Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DNA sensing by the cGAS–STING pathway in health and disease

Abstract

The detection of pathogens through nucleic acid sensors is a defining principle of innate immunity. RNA-sensing and DNA-sensing receptors sample subcellular compartments for foreign nucleic acids and, upon recognition, trigger immune signalling pathways for host defence. Over the past decade, our understanding of how the recognition of nucleic acids is coupled to immune gene expression has advanced considerably, particularly for the DNA-sensing receptor cyclic GMP–AMP synthase (cGAS) and its downstream signalling effector stimulator of interferon genes (STING), as well as the molecular components and regulation of this pathway. Moreover, the ability of self-DNA to engage cGAS has emerged as an important mechanism fuelling the development of inflammation and implicating the cGAS–STING pathway in human inflammatory diseases and cancer. This detailed mechanistic and biological understanding is paving the way for the development and clinical application of pharmacological agonists and antagonists in the treatment of chronic inflammation and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DNA-sensing receptors.
Fig. 2: The cGAS–STING DNA-sensing pathway.
Fig. 3: cGAS–STING-mediated autoimmunity.
Fig. 4: Balancing the roles of the cGAS–STING pathway activation and inhibition in cancer.

Similar content being viewed by others

References

  1. Tan, X., Sun, L., Chen, J. & Chen, Z. J. Detection of microbial infections through innate immune sensing of nucleic acids. Annu. Rev. Microbiol. 72, 447–478 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Mankan, A. K. et al. Cytosolic RNA:DNA hybrids activate the cGAS-STING axis. EMBO J. 33, 2937–2946 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Janeway, C. A. Jr Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Burckstummer, T. et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol. 10, 266–272 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Fernandes-Alnemri, T., Yu, J., Datta, P., Wu, J. & Alnemri, E. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roberts, T. et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323, 1057 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Feng, S., Fox, D. & Man, S. M. Mechanisms of gasdermin family members in inflammasome signaling and cell death. J. Mol. Biol. 430, 3068–3080 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Ishii, K. J. et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol. 7, 40–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Stetson, D. B. & Medzhitov, R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24, 93–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Zhong, B. et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29, 538–550 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Sun, W. et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc. Natl Acad. Sci. USA 106, 8653–8658 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jin, L. et al. STING/MPYS mediates host defense against Listeria monocytogenes infection by regulating Ly6C(hi) monocyte migration. J. Immunol. 190, 2835–2843 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Jin, L. et al. MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Mol. Cell. Biol. 28, 5014–5026 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Civril, F. et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498, 332–337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao, P. et al. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153, 1094–1107 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kranzusch, P. J., Lee, A. S., Berger, J. M. & Doudna, J. A. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep. 3, 1362–1368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, X. et al. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell 51, 226–235 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Li, X. et al. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 39, 1019–1031 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, X. et al. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep. 6, 421–430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou, W. et al. Structure of the human cGAS-DNA complex reveals enhanced control of immune surveillance. Cell 174, 300–311 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Ablasser, A. et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498, 380–384 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Diner, E. J. et al. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 3, 1355–1361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Du, M. & Chen, Z. J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361, 704–709 (2018). This study reports the DNA-induced function of cGAS inside lipid droplets.

    Article  CAS  PubMed  Google Scholar 

  28. Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008). This study reported the discovery of STING.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009). This study describes the role of STING in type I interferon induction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shang, G., Zhang, C., Chen, Z. J., Bai, X. C. & Zhang, X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature 567, 389–393 (2019). This study reports the latest protein structure of STING and its interaction with TBK1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shu, C., Yi, G., Watts, T., Kao, C. C. & Li, P. Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nat. Struct. Mol. Biol. 19, 722–724 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Burdette, D. L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515–518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shang, G. et al. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nat. Struct. Mol. Biol. 19, 725–727 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Petrasek, J. et al. STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proc. Natl Acad. Sci. USA 110, 16544–16549 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Moretti, J. et al. STING senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum. Cell 171, 809–823 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Holm, C. K. et al. Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING. Nature Immunol. 13, 737–743 (2012).

    Article  CAS  Google Scholar 

  37. Srikanth, S. et al. The Ca2+ sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum. Nat. Immunol. 20, 152–162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dobbs, N. et al. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe 18, 157–168 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gui, X. et al. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature 567, 262–266 (2019). This paper identifies autophagy as a major function of STING.

    Article  CAS  PubMed  Google Scholar 

  40. Mukai, K. et al. Activation of STING requires palmitoylation at the Golgi. Nat. Commun. 7, 11932 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hornung, V. & Latz, E. Intracellular DNA recognition. Nat. Rev. Immunol. 10, 123–130 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Agalioti, T. et al. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Cell 103, 667–678 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Schneider, W. M., Chevillotte, M. D. & Rice, C. M. Interferon-stimulated genes: a complex web of host defenses. Annu. Rev. Immunol. 32, 513–545 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abe, T. & Barber, G. N. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. J. Virol. 88, 5328–5341 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fitzgerald, K. A. et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nature Immunol. 4, 491–496 (2003).

    Article  CAS  Google Scholar 

  47. Fang, R. et al. NEMO-IKKβ are essential for IRF3 and NF-κB activation in the cGAS-STING pathway. J. Immunol. 199, 3222–3233 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Chen, H. et al. Activation of STAT6 by STING is critical for antiviral innate immunity. Cell 147, 436–446 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Kranzusch, P. J. et al. Ancient origin of cGAS-STING reveals mechanism of universal 2′,3’ cGAMP signaling. Mol. Cell 59, 891–903 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Watson, R. O. et al. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe 17, 811–819 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Watson, R. O., Manzanillo, P. S. & Cox, J. S. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150, 803–815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, Y. & Cherry, S. Zika virus infection activates sting-dependent antiviral autophagy in the Drosophila brain. Autophagy 15, 174–175 (2019).

    Article  PubMed  Google Scholar 

  53. Liu, Y. et al. Inflammation-induced, STING-dependent autophagy restricts Zika virus infection in the Drosophila brain. Cell Host Microbe 24, 57–68 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lan, Y. Y. et al. Extranuclear DNA accumulates in aged cells and contributes to senescence and inflammation. Aging Cell 18, e12901 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lan, Y. Y., Londono, D., Bouley, R., Rooney, M. S. & Hacohen, N. Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell Rep. 9, 180–192 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gaidt, M. M. et al. The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3. Cell 171, 1110–1124 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gulen, M. F. et al. Signalling strength determines proapoptotic functions of STING. Nat. Commun. 8, 427 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cerboni, S. et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J. Exp. Med. 214, 1769–1785 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tang, C. A. et al. Agonist-mediated activation of STING induces apoptosis in malignant B cells. Cancer Res. 76, 2137–2152 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brault, M., Olsen, T. M., Martinez, J., Stetson, D. B. & Oberst, A. Intracellular nucleic acid sensing triggers necroptosis through synergistic type I IFN and TNF signaling. J. Immunol. 200, 2748–2756 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Sarhan, J. et al. Constitutive interferon signaling maintains critical threshold of MLKL expression to license necroptosis. Cell Death Differ. 26, 332–347 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sun, B. et al. Dengue virus activates cGAS through the release of mitochondrial DNA. Scientif. Rep. 7, 3594 (2017).

    Article  CAS  Google Scholar 

  63. Franz, K. M., Neidermyer, W. J., Tan, Y. J., Whelan, S. P. J. & Kagan, J. C. STING-dependent translation inhibition restricts RNA virus replication. Proc. Natl Acad. Sci. USA 115, E2058–E2067 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Crowl, J. T., Gray, E. E., Pestal, K., Volkman, H. E. & Stetson, D. B. Intracellular nucleic acid detection in autoimmunity. Annu. Rev. Immunol. 35, 313–336 (2017). A review on DNA sensing in autoimmunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ahn, J. & Barber, G. N. Self-DNA, STING-dependent signaling and the origins of autoinflammatory disease. Curr. Opin. Immunol. 31, 121–126 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Motwani, M. & Fitzgerald, K. A. cGAS micro-manages genotoxic stress. Immunity 47, 616–617 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Bordon, Y. Innate immunity: nuclear waste ignites cGAS. Nat. Rev. Immunol. 17, 533 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Rongvaux, A. Innate immunity and tolerance toward mitochondria. Mitochondrion 41, 14–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Chen, M. et al. TRIM14 inhibits cGAS degradation mediated by selective autophagy receptor p62 to promote innate immune responses. Mol. Cell 64, 105–119 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Liang, Q. et al. Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host Microbe 15, 228–238 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Dai, J. et al. Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity. Cell 176, 1447–1460 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Seo, G. J. et al. Akt kinase-mediated checkpoint of cGAS DNA sensing pathway. Cell Rep. 13, 440–449 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xia, P. et al. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat. Immunol. 17, 369–378 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Banerjee, I. et al. Gasdermin D restrains type I interferon response to cytosolic DNA by disrupting ionic homeostasis. Immunity 49, 413–426 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kato, K. et al. Structural insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase phosphodiesterase 1. Nat. Commun. 9, 4424 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li, L. et al. Hydrolysis of 2’3’-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 10, 1043–1048 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Andrade, W. A. et al. Group B Streptococcus degrades cyclic-di-AMP to modulate STING-dependent type I interferon production. Cell Host Microbe 20, 49–59 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Eaglesham, J. B., Pan, Y., Kupper, T. S. & Kranzusch, P. J. Viral and metazoan poxins are cGAMP-specific nucleases that restrict cGAS-STING signalling. Nature 566, 259–263 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gonugunta, V. K. et al. Trafficking-mediated STING degradation requires sorting to acidified endolysosomes and can be targeted to enhance anti-tumor response. Cell Rep. 21, 3234–3242 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang, L. et al. NLRC3, a member of the NLR family of proteins, is a negative regulator of innate immune signaling induced by the DNA sensor STING. Immunity 40, 329–341 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhong, B. et al. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 30, 397–407 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Hansen, A. L. et al. Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling. Proc. Natl Acad. Sci. USA 115, E7768–E7775 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu, Z. S. et al. G3BP1 promotes DNA binding and activation of cGAS. Nat. Immunol. 20, 18–28 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Luo, W. W. et al. iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING. Nat. Immunol. 17, 1057–1066 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Wang, Q. et al. The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING. Immunity 41, 919–933 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Zhou, Q. et al. The ER-associated protein ZDHHC1 is a positive regulator of DNA virus-triggered, MITA/STING-dependent innate immune signaling. Cell Host Microbe 16, 450–461 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Chen, W. et al. ER Adaptor SCAP Translocates and Recruits IRF3 to Perinuclear Microsome Induced by Cytosolic Microbial DNAs. PLOS Pathog. 12, e1005462 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang, L. et al. The deubiquitinase CYLD is a specific checkpoint of the STING antiviral signaling pathway. PLOS Pathog. 14, e1007435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Crow, Y. J. & Manel, N. Aicardi-Goutieres syndrome and the type I interferonopathies. Nat. Rev. Immunol. 15, 429–440 (2015). A review on DNA sensing in monogenic autoinflammatory diseases.

    Article  CAS  PubMed  Google Scholar 

  91. Gray, E. E., Treuting, P. M., Woodward, J. J. & Stetson, D. B. Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of Aicardi-Goutieres syndrome. J. Immunol. 195, 1939–1943 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Gall, A. et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36, 120–131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stetson, D. B., Ko, J. S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008). This paper reports the discovery of TREX1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rice, G. I., Rodero, M. P. & Crow, Y. J. Human disease phenotypes associated with mutations in TREX1. J. Clin. Immunol. 35, 235–243 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Yan, N. Immune diseases associated with TREX1 and STING dysfunction. J. Interferon Cytokine Res. 37, 198–206 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rodero, M. P. et al. Type I interferon-mediated autoinflammation due to DNase II deficiency. Nat. Commun. 8, 2176 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gao, D. et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc. Natl Acad. Sci. USA 112, E5699–E5705 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ahn, J., Gutman, D., Saijo, S. & Barber, G. N. STING manifests self DNA-dependent inflammatory disease. Proc. Natl Acad. Sci. USA 109, 19386–19391 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Yoshida, H., Okabe, Y., Kawane, K., Fukuyama, H. & Nagata, S. Lethal anemia caused by interferon-β produced in mouse embryos carrying undigested DNA. Nat. Immunol. 6, 49–56 (2005). A mouse model mimicking disease due to DNase II deficiency.

    Article  CAS  PubMed  Google Scholar 

  100. Baum, R. et al. Cutting edge: AIM2 and endosomal TLRs differentially regulate arthritis and autoantibody production in DNase II-deficient mice. J. Immunol. 194, 873–877 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Baum, R. et al. Synergy between hematopoietic and radioresistant stromal cells is required for autoimmune manifestations of DNase II−/−IFNaR−/− mice. J. Immunol. 196, 1348–1354 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Yasutomo, K. et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat. Genet. 28, 313–314 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Al-Mayouf, S. M. et al. Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat. Genet. 43, 1186–1188 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Napirei, M. et al. Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat. Genet. 25, 177–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Sisirak, V. et al. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell 166, 88–101 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jeremiah, N. et al. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J. Clin. Invest. 124, 5516–5520 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014). This paper reports the discovery of STING gain-of-function mutations in SAVI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Munoz, J. et al. Stimulator of interferon genes-associated vasculopathy with onset in infancy: a mimic of childhood granulomatosis with polyangiitis. JAMA Dermatol. 151, 872–877 (2015).

    Article  PubMed  Google Scholar 

  109. Chia, J. et al. Failure to thrive, interstitial lung disease, and progressive digital necrosis with onset in infancy. J. Am. Acad. Dermatol. 74, 186–189 (2016).

    Article  PubMed  Google Scholar 

  110. Melki, I. et al. Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling. J. Allergy Clin. Immunol. 140, 543–552 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Picard, C. et al. Severe pulmonary fibrosis as the first manifestation of interferonopathy (TMEM173 mutation). Chest 150, e65–71 (2016).

    Article  PubMed  Google Scholar 

  112. Bouis, D. et al. Severe combined immunodeficiency in stimulator of interferon genes (STING) V154M/wild-type mice. J. Allergy Clin. Immunol. 143, 712–725 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Warner, J. D. et al. STING-associated vasculopathy develops independently of IRF3 in mice. J. Exp. Med. 214, 3279–3292 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Motwani, M. et al. Hierarchy of clinical manifestations in SAVI N153S and V154M mouse models. Proc. Natl Acad. Sci. USA 116, 7941–7950 (2019). Comparison of two mouse models of SAVI disease caused due to a gain-of-function mutation in STING.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chen, D. et al. PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors. Proc. Natl Acad. Sci. USA 115, 3930–3935 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Luksch, H. et al. STING-associated lung disease in mice relies on T cells but not type I interferon. J. Allergy Clin. Immunol. https://doi.org/10.1016/j.jaci.2019.01.044 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Wu, J. et al. STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death. J. Exp. Med. 216, 867–883 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. King, K. R. et al. IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nat. Med. 23, 1481–1487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kerur, N. et al. cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nat. Med. 24, 50–61 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Sliter, D. A. et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561, 258–262 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kole, A. et al. Type I IFNs regulate effector and regulatory T cell accumulation and anti-inflammatory cytokine production during T cell-mediated colitis. J. Immunol. 191, 2771–2779 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Metidji, A. et al. IFN-α/β receptor signaling promotes regulatory T cell development and function under stress conditions. J. Immunol. 194, 4265–4276 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Lee, S. E. et al. Type I interferons maintain Foxp3 expression and T-regulatory cell functions under inflammatory conditions in mice. Gastroenterology 143, 145–154 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Canesso, M. C. C. et al. The cytosolic sensor STING is required for intestinal homeostasis and control of inflammation. Mucosal Immunol. 11, 820–834 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Luo, X. et al. Expression of STING is increased in liver tissues from patients with NAFLD and promotes macrophage-mediated hepatic inflammation and fibrosis in mice. Gastroenterology 155, 1971–1984 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Kreienkamp, R. et al. A cell-intrinsic interferon-like response links replication stress to cellular aging caused by progerin. Cell Rep. 22, 2006–2015 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Amor-Gueret, M. Bloom syndrome, genomic instability and cancer: the SOS-like hypothesis. Cancer Lett. 236, 1–12 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Rao, V. A. et al. Endogenous γ-H2AX-ATM-Chk2 checkpoint activation in Bloom’s syndrome helicase deficient cells is related to DNA replication arrested forks. Mol. Cancer Res. 5, 713–724 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Gratia, M. et al. Bloom syndrome protein restrains innate immune sensing of micronuclei by cGAS. J. Exp. Med. 216, 1199–1213 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018). This paper shows that genome instability linked to micronuclei sensing by cGAS and STING drives tumour metastasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017). The seminal discovery linking the cGAS–STING pathway to micronuclei surveillance and genome instability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hintzsche, H. et al. Fate of micronuclei and micronucleated cells. Mutat. Res. 771, 85–98 (2017). This review describes the emerging micronuclei biology and the fate of cells containing DNA damage in micronuclei.

    Article  CAS  Google Scholar 

  135. Pampalona, J. et al. Chromosome bridges maintain kinetochore-microtubule attachment throughout mitosis and rarely break during anaphase. PLOS ONE 11, e0147420 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Terradas, M., Martin, M. & Genesca, A. Impaired nuclear functions in micronuclei results in genome instability and chromothripsis. Arch. Toxicol. 90, 2657–2667 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Xu, B. et al. Replication stress induces micronuclei comprising of aggregated DNA double-strand breaks. PLOS ONE 6, e18618 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yang, H., Wang, H., Ren, J., Chen, Q. & Chen, Z. J. cGAS is essential for cellular senescence. Proc. Natl Acad. Sci. USA 114, E4612–E4620 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gluck, S. et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19, 1061–1070 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu, H. et al. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 563, 131–136 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Utani, K., Kohno, Y., Okamoto, A. & Shimizu, N. Emergence of micronuclei and their effects on the fate of cells under replication stress. PLOS ONE 5, e10089 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dunphy, G. et al. Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signaling after nuclear DNA damage. Mol. Cell 71, 745–760 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ghaffari, A. et al. STING agonist therapy in combination with PD-1 immune checkpoint blockade enhances response to carboplatin chemotherapy in high-grade serous ovarian cancer. Br. J. Cancer 119, 440–449 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kondo, T. et al. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc. Natl Acad. Sci. USA 110, 2969–2974 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chabanon, R. M. et al. PARP inhibition enhances tumor cell-intrinsic immunity in ERCC1-deficient non-small cell lung cancer. J. Clin. Invest. 129, 1211–1228 (2018).

    Article  Google Scholar 

  146. Ding, L. et al. PARP inhibition elicits STING-dependent antitumor immunity in Brca1-deficient ovarian cancer. Cell Rep. 25, 2972–2980 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Parkes, E. E. et al. Activation of STING-dependent innate immune signaling by S-phase-specific DNA damage in breast cancer. J. Natl Cancer Inst. 109, djw199 (2017).

    Article  CAS  Google Scholar 

  148. Shen, J. et al. PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCAness. Cancer Res. 79, 311–319 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Fuertes, M. B., Woo, S. R., Burnett, B., Fu, Y. X. & Gajewski, T. F. Type I interferon response and innate immune sensing of cancer. Trends Immunol. 34, 67–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014). A seminal paper reporting on the discovery that cGAS–STING signalling in response to tumour DNA drives the type I interferon response and the CD8 + T cell response in cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bakhoum, S. F. & Landau, D. A. Chromosomal instability as a driver of tumor heterogeneity and evolution. Cold Spring Harb. Perspect. Med. 7, a029611 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chen, Q. et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533, 493–498 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lemos, H. et al. STING promotes the growth of tumors characterized by low antigenicity via IDO activation. Cancer Res. 76, 2076–2081 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Dammeijer, F., Lau, S. P., van Eijck, C. H. J., van der Burg, S. H. & Aerts, J. Rationally combining immunotherapies to improve efficacy of immune checkpoint blockade in solid tumors. Cytokine Growth Factor Rev 36, 5–15 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Mahoney, K. M., Rennert, P. D. & Freeman, G. J. Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 14, 561–584 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Chandra, D. et al. STING ligand c-di-GMP improves cancer vaccination against metastatic breast cancer. Cancer Immunol. Res. 2, 901–910 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Downey, C. M., Aghaei, M., Schwendener, R. A. & Jirik, F. R. DMXAA causes tumor site-specific vascular disruption in murine non-small cell lung cancer, and like the endogenous non-canonical cyclic dinucleotide STING agonist, 2’3’-cGAMP, induces M2 macrophage repolarization. PLOS ONE 9, e99988 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bose, D. cGAS/STING pathway in cancer: Jekyll and Hyde story of cancer immune response. Int. J. Mol. Sci. 18, 2456 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  161. Jassar, A. S. et al. Activation of tumor-associated macrophages by the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid induces an effective CD8+ T cell-mediated antitumor immune response in murine models of lung cancer and mesothelioma. Cancer Res. 65, 11752–11761 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Larkin, B. et al. Cutting edge: activation of STING in T cells induces type I IFN responses and cell death. J. Immunol. 199, 397–402 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Corrales, L. & Gajewski, T. F. Molecular pathways: targeting the stimulator of interferon genes (STING) in the immunotherapy of cancer. Clin. Cancer Res. 21, 4774–4779 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Rivera Vargas, T., Benoit-Lizon, I. & Apetoh, L. Rationale for stimulator of interferon genes-targeted cancer immunotherapy. Eur. J. Cancer 75, 86–97 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Fu, J. et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl Med. 7, 283ra252 (2015).

    Google Scholar 

  166. Moore, E. et al. Established T cell-inflamed tumors rejected after adaptive resistance was reversed by combination STING activation and PD-1 pathway blockade. Cancer Immunol. Res. 4, 1061–1071 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Foote, J. B. et al. A STING agonist given with OX40 receptor and PD-L1 modulators primes immunity and reduces tumor growth in tolerized mice. Cancer Immunol. Res. 5, 468–479 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wang, H. et al. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc. Natl Acad. Sci. USA 114, 1637–1642 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Liang, H. et al. Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nat. Commun. 8, 1736 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lemos, H., Huang, L., McGaha, T. & Mellor, A. L. STING, nanoparticles, autoimmune disease and cancer: a novel paradigm for immunotherapy? Expert Rev. Clin. Immunol. 11, 155–165 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Nakamura, T. et al. Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma. J. Control. Release 216, 149–157 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Teachey, D. T. et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Cancer Discov. 6, 664–679 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Harrington, K. et al. Preliminary results of the first-in-human (FIH) study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with pembrolizumab (pembro) in patients with advanced solid tumors or lymphomas [abstract LBA15]. Ann. Oncol. 29 (Suppl. 8), mdy424.015 (2018).

    Google Scholar 

  174. Meric-Bernstam, F. et al. in The Society for Immunotherapy of Cancer (SITC) 33rd Annual Meeting P309 (SITC, Washington, 2018).

  175. Ramanjulu, J. M. et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 564, 439–443 (2018). Research describing the development of a STING agonist for systemic delivery in oncology.

    Article  CAS  PubMed  Google Scholar 

  176. Blaauboer, S. M., Gabrielle, V. D. & Jin, L. MPYS/STING-mediated TNF-α, not type I IFN, is essential for the mucosal adjuvant activity of (3′-5′)-cyclic-di-guanosine-monophosphate in vivo. J. Immunol. 192, 492–502 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Gutjahr, A. et al. The STING ligand cGAMP potentiates the efficacy of vaccine-induced CD8+ T cells. JCI Insight 4, 125107 (2019).

    Article  PubMed  Google Scholar 

  178. Li, X. D. et al. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341, 1390–1394 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. Martin, T. L. et al. Sublingual targeting of STING with 3’3’-cGAMP promotes systemic and mucosal immunity against anthrax toxins. Vaccine 35, 2511–2519 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Miyabe, H. et al. A new adjuvant delivery system ‘cyclic di-GMP/YSK05 liposome’ for cancer immunotherapy. J. Control. Release 184, 20–27 (2014).

    Article  CAS  PubMed  Google Scholar 

  181. Wang, J., Li, P. & Wu, M. X. Natural STING agonist as an “ideal” adjuvant for cutaneous vaccination. J. Invest. Dermatol. 136, 2183–2191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Van Dis, E. et al. STING-activating adjuvants elicit a Th17 immune response and protect against Mycobacterium tuberculosis infection. Cell Rep. 23, 1435–1447 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Thomsen, M. K. et al. Lack of immunological DNA sensing in hepatocytes facilitates hepatitis B virus infection. Hepatology 64, 746–759 (2016).

    Article  CAS  PubMed  Google Scholar 

  184. Guo, F. et al. STING agonists induce an innate antiviral immune response against hepatitis B virus. Antimicrob. Agents Chemother. 59, 1273–1281 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Collins, A. C. et al. Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe 17, 820–828 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yamamoto, T. et al. STING agonists activate latently infected cells and enhance SIV-specific responses ex vivo in naturally SIV controlled cynomolgus macaques. Sci. Rep. 9, 5917 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Crow, Y. J. et al. Mutations in the gene encoding the 3′-5’ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat. Genet. 38, 917–920 (2006).

    Article  CAS  PubMed  Google Scholar 

  188. Barizzone, N. et al. Rare variants in the TREX1 gene and susceptibility to autoimmune diseases. Biomed. Res. Int. 2013, 471703 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Fredi, M. et al. Typing TREX1 gene in patients with systemic lupus erythematosus. Reumatismo 67, 1–7 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Lee-Kirsch, M. A. et al. A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J. Mol. Med. 85, 531–537 (2007).

    Article  CAS  PubMed  Google Scholar 

  191. Namjou, B. et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 12, 270–279 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hasan, M. et al. Cutting edge: inhibiting TBK1 by compound II ameliorates autoimmune disease in mice. J. Immunol. 195, 4573–4577 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Hasan, M. & Yan, N. Therapeutic potential of targeting TBK1 in autoimmune diseases and interferonopathies. Pharmacol. Res. 111, 336–342 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Xiao, N. et al. cGAS activation causes lupus-like autoimmune disorders in a TREX1 mutant mouse model. J. Autoimmun. 100, 84–94 (2019).

    Article  CAS  PubMed  Google Scholar 

  195. Li, T. & Chen, Z. J. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J. Exp. Med. 215, 1287–1299 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013). This paper reports the discovery of cGAS.

    Article  CAS  PubMed  Google Scholar 

  197. Xia, P. et al. A circular RNA protects dormant hematopoietic stem cells from DNA sensor cGAS-mediated exhaustion. Immunity 48, 688–701 (2018).

    Article  CAS  PubMed  Google Scholar 

  198. Volkman, H. E., Cambier, S., Gray, E. E. & Stetson, D. B. cGAS is predominantly a nuclear protein. Preprint at bioRxiv https://doi.org/10.1101/486118 (2018).

    Article  Google Scholar 

  199. Gentili, M. et al. The N-terminal domain of cGAS determines preferential association with centromeric DNA and innate immune activation in the nucleus. Cell Rep. 26, 2377–2393 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Tao, J. et al. Nonspecific DNA binding of cGAS N terminus promotes cGAS activation. J. Immunol. 198, 3627–3636 (2017).

    Article  CAS  PubMed  Google Scholar 

  201. Barnett, K. C. et al. Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient distinction between self- and viral DNA. Cell 176, 1432–1446 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ablasser, A. & Chen, Z. J. cGAS in action: expanding roles in immunity and inflammation. Science 363, eaat8657 (2019).

    Article  CAS  PubMed  Google Scholar 

  203. Yin, Q. et al. Cyclic di-GMP sensing via the innate immune signaling protein STING. Mol. Cell 46, 735–745 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Lee-Kirsch, M. A. The type I interferonopathies. Annu. Rev. Med. 68, 297–315 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. Diamond, M. S. et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 208, 1989–2003 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Fuertes, M. B. et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. J. Exp. Med. 208, 2005–2016 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Evans, C. J. & Aguilera, R. J. DNase II: genes, enzymes and function. Gene 322, 1–15 (2003).

    Article  CAS  PubMed  Google Scholar 

  208. Mazur, D. J. & Perrino, F. W. Excision of 3’ termini by the Trex1 and TREX2 3΄→5΄ exonucleases. Characterization of the recombinant proteins. J. Biol. Chem. 276, 17022–17029 (2001).

    Article  CAS  PubMed  Google Scholar 

  209. Hu, M. M. et al. Sumoylation promotes the stability of the DNA sensor cGAS and the adaptor STING to regulate the kinetics of response to DNA virus. Immunity 45, 555–569 (2016).

    Article  CAS  PubMed  Google Scholar 

  210. Cui, Y. et al. SENP7 potentiates cGAS activation by relieving SUMO-mediated inhibition of cytosolic DNA sensing. PLOS Pathog. 13, e1006156 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Liu, Z. S. et al. RINCK-mediated monoubiquitination of cGAS promotes antiviral innate immune responses. Cell Biosci. 8, 35 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Wang, Q. et al. The E3 ubiquitin ligase RNF185 facilitates the cGAS-mediated innate immune response. PLOS Pathog. 13, e1006264 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Seo, G. J. et al. TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing. Nat. Commun. 9, 613 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Yoh, S. M. et al. PQBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1. Cell 161, 1293–1305 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Lian, H. et al. ZCCHC3 is a co-sensor of cGAS for dsDNA recognition in innate immune response. Nat. Commun. 9, 3349 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zhang, J., Hu, M. M., Wang, Y. Y. & Shu, H. B. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J. Biol. Chem. 287, 28646–28655 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Tsuchida, T. et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 33, 765–776 (2010).

    Article  CAS  PubMed  Google Scholar 

  218. Qin, Y. et al. RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms. PLOS Pathog. 10, e1004358 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Yang, L. et al. UBXN3B positively regulates STING-mediated antiviral immune responses. Nat. Commun. 9, 2329 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Ni, G., Konno, H. & Barber, G. N. Ubiquitination of STING at lysine 224 controls IRF3 activation. Sci. Immunol. 2, eaah7119 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Zhang, Z. et al. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 12, 959–965 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Parvatiyar, K. et al. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat. Immunol. 13, 1155–1161 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Jonsson, K. L. et al. IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP. Nat. Commun. 8, 14391 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Almine, J. F. et al. IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes. Nat. Commun. 8, 14392 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Guo, H. et al. NLRX1 sequesters STING to negatively regulate the interferon response, thereby facilitating the replication of HIV-1 and DNA viruses. Cell Host Microbe 19, 515–528 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Li, Z. et al. PPM1A regulates antiviral signaling by antagonizing TBK1-mediated STING phosphorylation and aggregation. PLOS Pathog. 11, e1004783 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Wang, Y. et al. TRIM30α is a negative-feedback regulator of the intracellular DNA and DNA virus-triggered response by targeting STING. PLOS Pathog. 11, e1005012 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Sun, H. et al. USP13 negatively regulates antiviral responses by deubiquitinating STING. Nat. Commun. 8, 15534 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Chen, Y. et al. p38 inhibition provides anti-DNA virus immunity by regulation of USP21 phosphorylation and STING activation. J. Exp. Med. 214, 991–1010 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Wang, Y. et al. Inflammasome activation triggers caspase-1-mediated cleavage of cGAS to regulate responses to DNA virus infection. Immunity 46, 393–404 (2017).

    Article  CAS  PubMed  Google Scholar 

  231. Konno, H., Konno, K. & Barber, G. N. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155, 688–698 (2013).

    Article  CAS  PubMed  Google Scholar 

  232. Prabakaran, T. et al. Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1. EMBO J. 37, e97858 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Saitoh, T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl Acad. Sci. USA 106, 20842–20846 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Grieves, J. L. et al. Exonuclease TREX1 degrades double-stranded DNA to prevent spontaneous lupus-like inflammatory disease. Proc. Natl Acad. Sci. USA 112, 5117–5122 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Hasan, M. et al. Cytosolic nuclease TREX1 regulates oligosaccharyltransferase activity independent of nuclease activity to suppress immune activation. Immunity 43, 463–474 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Konig, N. et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann. Rheum. Dis. 76, 468–472 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to authors whose work was not discussed or cited owing to space limitations. This work was supported by grants from the Lupus Research Alliance and the NIH (AI067497, AI079293 and AI128358).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript.

Corresponding author

Correspondence to Katherine A. Fitzgerald.

Ethics declarations

Competing interests

S.P. is an Associate GlaxoSmithKline Fellow and Research Leader at GlaxoSmithKline. K.A.F. has received funding and previous consulting fees from GlaxoSmithKline related to nucleic acid sensing pathways. M.M. declares no competing interests.

Additional information

Peer review information

Nature Reviews Genetics thanks Y. Crow, S. Bakhoum, Z. Jiang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Pattern recognition receptors

Germline-encoded receptors that detect pathogen-associated molecular patterns (microbial products).

Cyclic dinucleotides

A class of nucleic-acid second messenger molecules that typically contain two mononucleotides connected by a unique phosphodiester linkage, such as cyclic 2′-5′,3′-5′ adenine monophosphate guanine monophosphate linkages in human cyclic GMP–AMP.

Pyroptosis

A caspase 1/11-dependent inflammatory cell death process.

Necroptosis

A receptor-interacting serine/threonine-protein kinase (RIPK)-dependent programmed cell death pathway.

Mitophagy

An autophagic process in response to cellular damage or stress during which mitochondria are degraded.

Phosphodiesterases

Enzymes that break phosphodiester bonds in cyclic dinucleotides.

Endogenous retroelements

Genes that can integrate anywhere into the human genome, often referred to as mobile genetic elements; endogenous retroelements arise from integration of retroviruses into human genomes.

Antinuclear antibodies

During autoimmunity, these antibodies are made against self-proteins such as histones, nucleosomes or DNA.

Systemic lupus erythematosus

An autoimmune disorder in which the immune system aberrantly attacks host tissues.

Merotelic kinetochores

Kinetochores arranged in a merotelic orientation, whereby one kinetochore is attached to opposing spindle poles.

Breakage–fusion–bridge cycle

A process whereby broken chromosomes fuse with other broken chromosomes that segregate to opposite spindle poles during mitosis, forming the chromosome bridge; the bridge is consequently broken during mitosis, instigating a cyclic pattern of chromosomal breakage and fusion that propagates chromosome instability.

Chromosome instability

A type of genomic instability in which chromosomes are unstable, such that either whole chromosomes or parts of chromosomes are duplicated or deleted.

Chromothripsis

A cellular description of asynchronous chromosome condensation coincident with a high frequency of chromosomal rearrangements condensed to a specific region of a chromosome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motwani, M., Pesiridis, S. & Fitzgerald, K.A. DNA sensing by the cGAS–STING pathway in health and disease. Nat Rev Genet 20, 657–674 (2019). https://doi.org/10.1038/s41576-019-0151-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-019-0151-1

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer