Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The causes of evolvability and their evolution

Abstract

Evolvability is the ability of a biological system to produce phenotypic variation that is both heritable and adaptive. It has long been the subject of anecdotal observations and theoretical work. In recent years, however, the molecular causes of evolvability have been an increasing focus of experimental work. Here, we review recent experimental progress in areas as different as the evolution of drug resistance in cancer cells and the rewiring of transcriptional regulation circuits in vertebrates. This research reveals the importance of three major themes: multiple genetic and non-genetic mechanisms to generate phenotypic diversity, robustness in genetic systems, and adaptive landscape topography. We also discuss the mounting evidence that evolvability can evolve and the question of whether it evolves adaptively.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phenotypic heterogeneity is a cause of evolvability.
Fig. 2: Robustness causes evolvability by providing access to a diversity of mutational neighbourhoods.
Fig. 3: Adaptive landscape topography influences evolvability.

Similar content being viewed by others

References

  1. Dawkins, R. in Artificial Life: The Proceedings of an Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems (ed. Langton, C. G.) 201–220 (Addison-Wesley, Reading, MA, 1989). This influential discussion of evolvability and its evolution is set in the context of artificial embryological systems.

  2. Nuno de la Rosa, L. Computing the extended synthesis: mapping the dynamics and conceptual structure of the evolvability research front. J. Exp. Zool. B Mol. Dev. Evol. 328, 395–411 (2017).

    PubMed  Google Scholar 

  3. Pigliucci, M. Is evolvability evolvable? Nat. Rev. Genet. 9, 75–82 (2008).

    CAS  PubMed  Google Scholar 

  4. Alberch, P. From genes to phenotype: dynamical systems and evolvability. Genetica 84, 5–11 (1991).

    CAS  PubMed  Google Scholar 

  5. Conrad, M. The geometry of evolution. Biosystems 24, 61–81 (1990).

    CAS  PubMed  Google Scholar 

  6. Hansen, T. F. Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems 69, 83–94 (2003).

    PubMed  Google Scholar 

  7. Houle, D. Comparing evolvability and variability of quantitative traits. Genetics 130, 195–204 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kauffman, S. A. Requirements for evolvability in complex systems — orderly dynamics and frozen components. Phys. D 42, 135–152 (1990).

    Google Scholar 

  9. Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl Acad. Sci. USA 95, 8420–8427 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wagner, A. Does evolutionary plasticity evolve? Evolution 50, 1008–1023 (1996).

    PubMed  Google Scholar 

  11. Wagner, G. P. & Altenberg, L. Perspective: complex adaptations and the evolution of evolvability. Evolution 50, 967–976 (1996).

    PubMed  Google Scholar 

  12. Diaz Arenas, C. & Cooper, T. F. Mechanisms and selection of evolvability: experimental evidence. FEMS Microbiol. Rev. 37, 572–582 (2013).

    PubMed  Google Scholar 

  13. Masel, J. & Trotter, M. V. Robustness and evolvability. Trends Genet. 26, 406–414 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Galhardo, R. S., Hastings, P. J. & Rosenberg, S. M. Mutation as a stress response and the regulation of evolvability. Crit. Rev. Biochem. Mol. Biol. 42, 399–435 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13, 497–508 (2015).

    CAS  PubMed  Google Scholar 

  16. Tawfik, D. S. Messy biology and the origins of evolutionary innovations. Nat. Chem. Biol. 6, 692–696 (2010).

    PubMed  Google Scholar 

  17. Beaumont, H. J., Gallie, J., Kost, C., Ferguson, G. C. & Rainey, P. B. Experimental evolution of bet hedging. Nature 462, 90–93 (2009).

    CAS  PubMed  Google Scholar 

  18. True, H. L. & Lindquist, S. L. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477–483 (2000).

    CAS  PubMed  Google Scholar 

  19. Blake, W. J., M., K. A., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).

    CAS  PubMed  Google Scholar 

  20. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nat. Genet. 31, 69–73 (2002).

    CAS  PubMed  Google Scholar 

  21. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    CAS  PubMed  Google Scholar 

  22. Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sanchez-Romero, M. A. & Casadesus, J. Contribution of phenotypic heterogeneity to adaptive antibiotic resistance. Proc. Natl Acad. Sci. USA 111, 355–360 (2014).

    PubMed  Google Scholar 

  24. Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546, 431–435 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Harms, A., Maisonneuve, E. & Gerdes, K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354, aaf4268 (2016).

    PubMed  Google Scholar 

  26. Levin-Reisman, I. et al. Antibiotic tolerance facilitates the evolution of resistance. Science 355, 826–830 (2017). This study shows that tolerance against ampicillin facilitates the evolution of resistance.

    CAS  PubMed  Google Scholar 

  27. Ramirez, M. et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat. Commun. 7, 10690 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. & Sorger, P. K. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459, 428–432 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Frank, S. A. & Rosner, M. R. Nonheritable cellular variability accelerates the evolutionary processes of cancer. PLOS Biol. 10, e1001296 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. West-Eberhard, M. Developmental plasticity and evolution (Oxford Univ. Press, 2003).

  32. Waddington, C. H. The genetic assimilation of an acquired character. Evolution 7, 118–126 (1953).

    Google Scholar 

  33. Frank, S. A. Natural selection. II. Developmental variability and evolutionary rate. J. Evol. Biol. 24, 2310–2320 (2011).

    CAS  PubMed  Google Scholar 

  34. Bodi, Z. et al. Phenotypic heterogeneity promotes adaptive evolution. PLOS Biol. 15, e2000644 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Drummond, D. A. & Wilke, C. O. The evolutionary consequences of erroneous protein synthesis. Nat. Rev. Genet. 10, 715–724 (2009).

    PubMed  PubMed Central  Google Scholar 

  36. Goldsmith, M. & Tawfik, D. S. Potential role of phenotypic mutations in the evolution of protein expression and stability. Proc. Natl Acad. Sci. USA 106, 6197–6202 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Javid, B. et al. Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. Proc. Natl Acad. Sci. USA 111, 1132–1137 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Miranda, I. et al. Candida albicans CUG mistranslation is a mechanism to create cell surface variation. mBio 4, e00285-13 (2013).

    PubMed  PubMed Central  Google Scholar 

  39. Dunn, J. G., Foo, C. K., Belletier, N. G., Gavis, E. R. & Weissman, J. S. Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. eLife 2, e01179 (2013).

    PubMed  PubMed Central  Google Scholar 

  40. Freitag, J., Ast, J. & Bolker, M. Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi. Nature 485, 522–525 (2012).

    CAS  PubMed  Google Scholar 

  41. Jungreis, I. et al. Evolutionary dynamics of abundant stop codon readthrough. Mol. Biol. Evol. 33, 3108–3132 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Masel, J. Cryptic genetic variation is enriched for potential adaptations. Genetics 172, 1985–1991 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Whitehead, D. J., Wilke, C. O., Vernazobres, D. & Bornberg-Bauer, E. The look-ahead effect of phenotypic mutations. Biol. Direct 3, 18 (2008).

    PubMed  PubMed Central  Google Scholar 

  44. Borenstein, E., Meilijson, I. & Ruppin, E. The effect of phenotypic plasticity on evolution in multipeaked fitness landscapes. J. Evol. Biol. 19, 1555–1570 (2006).

    CAS  PubMed  Google Scholar 

  45. Yanagida, H. et al. The evolutionary potential of phenotypic mutations. PLOS Genet. 11, e1005445 (2015). This study demonstrates that in the natural history of S. cerevisiae , a phenotypic mutation was reinforced via gene duplication and mutation.

    PubMed  PubMed Central  Google Scholar 

  46. Baudin-Baillieu, A. et al. Genome-wide translational changes induced by the prion [PSI +]. Cell Rep. 8, 439–448 (2014).

    CAS  PubMed  Google Scholar 

  47. True, H. L., Berlin, I. & Lindquist, S. L. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 431, 184–187 (2004).

    CAS  PubMed  Google Scholar 

  48. Tyedmers, J., Madariaga, M. L. & Lindquist, S. Prion switching in response to environmental stress. PLOS Biol. 6, e294 (2008).

    PubMed  PubMed Central  Google Scholar 

  49. Halfmann, R. et al. Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 482, 363–368 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yuan, A. H. & Hochschild, A. A bacterial global regulator forms a prion. Science 355, 198–201 (2017). This article discusses the discovery of the first prokaryotic prion, the transcription terminator Rho of C. botulinum.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chakrabortee, S. et al. Luminidependens (LD) is an Arabidopsis protein with prion behavior. Proc. Natl Acad. Sci. USA 113, 6065–6070 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jarosz, D. F. et al. Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism. Cell 158, 1083–1093 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Newby, G. A. & Lindquist, S. Pioneer cells established by the [SWI +] prion can promote dispersal and out-crossing in yeast. PLOS Biol. 15, e2003476 (2017). This paper presents a lucid description of the mechanism by which the yeast prion [ SWI + ] confers a selective advantage. [ SWI + ] enhances cells’ ability to disperse in water and increases the likelihood of mating with dissimilar partners, thus facilitating migration, the colonization of new habitats and genetic diversification.

    PubMed  PubMed Central  Google Scholar 

  54. Suzuki, G., Shimazu, N. & Tanaka, M. A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science 336, 355–359 (2012).

    CAS  PubMed  Google Scholar 

  55. Chakrabortee, S. et al. Intrinsically disordered proteins drive emergence and inheritance of biological traits. Cell 167, 369–381.e12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Franzmann, T. M. et al. Phase separation of a yeast prion protein promotes cellular fitness. Science 359, eaao5654 (2018).

    PubMed  Google Scholar 

  57. Riback, J. A. et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168, 1028–1040 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Avery, S. V. Microbial cell individuality and the underlying sources of heterogeneity. Nat. Rev. Microbiol. 4, 577–587 (2006).

    CAS  PubMed  Google Scholar 

  59. Flavahan, W. A., Gaskell, E. & Bernstein, B. E. Epigenetic plasticity and the hallmarks of cancer. Science 357, eaal2380 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. Torres, C. M. et al. The linker histone H1.0 generates epigenetic and functional intratumor heterogeneity. Science 353, aaf1644 (2016). This study provides a mechanistic account of how an epigenetic modification to a regulatory element creates tumour-maintaining cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Aharoni, A. et al. The ‘evolvability’ of promiscuous protein functions. Nat. Genet. 37, 73–76 (2005).

    CAS  PubMed  Google Scholar 

  62. Tokuriki, N. & Tawfik, D. S. Protein dynamism and evolvability. Science 324, 203–207 (2009).

    CAS  PubMed  Google Scholar 

  63. Copley, S. D. Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr. Opin. Chem. Biol. 7, 265–272 (2003).

    CAS  PubMed  Google Scholar 

  64. Notebaart, R. A. et al. Network-level architecture and the evolutionary potential of underground metabolism. Proc. Natl Acad. Sci. USA 111, 11762–11767 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Pougach, K. et al. Duplication of a promiscuous transcription factor drives the emergence of a new regulatory network. Nat. Commun. 5, 4868 (2014).

    CAS  PubMed  Google Scholar 

  66. Sayou, C. et al. A promiscuous intermediate underlies the evolution of LEAFY DNA binding specificity. Science 343, 645–648 (2014).

    CAS  PubMed  Google Scholar 

  67. Petrie, K. L. et al. Destabilizing mutations encode nongenetic variation that drives evolutionary innovation. Science 359, 1542–1545 (2018).

    CAS  PubMed  Google Scholar 

  68. Rebeiz, M., Jikomes, N., Kassner, V. A. & Carroll, S. B. Evolutionary origin of a novel gene expression pattern through co-option of the latent activities of existing regulatory sequences. Proc. Natl Acad. Sci. USA 108, 10036–10043 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wagner, A. Robustness and evolvability in living systems (Princeton Univ. Press, 2005).

  70. Fares, M. A. The origins of mutational robustness. Trends Genet. 31, 373–381 (2015).

    CAS  PubMed  Google Scholar 

  71. Bloom, J. D., Labthavikul, S. T., Otey, C. R. & Arnold, F. H. Protein stability promotes evolvability. Proc. Natl Acad. Sci. USA 103, 5869–5874 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ingolia, N. T. Topology and robustness in the Drosophila segment polarity network. PLOS Biol. 2, e123 (2004).

    PubMed  PubMed Central  Google Scholar 

  73. Segre, D., Vitkup, D. & Church, G. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl Acad. Sci. USA 99, 15112–15117 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Keane, O. M., Toft, C., Carretero-Paulet, L., Jones, G. W. & Fares, M. A. Preservation of genetic and regulatory robustness in ancient gene duplicates of Saccharomyces cerevisiae. Genome Res. 24, 1830–1841 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Diss, G. et al. Gene duplication can impart fragility, not robustness, in the yeast protein interaction network. Science 355, 630–634 (2017).

    CAS  PubMed  Google Scholar 

  76. Baker, C. R., Hanson-Smith, V. & Johnson, A. D. Following gene duplication, paralog interference constrains transcriptional circuit evolution. Science 342, 104–108 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Aguilar-Rodriguez, J. et al. The molecular chaperone DnaK is a source of mutational robustness. Genome Biol. Evol. 8, 2979–2991 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Jarosz, D. F. & Lindquist, S. Hsp90 and environmental stress transform the adaptive value of natural genetic variation. Science 330, 1820–1824 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Queitsch, C., Sangster, T. A. & Lindquist, S. Hsp90 as a capacitor of phenotypic variation. Nature 417, 618–624 (2002).

    CAS  PubMed  Google Scholar 

  80. Rohner, N. et al. Cryptic variation in morphological evolution: Hsp90 as a capacitor for loss of eyes in cavefish. Science 342, 1372–1375 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998).

    CAS  PubMed  Google Scholar 

  82. Tokuriki, N. & Tawfik, D. S. Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459, 668–673 (2009).

    CAS  PubMed  Google Scholar 

  83. Geiler-Samerotte, K. A., Zhu, Y. O., Goulet, B. E., Hall, D. W. & Siegal, M. L. Selection transforms the landscape of genetic variation interacting with Hsp90. PLOS Biol. 14, e2000465 (2016).

    PubMed  PubMed Central  Google Scholar 

  84. Stiffler, M. A., Hekstra, D. R. & Ranganathan, R. Evolvability as a function of purifying selection in TEM-1 β-lactamase. Cell 160, 882–892 (2015). This study shows that the synergism between mutational robustness and evolvability in Tem1 β-lactamase depends upon the strength of purifying selection for ampicillin resistance.

    CAS  PubMed  Google Scholar 

  85. Masel, J. & Bergman, A. The evolution of the evolvability properties of the yeast prion [PSI +]. Evolution 57, 1498–1512 (2003).

    PubMed  Google Scholar 

  86. Hayden, E. J., Ferrada, E. & Wagner, A. Cryptic genetic variation promotes rapid evolutionary adaptation in an RNA enzyme. Nature 474, 92–95 (2011).

    CAS  PubMed  Google Scholar 

  87. Payne, J. L. & Wagner, A. The robustness and evolvability of transcription factor binding sites. Science 343, 875–877 (2014).

    CAS  PubMed  Google Scholar 

  88. de Visser, J. A. et al. Perspective: evolution and detection of genetic robustness. Evolution 57, 1959–1972 (2003).

    PubMed  Google Scholar 

  89. Najafabadi, H. S. et al. Non-base-contacting residues enable kaleidoscopic evolution of metazoan C2H2 zinc finger DNA binding. Genome Biol. 18, 167 (2017). This article provides a mechanistic explanation of the expansion and diversification of metazoan C2H2 zinc-finger transcription factors.

    PubMed  PubMed Central  Google Scholar 

  90. McKeown, A. N. et al. Evolution of DNA specificity in a transcription factor family produced a new gene regulatory module. Cell 159, 58–68 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Starr, T. N., Picton, L. K. & Thornton, J. W. Alternative evolutionary histories in the sequence space of an ancient protein. Nature 549, 409–413 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Payne, J. L., Khalid, F. & Wagner, A. RNA-mediated gene regulation is less evolvable than transcriptional regulation. Proc. Natl Acad. Sci. USA 115, E3481–E3490 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Berger, M. F. et al. Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat. Biotechnol. 24, 1429–1435 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Aguilar-Rodriguez, J., Payne, J. L. & Wagner, A. A thousand empirical adaptive landscapes and their navigability. Nat. Ecol. Evol. 1, 45 (2017).

    PubMed  Google Scholar 

  95. Weirauch, M. T. & Hughes, T. R. Conserved expression without conserved regulatory sequence: the more things change, the more they stay the same. Trends Genet. 26, 66–74 (2010).

    CAS  PubMed  Google Scholar 

  96. Tsong, A. E., Tuch, B. B., Li, H. & Johnson, A. D. Evolution of alternative transcriptional circuits with identical logic. Nature 443, 415–420 (2006).

    CAS  PubMed  Google Scholar 

  97. Ciliberti, S., Martin, O. C. & Wagner, A. Innovation and robustness in complex regulatory gene networks. Proc. Natl Acad. Sci. USA 104, 13591–13596 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Martin, O. C. & Wagner, A. Effects of recombination on complex regulatory circuits. Genetics 183, 673–684 (2009).

    PubMed  PubMed Central  Google Scholar 

  99. Nocedal, I., Mancera, E. & Johnson, A. D. Gene regulatory network plasticity predates a switch in function of a conserved transcription regulator. eLife 6, e23250 (2017).

  100. Doud, M. B. & Bloom, J. D. Accurate measurement of the effects of all amino-acid mutations on influenza hemagglutinin. Viruses 8, E155 (2016).

    PubMed  Google Scholar 

  101. Haddox, H. K., Dingens, A. S. & Bloom, J. D. Experimental estimation of the effects of all amino-acid mutations to HIV’s envelope protein on viral replication in cell culture. PLOS Pathog. 12, e1006114 (2016).

    PubMed  PubMed Central  Google Scholar 

  102. Jacquier, H. et al. Capturing the mutational landscape of the β-lactamase TEM-1. Proc. Natl Acad. Sci. USA 110, 13067–13072 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Findlay, G. M., Boyle, E. A., Hause, R. J., Klein, J. C. & Shendure, J. Saturation editing of genomic regions by multiplex homology-directed repair. Nature 513, 120–123 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Podgornaia, A. I. & Laub, M. T. Pervasive degeneracy and epistasis in a protein-protein interface. Science 347, 673–677 (2015).

    CAS  PubMed  Google Scholar 

  105. Aakre, C. D. et al. Evolving new protein-protein interaction specificity through promiscuous intermediates. Cell 163, 594–606 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Crombach, A., Wotton, K. R., Jimenez-Guri, E. & Jaeger, J. Gap gene regulatory dynamics evolve along a genotype network. Mol. Biol. Evol. 33, 1293–1307 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Smith, J. M. Natural selection and the concept of a protein space. Nature 225, 563–564 (1970).

    CAS  PubMed  Google Scholar 

  108. Wright, S. The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc. Sixth Int. Congr. Genet. 1, 356–366 (1932).

    Google Scholar 

  109. de Visser, J. A. & Krug, J. Empirical fitness landscapes and the predictability of evolution. Nat. Rev. Genet. 15, 480–490 (2014).

    PubMed  Google Scholar 

  110. Li, C., Qian, W., Maclean, C. J. & Zhang, J. The fitness landscape of a tRNA gene. Science 352, 837–840 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Puchta, O. et al. Network of epistatic interactions within a yeast snoRNA. Science 352, 840–844 (2016). References 110 and 111 are, at present, the highest-resolution characterizations of local adaptive landscape topography, in which the landscape surface represents organismal fitness.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Qiu, C. et al. High-resolution phenotypic landscape of the RNA polymerase II trigger loop. PLOS Genet. 12, e1006321 (2016).

    PubMed  PubMed Central  Google Scholar 

  113. Wrenbeck, E. E., Azouz, L. R. & Whitehead, T. A. Single-mutation fitness landscapes for an enzyme on multiple substrates reveal specificity is globally encoded. Nat. Commun. 8, 15695 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Melamed, D., Young, D. L., Gamble, C. E., Miller, C. R. & Fields, S. Deep mutational scanning of an RRM domain of the Saccharomyces cerevisiae poly(A)-binding protein. RNA 19, 1537–1551 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Olson, C. A., Wu, N. C. & Sun, R. A comprehensive biophysical description of pairwise epistasis throughout an entire protein domain. Curr. Biol. 24, 2643–2651 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Julien, P., Minana, B., Baeza-Centurion, P., Valcarcel, J. & Lehner, B. The complete local genotype-phenotype landscape for the alternative splicing of a human exon. Nat. Commun. 7, 11558 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Poelwijk, F. J., Kiviet, D. J., Weinreich, D. M. & Tans, S. J. Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445, 383–386 (2007).

    CAS  PubMed  Google Scholar 

  118. Poelwijk, F. J., Tanase-Nicola, S., Kiviet, D. J. & Tans, S. J. Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. J. Theor. Biol. 272, 141–144 (2011).

    PubMed  Google Scholar 

  119. Chou, H. H., Chiu, H. C., Delaney, N. F., Segre, D. & Marx, C. J. Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science 332, 1190–1192 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Khan, A. I., Dinh, D. M., Schneider, D., Lenski, R. E. & Cooper, T. F. Negative epistasis between beneficial mutations in an evolving bacterial population. Science 332, 1193–1196 (2011).

    CAS  PubMed  Google Scholar 

  121. Elena, S. F. & Lenski, R. E. Test of synergistic interactions among deleterious mutations in bacteria. Nature 390, 395–398 (1997).

    CAS  PubMed  Google Scholar 

  122. Weinreich, D. M., Watson, R. A. & Chao, L. Perspective: Sign epistasis and genetic constraint on evolutionary trajectories. Evolution 59, 1165–1174 (2005).

    CAS  PubMed  Google Scholar 

  123. Weinreich, D. M. & Chao, L. Rapid evolutionary escape by large populations from local fitness peaks is likely in nature. Evolution 59, 1175–1182 (2005).

    CAS  PubMed  Google Scholar 

  124. Iwasa, Y., Michor, F. & Nowak, M. A. Stochastic tunnels in evolutionary dynamics. Genetics 166, 1571–1579 (2004).

    PubMed  PubMed Central  Google Scholar 

  125. Anderson, D. W., McKeown, A. N. & Thornton, J. W. Intermolecular epistasis shaped the function and evolution of an ancient transcription factor and its DNA binding sites. eLife 4, e07864 (2015).

    PubMed  PubMed Central  Google Scholar 

  126. Lagator, M., Sarikas, S., Acar, H., Bollback, J. P. & Guet, C. C. Regulatory network structure determines patterns of intermolecular epistasis. eLife 6, e28921 (2017). References 125 and 126 show that intermolecular sign epistasis can facilitate, rather than impede, evolvability.

    PubMed  PubMed Central  Google Scholar 

  127. Palmer, A. C. et al. Delayed commitment to evolutionary fate in antibiotic resistance fitness landscapes. Nat. Commun. 6, 7385 (2015).

    CAS  PubMed  Google Scholar 

  128. Buckling, A., Maclean, R. C., Brockhurst, M. A. & Colegrave, N. The Beagle in a bottle. Nature 457, 824–829 (2009).

    CAS  PubMed  Google Scholar 

  129. Jerison, E. R. et al. Genetic variation in adaptability and pleiotropy in budding yeast. eLife 6, e27167 (2017).

    PubMed  PubMed Central  Google Scholar 

  130. Kryazhimskiy, S., Rice, D. P., Jerison, E. R. & Desai, M. M. Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344, 1519–1522 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Wunsche, A. et al. Diminishing-returns epistasis decreases adaptability along an evolutionary trajectory. Nat. Ecol. Evol. 1, 61 (2017).

    PubMed  Google Scholar 

  132. Wiser, M. J., Ribeck, N. & Lenski, R. E. Long-term dynamics of adaptation in asexual populations. Science 342, 1364–1367 (2013).

    CAS  PubMed  Google Scholar 

  133. Good, B. H. & Desai, M. M. The impact of macroscopic epistasis on long-term evolutionary dynamics. Genetics 199, 177–190 (2015).

    PubMed  Google Scholar 

  134. Kryazhimskiy, S., Tkacik, G. & Plotkin, J. B. The dynamics of adaptation on correlated fitness landscapes. Proc. Natl Acad. Sci. USA 106, 18638–18643 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Gifford, D. R., Toll-Riera, M. & MacLean, R. C. Epistatic interactions between ancestral genotype and beneficial mutations shape evolvability in Pseudomonas aeruginosa. Evolution 70, 1659–1666 (2016).

    CAS  PubMed  Google Scholar 

  136. Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. Venkataram, S. et al. Development of a comprehensive genotype-to-fitness map of adaptation-driving mutations in yeast. Cell 166, 1585–1596.e22 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Bank, C., Matuszewski, S., Hietpas, R. T. & Jensen, J. D. On the (un)predictability of a large intragenic fitness landscape. Proc. Natl Acad. Sci. USA 113, 14085–14090 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Fowler, D. M. & Fields, S. Deep mutational scanning: a new style of protein science. Nat. Methods 11, 801–807 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Sarkisyan, K. S. et al. Local fitness landscape of the green fluorescent protein. Nature 533, 397–401 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Bank, C., Hietpas, R. T., Jensen, J. D. & Bolon, D. N. A systematic survey of an intragenic epistatic landscape. Mol. Biol. Evol. 32, 229–238 (2015).

    CAS  PubMed  Google Scholar 

  142. Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N. & Tawfik, D. S. Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444, 929–932 (2006).

    CAS  PubMed  Google Scholar 

  143. Trindade, S. et al. Positive epistasis drives the acquisition of multidrug resistance. PLOS Genet. 5, e1000578 (2009).

    PubMed  PubMed Central  Google Scholar 

  144. Steinberg, B. & Ostermeier, M. Environmental changes bridge evolutionary valleys. Sci. Adv. 2, e1500921 (2016).

    PubMed  PubMed Central  Google Scholar 

  145. du Plessis, L., Leventhal, G. E. & Bonhoeffer, S. How good are statistical models at approximating complex fitness landscapes? Mol. Biol. Evol. 33, 2454–2468 (2016).

    PubMed  PubMed Central  Google Scholar 

  146. Otwinowski, J. & Plotkin, J. B. Inferring fitness landscapes by regression produces biased estimates of epistasis. Proc. Natl Acad. Sci. USA 111, E2301–E2309 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Jimenez, J. I., Xulvi-Brunet, R., Campbell, G. W., Turk-MacLeod, R. & Chen, I. A. Comprehensive experimental fitness landscape and evolutionary network for small RNA. Proc. Natl Acad. Sci. USA 110, 14984–14989 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Rowe, W. et al. Analysis of a complete DNA-protein affinity landscape. J. R. Soc. Interface 7, 397–408 (2010).

    CAS  PubMed  Google Scholar 

  149. Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431–1443 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Sharon, E. et al. Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nat. Biotechnol. 30, 521–530 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Shultzaberger, R. K., Malashock, D. S., Kirsch, J. F. & Eisen, M. B. The fitness landscapes of cis-acting binding sites in different promoter and environmental contexts. PLOS Genet. 6, e1001042 (2010).

    PubMed  PubMed Central  Google Scholar 

  152. Gavrilets, S. Evolution and speciation on holey adaptive landscapes. Trends Ecol. Evol. 12, 307–312 (1997).

    CAS  PubMed  Google Scholar 

  153. Wu, N. C., Dai, L., Olson, C. A., Lloyd-Smith, J. O. & Sun, R. Adaptation in protein fitness landscapes is facilitated by indirect paths. eLife 5, e16965 (2016).

    PubMed  PubMed Central  Google Scholar 

  154. Hartman, E. C. et al. Quantitative characterization of all single amino acid variants of a viral capsid-based drug delivery vehicle. Nat. Commun. 9, 1385 (2018).

    PubMed  PubMed Central  Google Scholar 

  155. Rogers, Z. N. et al. Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice. Nat. Genet. 50, 483–486 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Sniegowski, P. D., Gerrish, P. J. & Lenski, R. E. Evolution of high mutation rates in experimental populations of E. coli. Nature 387, 703–705 (1997).

    CAS  PubMed  Google Scholar 

  157. Wielgoss, S. et al. Mutation rate dynamics in a bacterial population reflect tension between adaptation and genetic load. Proc. Natl Acad. Sci. USA 110, 222–227 (2013).

    CAS  PubMed  Google Scholar 

  158. Healey, K. R. et al. Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance. Nat. Commun. 7, 11128 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Giraud, A. et al. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291, 2606–2608 (2001).

    CAS  PubMed  Google Scholar 

  160. McDonald, M. J., Rice, D. P. & Desai, M. M. Sex speeds adaptation by altering the dynamics of molecular evolution. Nature 531, 233–236 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Rego, E. H., Audette, R. E. & Rubin, E. J. Deletion of a mycobacterial divisome factor collapses single-cell phenotypic heterogeneity. Nature 546, 153–157 (2017). This study shows that the heterogeneity of cell growth in mycobacteria is partially controlled by LamA, a divisome factor responsible for the asymmetric growth of daughter cells after cell division.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Jones, D. L., Brewster, R. C. & Phillips, R. Promoter architecture dictates cell-to-cell variability in gene expression. Science 346, 1533–1536 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Dabrowski, M., Bukowy-Bieryllo, Z. & Zietkiewicz, E. Translational readthrough potential of natural termination codons in eucaryotes — The impact of RNA sequence. RNA Biol. 12, 950–958 (2015).

    PubMed  PubMed Central  Google Scholar 

  164. Paul, K. R., Hendrich, C. G., Waechter, A., Harman, M. R. & Ross, E. D. Generating new prions by targeted mutation or segment duplication. Proc. Natl Acad. Sci. USA 112, 8584–8589 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang, Z., Qian, W. & Zhang, J. Positive selection for elevated gene expression noise in yeast. Mol. Syst. Biol. 5, 299 (2009).

    PubMed  PubMed Central  Google Scholar 

  166. Wolf, L., Silander, O. K. & van Nimwegen, E. Expression noise facilitates the evolution of gene regulation. eLife 4, e05856 (2015).

    PubMed Central  Google Scholar 

  167. Osterwalder, M. et al. Enhancer redundancy provides phenotypic robustness in mammalian development. Nature 554, 239–243 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Borenstein, E. & Ruppin, E. Direct evolution of genetic robustness in microRNA. Proc. Natl Acad. Sci. USA 103, 6593–6598 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Toll-Riera, M., Bostick, D., Alba, M. M. & Plotkin, J. B. Structure and age jointly influence rates of protein evolution. PLOS Comput. Biol. 8, e1002542 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Bloom, J. D. et al. Evolution favors protein mutational robustness in sufficiently large populations. BMC Biol. 5, 29 (2007). This article experimentally demonstrates that mutational robustness increases in the evolution of large populations.

    PubMed  PubMed Central  Google Scholar 

  171. Montville, R., Froissart, R., Remold, S. K., Tenaillon, O. & Turner, P. E. Evolution of mutational robustness in an RNA virus. PLOS Biol. 3, e381 (2005).

    PubMed  PubMed Central  Google Scholar 

  172. Sanjuan, R., Cuevas, J. M., Furio, V., Holmes, E. C. & Moya, A. Selection for robustness in mutagenized RNA viruses. PLOS Genet. 3, e93 (2007).

    PubMed  PubMed Central  Google Scholar 

  173. Szollosi, G. J. & Derenyi, I. Congruent evolution of genetic and environmental robustness in micro-RNA. Mol. Biol. Evol. 26, 867–874 (2009).

    PubMed  Google Scholar 

  174. Salverda, M. L. et al. Initial mutations direct alternative pathways of protein evolution. PLOS Genet. 7, e1001321 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Chan, Y. H., Venev, S. V., Zeldovich, K. B. & Matthews, C. R. Correlation of fitness landscapes from three orthologous TIM barrels originates from sequence and structure constraints. Nat. Commun. 8, 14614 (2017).

    PubMed  PubMed Central  Google Scholar 

  176. Haddox, H. K., Dingens, A. S., Hilton, S. K., Overbaugh, J. & Bloom, J. D. Mapping mutational effects along the evolutionary landscape of HIV envelope. eLife 7, e34420 (2018).

    PubMed  PubMed Central  Google Scholar 

  177. Woods, R. J. et al. Second-order selection for evolvability in a large Escherichia coli population. Science 331, 1433–1436 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Leon, D., D’Alton, S., Quandt, E. M. & Barrick, J. E. Innovation in an E. coli evolution experiment is contingent on maintaining adaptive potential until competition subsides. PLOS Genet. 14, e1007348 (2018).

    PubMed  PubMed Central  Google Scholar 

  179. Gommans, W. M., Mullen, S. P. & Maas, S. RNA editing: a driving force for adaptive evolution? Bioessays 31, 1137–1145 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Raman, A. S., White, K. I. & Ranganathan, R. Origins of allostery and evolvability in proteins: a case study. Cell 166, 468–480 (2016).

    CAS  PubMed  Google Scholar 

  181. Domingo, J., Diss, G. & Lehner, B. Pairwise and higher-order genetic interactions during the evolution of a tRNA. Nature 558, 117–121 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Sailer, Z. R. & Harms, M. J. High-order epistasis shapes evolutionary trajectories. PLOS Comput. Biol. 13, e1005541 (2017).

    PubMed  PubMed Central  Google Scholar 

  183. de Vos, M. G., Dawid, A., Sunderlikova, V. & Tans, S. J. Breaking evolutionary constraint with a tradeoff ratchet. Proc. Natl Acad. Sci. USA 112, 14906–14911 (2015). References 144 and 183 demonstrate that environmental change can facilitate adaptation by helping evolving populations escape the local optima of an adaptive landscape.

    PubMed  PubMed Central  Google Scholar 

  184. Ogbunugafor, C. B. & Eppstein, M. J. Competition along trajectories governs adaptation rates towards antimicrobial resistance. Nat. Ecol. Evol. 1, 7 (2016).

    PubMed  Google Scholar 

  185. Moratorio, G. et al. Attenuation of RNA viruses by redirecting their evolution in sequence space. Nat. Microbiol. 2, 17088 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Prakadan, S. M., Shalek, A. K. & Weitz, D. A. Scaling by shrinking: empowering single-cell ‘omics’ with microfluidic devices. Nat. Rev. Genet. 18, 345–361 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Crosetto, N., Bienko, M. & van Oudenaarden, A. Spatially resolved transcriptomics and beyond. Nat. Rev. Genet. 16, 57–66 (2015).

    CAS  PubMed  Google Scholar 

  188. Liu, S. & Trapnell, C. Single-cell transcriptome sequencing: recent advances and remaining challenges. F1000Res 5, 182 (2016).

  189. Ingolia, N. T. Ribosome footprint profiling of translation throughout the genome. Cell 165, 22–33 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Hietpas, R. T., Jensen, J. D. & Bolon, D. N. Experimental illumination of a fitness landscape. Proc. Natl Acad. Sci. USA 108, 7896–7901 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Thornton, J. W. Resurrecting ancient genes: experimental analysis of extinct molecules. Nat. Rev. Genet. 5, 366–375 (2004).

    CAS  PubMed  Google Scholar 

  192. Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618 (2007).

    CAS  PubMed  Google Scholar 

  193. Eshel, I. Clone-selection and optimal rates of mutation. J. Appl. Probabil. 10, 728–738 (1973).

    Google Scholar 

  194. Starrfelt, J. & Kokko, H. Bet-hedging — a triple trade-off between means, variances and correlations. Biol. Rev. 87, 742–755 (2012).

    PubMed  Google Scholar 

  195. Frank, S. A. Foundations of social evolution (Princeton Univ. Press, 1998).

  196. Gardner, A., West, S. A. & Wild, G. The genetical theory of kin selection. J. Evol. Biol. 24, 1020–1043 (2011).

    CAS  PubMed  Google Scholar 

  197. Wilson, D. S. & Wilson, E. O. Rethinking the theoretical foundation of sociobiology. Quarterly Rev. Biol. 82, 327–348 (2007).

    Google Scholar 

  198. Graves, C. J. & Weinreich, D. M. Variability in fitness effects can preclude selection of the fittest. Annu. Rev. Ecol. Evol. S. 48, 399–417 (2017).

    Google Scholar 

  199. Griswold, C. K. & Masel, J. Complex adaptations can drive the evolution of the capacitor [PSI +] , even with realistic rates of yeast sex. PLOS Genet. 5, e1000517 (2009).

    PubMed  PubMed Central  Google Scholar 

  200. Rutherford, S. L. Between genotype and phenotype: protein chaperones and evolvability. Nat. Rev. Genet. 4, 263–274 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Ackermann, B. Bogos, S. A. Frank, J. Van Gestel, A. R. Hall, D. Kiviet and M. Toll Riera for discussions and the reviewers for their constructive criticism. The authors apologize to their colleagues whose important contributions to evolvability research could not be covered owing to space constraints. J.L.P. acknowledges support from Swiss National Science Foundation Grant PP00P3_170604. A.W. acknowledges support from the European Research Council Advanced Grant 739874, Swiss National Science Foundation Grant 31003A_1728887 and the University Priority Research Program in Evolutionary Biology at the University of Zurich. J.L.P. and A.W. are also affiliated with the Swiss Institute of Bioinformatics, and A.W. is also affiliated with the Santa Fe Institute.

Reviewer information

Nature Reviews Genetics thanks G. Wagner, J. Zhang and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

J.L.P. and A.W. contributed equally to all aspects of this work.

Corresponding author

Correspondence to Andreas Wagner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Isogenic populations

Populations of individuals with the same genotype.

Phenotypic plasticity

The ability of one genotype to produce more than one phenotype in response to different environmental stimuli.

Modularity

The extent to which a system can be partitioned into distinct components.

Pleiotropy

When one gene or one mutation affects multiple phenotypes.

Pre-mutation evolvability

Evolvability driven by new mutations.

Post-mutation evolvability

Evolvability driven by existing genetic variation within a population — for example, via recombination acting on that variation.

Gene expression noise

Variability among isogenic cells in transcript or protein abundance.

Viral latency

The ability of a virus to remain dormant in a host cell.

Competence

The ability of a cell to take up DNA from the environment.

Population bottleneck

A temporary, drastic reduction in population size.

Genetic assimilation

A process by which a new phenotype that results from an environmental perturbation becomes genetically encoded.

Kinetic trapping

Occurs when a protein does not reach its minimum free energy structure but rather becomes trapped in a non-equilibrium structure.

Stop-codon readthrough

When translation does not terminate at a stop codon but rather continues to extend an amino acid chain.

Prions

Proteins that propagate by inducing properly folded proteins to convert into a misfolded form, often resulting in aggregation.

Cryptic genetic variation

Genetic variation that normally causes little to no phenotypic variation but that has the potential to cause phenotypic variation in new environments or new genetic backgrounds.

Enhancer

A short DNA sequence that is bound by regulatory proteins to activate the transcription of a gene, which may be located many thousands of base pairs away.

Chaperones

Proteins that assist other proteins in folding or that refold misfolded proteins.

Epistatic interactions

Non-additive interactions between alleles in their contribution to a phenotype or fitness.

Protein domain

A distinct functional and often autonomously folding unit of a protein.

Genotype space

The space of all possible genotypes. For a nucleic acid sequence of length L, this space comprises 4L genotypes.

Concave

A real-valued function on an interval of real numbers is concave if any line connecting two points on the graph of the function lies on or below the graph.

Convex

A real-valued function on an interval of real numbers is convex if any line connecting two points on the graph of the function lies above or on the graph.

Adaptive walks

A series of mutations that never decrease fitness.

Saddle points

Points on a landscape that have zero slope in at least two orthogonal directions yet are not local peaks.

Extradimensional bypasses

Accessible mutational paths to an adaptive peak that are facilitated by increasing the dimensionality of an adaptive landscape.

Quantitative trait loci

Loci that explain part of the genetic basis of variation in a phenotype.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payne, J.L., Wagner, A. The causes of evolvability and their evolution. Nat Rev Genet 20, 24–38 (2019). https://doi.org/10.1038/s41576-018-0069-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-018-0069-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing