nitrazepam-induced teratogenicity in rats and its relationship to nitroreduction. Teratology 44, 209–214 (1991).

    Article  CAS  PubMed  Google Scholar 

  278. Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science 363, eaat9931 (2019). A comprehensive review of the current knowledge and future directions regarding the role of gut microorganisms in the metabolism of human drugs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Sousa, T. et al. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int. J. Pharm. 363, 1–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  280. Matuskova, Z. et al. Administration of a probiotic can change drug pharmacokinetics: effect of E. coli Nissle 1917 on amidarone absorption in rats. PLoS ONE 9, e87150 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  281. Guo, Y. et al. Commensal gut bacteria convert the immunosuppressant tacrolimus to less potent metabolites. Drug Metab. Dispos. 47, 194–202 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Koppel, N., Bisanz, J. E., Pandelia, M. E., Turnbaugh, P. J. & Balskus, E. P. Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins. eLife 7, e33953 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Clayton, T. A., Baker, D., Lindon, J. C., Everett, J. R. & Nicholson, J. K. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc. Natl Acad. Sci. USA 106, 14728–14733 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Jia, W., Li, H., Zhao, L. & Nicholson, J. K. Gut microbiota: a potential new territory for drug targeting. Nat. Rev. Drug Discov. 7, 123–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  285. Maurice, C. F., Haiser, H. J. & Turnbaugh, P. J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152, 39–50 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.-P.M. and N.V. researched data for the article, made substantial contributions to discussion of content, wrote the article, and reviewed/edited the manuscript before submission. C.D. made a substantial contribution to discussion of content, and reviewed/edited the manuscript before submission. J.L.W. and A.G.B. reviewed/edited the manuscript before submission.

Corresponding authors

Correspondence to Jean-Paul Motta or Nathalie Vergnolle.

Ethics declarations

Competing interests

J.L.W. is Chief Science Officer of Antibe Therapeutics. J.-P.M. received salary support from Antibe Therapeutics and from CVasThera. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks G. Hold, R. Briandet and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Biofilm

A microbial lifestyle in which microorganisms are embedded in a biopolymer matrix, attached to surfaces, engaged in collective behaviour (for example, communication, cooperation, competition and differentiation) and able to persist even in hostile environments.

Planktonic

Free-swimming, free-floating, single-cell mode of life of microorganisms.

Biofilm matrix

The biopolymer substance containing communities of microorganisms assembled as a biofilm. The chemical complexity of the matrix is not fully appreciated for in vivo biofilms.

Polymicrobial

A microbial community that harbours diversity in terms of species and/or strain content.

Inflammatory bowel disease

(IBD). Chronic inflammatory disorder of the gastrointestinal tract, with multifactorial aetiology that includes genetic susceptibility and environmental factors. Associated with a displacement of gut ecology and an uncontrolled activation of the immune system.

Oxygen tension

Variable oxygenation profile over the intestinal landscape, affecting host immunity and gut microbiota.

Mucins

A class of epithelial gel-forming and non-gel-forming proteins that confer to mucus its viscous hydrophobic property, making it a physical barrier to microorganisms.

Microbial biogeography

Spatial organization of microbial taxa at mucosal surfaces.

Biofilm-dispersed bacteria

Microorganisms that naturally disperse from a biofilm, thereby acquiring biological characteristics distinct from those of their planktonic or biofilm counterparts.

Commensal

A microorganism within the digestive tract that resides in a neutral or beneficial relationship with the host.

Pathobionts

Potentially disease-causing commensals that otherwise (in healthy circumstances) live as non-harmful microorganisms.

Microbiota stability

Reflects the ability of the microbiota to resist environmental stressor-associated perturbations.

Microbiota resilience

Reflects the ability of the microbiota to recover after environmental stressor-associated perturbations.

Probiotic

Microorganisms providing health benefits through direct or indirect effects on intestinal pathobionts, pathogens or host cells.

Dysbiosis

A term used to describe taxonomic, metabolic or structural imbalances that characterize the microbiota associated with a disease condition.

Substratum

The biotic or abiotic surface on which a biofilm can form.

Quorum sensing

Density-dependent cell–cell communication, in which a signal informs the community of a threshold concentration and triggers collective group behaviour and biofilm formation.

Keystone pathogen

A low-abundance pathogen that can trigger a disproportionate effect on tissue by provoking microbiota dysbiosis.

Gut biofilm biomarkers

A molecule, gene or other biological characteristic of gut biofilms that might be used to predict a specific intestinal disease status.

Xenobiotics

Chemical substances that are not naturally produced within the organism.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motta, JP., Wallace, J.L., Buret, A.G. et al. Gastrointestinal biofilms in health and disease. Nat Rev Gastroenterol Hepatol 18, 314–334 (2021). https://doi.org/10.1038/s41575-020-00397-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-020-00397-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing