Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lymphatic endothelial cells of the lymph node

Abstract

The influx and efflux of cells and antigens to and from the draining lymph nodes largely take place through the subcapsular, cortical and medullary sinus systems. Recent analyses in mice and humans have revealed unexpected diversity in the lymphatic endothelial cells, which form the distinct regions of the sinuses. As a semipermeable barrier, the lymphatic endothelial cells regulate the sorting of lymph-borne antigens to the lymph node parenchyma and can themselves serve as antigen-presenting cells. The leukocytes entering the lymph node via the sinus system and the lymphocytes egressing from the parenchyma migrate through the lymphatic endothelial cell layer. The sinus lymphatic endothelial cells also orchestrate the organogenesis of lymph nodes, and they undergo bidirectional signalling with other sinus-resident cells, such as subcapsular sinus macrophages, to generate a unique lymphatic niche. In this Review, we consider the structural and functional basis of how the lymph node sinus system coordinates immune responses under physiological conditions, and in inflammation and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The lymphatic sinus systems of lymph nodes in mice and humans.
Fig. 2: Pathways mediating the transfer of macromolecules across the subcapsular floor.
Fig. 3: Leukocyte entry and exit through lymphatics in the lymph nodes.
Fig. 4: Lymphatic endothelial cells in organizing the lymph node niche.

Similar content being viewed by others

References

  1. Girard, J. P., Moussion, C. & Förster, R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat. Rev. Immunol. 12, 762–773 (2012).

    CAS  PubMed  Google Scholar 

  2. Qi, H., Kastenmüller, W. & Germain, R. N. Spatiotemporal basis of innate and adaptive immunity in secondary lymphoid tissue. Annu. Rev. Cell Dev. Biol. 30, 141–167 (2014).

    CAS  PubMed  Google Scholar 

  3. Chang, J. E. & Turley, S. J. Stromal infrastructure of the lymph node and coordination of immunity. Trends Immunol. 36, 30–39 (2015).

    CAS  PubMed  Google Scholar 

  4. Mueller, S. N. & Germain, R. N. Stromal cell contributions to the homeostasis and functionality of the immune system. Nat. Rev. Immunol. 9, 618–629 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Nourshargh, S., Hordijk, P. L. & Sixt, M. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat. Rev. Mol. Cell Biol. 11, 366–378 (2010).

    CAS  PubMed  Google Scholar 

  6. Ager, A. High endothelial venules and other blood vessels: critical regulators of lymphoid organ development and function. Front. Immunol. 8, 45 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. Baluk, P. et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 204, 2349–2362 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Randolph, G. J., Ivanov, S., Zinselmeyer, B. H. & Scallan, J. P. The lymphatic system: integral roles in immunity. Annu. Rev. Immunol. 35, 31–52 (2017).

    CAS  PubMed  Google Scholar 

  9. Sarris, M. & Sixt, M. Navigating in tissue mazes: chemoattractant interpretation in complex environments. Curr. Opin. Cell Biol. 36, 93–102 (2015).

    CAS  PubMed  Google Scholar 

  10. Lammermann, T. & Sixt, M. The microanatomy of T-cell responses. Immunol. Rev. 221, 26–43 (2008).

    PubMed  Google Scholar 

  11. Rodda, L. B. et al. Single-cell RNA sequencing of lymph node stromal cells reveals niche-associated heterogeneity. Immunity 48, 1014–1028 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fletcher, A. L., Acton, S. E. & Knoblich, K. Lymph node fibroblastic reticular cells in health and disease. Nat. Rev. Immunol. 15, 350–361 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jackson, D. G. Leucocyte trafficking via the lymphatic vasculature — mechanisms and consequences. Front. Immunol. 10, 471 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Schineis, P., Runge, P. & Halin, C. Cellular traffic through afferent lymphatic vessels. Vasc. Pharmacol. 112, 31–41 (2019).

    CAS  Google Scholar 

  15. Perez-Shibayama, C., Gil-Cruz, C. & Ludewig, B. Fibroblastic reticular cells at the nexus of innate and adaptive immune responses. Immunol. Rev. 289, 31–41 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sainte-Marie, G. The lymph node revisited: development, morphology, functioning, and role in triggering primary immune responses. Anat. Rec. 293, 320–337 (2010).

    Google Scholar 

  17. Ohtani, O. & Ohtani, Y. Structure and function of rat lymph nodes. Arch. Histol. Cytol. 71, 69–76 (2008).

    PubMed  Google Scholar 

  18. Willard-Mack, C. L. Normal structure, function, and histology of lymph nodes. Toxicol. Pathol. 34, 409–424 (2006).

    PubMed  Google Scholar 

  19. Farr, A. G., Cho, Y. & De Bruyn, P. P. The structure of the sinus wall of the lymph node relative to its endocytic properties and transmural cell passage. Am. J. Anat. 157, 265–284 (1980).

    CAS  PubMed  Google Scholar 

  20. Bélisle, C. & Sainte-Marie, G. Topography of the deep cortex of the lymph nodes of various mammalian species. Anat. Rec. 201, 553–561 (1981).

    PubMed  Google Scholar 

  21. Compton, C. C. & Raviola, E. Structure of the sinus-lining cells in the popliteal lymph node of the rabbit. Anat. Rec. 212, 408–423 (1985).

    CAS  PubMed  Google Scholar 

  22. Spalding, H. J. & Heath, T. J. Fine structure of lymph pathways in nodes from the superficial inguinal lymph centre in the pig. J. Anat. 166, 43–54 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gray, E. E. & Cyster, J. G. Lymph node macrophages. J. Innate Immunol. 4, 424–436 (2012).

    CAS  Google Scholar 

  24. Gerner, M. Y., Torabi-Parizi, P. & Germain, R. N. Strategically localized dendritic cells promote rapid T cell responses to lymph-borne particulate antigens. Immunity 42, 172–185 (2015).

    CAS  PubMed  Google Scholar 

  25. Moran, I., Grootveld, A. K., Nguyen, A. & Phan, T. G. Subcapsular sinus macrophages: the seat of innate and adaptive memory in murine lymph nodes. Trends Immunol. 40, 35–48 (2019).

    CAS  PubMed  Google Scholar 

  26. Louie, D. A. P. & Liao, S. Lymph node subcapsular sinus macrophages as the frontline of lymphatic immune defense. Front. Immunol. 10, 347 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ulvmar, M. H. et al. The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes. Nat. Immunol. 15, 623–630 (2014). This article identifies chemokine scavenging as a new way of maintaining chemokine gradients across the subcapsular sinus and pinpoints the differences between the subcapsular floor and ceiling LECs.

    CAS  PubMed  Google Scholar 

  28. Takeda, A. et al. Single-cell survey of human lymphatics unveils marked endothelial cell heterogeneity and mechanisms of homing for neutrophils. Immunity 51, 561–572 (2019). This single-cell RNA sequencing study reveals the existence of six different LEC types in human LNs and identifies how selected LEC subtypes bind to granulocytes.

    CAS  PubMed  Google Scholar 

  29. Cyster, J. G. & Schwab, S. R. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol. 30, 69–94 (2012).

    CAS  PubMed  Google Scholar 

  30. Sainte-Marie, G., Peng, F. S. & Belisle, C. Overall architecture and pattern of lymph flow in the rat lymph node. Am. J. Anat. 164, 275–309 (1982).

    CAS  PubMed  Google Scholar 

  31. Söderström, N. & Stenström, A. Outflow paths of cells from the lymph node parenchyma to the efferent lymphatics — observations in thin section histology. Scand. J. Haematol. 6, 186–196 (1969).

    PubMed  Google Scholar 

  32. Sinha, R. K., Park, C., Hwang, I. Y., Davis, M. D. & Kehrl, J. H. B lymphocytes exit lymph nodes through cortical lymphatic sinusoids by a mechanism independent of sphingosine-1-phosphate-mediated chemotaxis. Immunity 30, 434–446 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Grigorova, I. L. et al. Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells. Nat. Immunol. 10, 58–65 (2009).

    CAS  PubMed  Google Scholar 

  34. Grigorova, I. L., Panteleev, M. & Cyster, J. G. Lymph node cortical sinus organization and relationship to lymphocyte egress dynamics and antigen exposure. Proc. Natl Acad. Sci. USA 107, 20447–20452 (2010).

    CAS  PubMed  Google Scholar 

  35. Li, W., Germain, R. N. & Gerner, M. Y. Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy. Proc. Natl Acad. Sci. USA 114, E7321–E7330 (2017).

    CAS  PubMed  Google Scholar 

  36. Taniguchi, I. et al. Comparative histology of lymph nodes from aged animals and humans with special reference to the proportional areas of the nodal cortex and sinus. Ann. Anat. 186, 337–347 (2004).

    PubMed  Google Scholar 

  37. Wigle, J. T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell 98, 769–778 (1999).

    CAS  PubMed  Google Scholar 

  38. Malhotra, D. et al. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat. Immunol. 13, 499–510 (2012). This transcriptomic analysis is the first genome-wide effort for unbiased dissection of the gene expression landscape of non-leukocytic stromal cells, including LECs, in mouse skin-draining and mesenteric LNs.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Berendam, S. J. et al. Comparative transcriptomic analysis identifies a range of immunologically related functional elaborations of lymph node associated lymphatic and blood endothelial cells. Front. Immunol. 10, 816 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Marttila-Ichihara, F. et al. Macrophage mannose receptor on lymphatics controls cell trafficking. Blood 112, 64–72 (2008).

    CAS  PubMed  Google Scholar 

  41. Karikoski, M. et al. Clever-1/Stabilin-1 regulates lymphocyte migration within lymphatics and leukocyte entrance to sites of inflammation. Eur. J. Immunol. 39, 3477–3487 (2009).

    CAS  PubMed  Google Scholar 

  42. Park, S. M. et al. Mapping the distinctive populations of lymphatic endothelial cells in different zones of human lymph nodes. PLoS One 9, e94781 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Iftakhar, E. K. I. et al. Gene-expression profiling of different arms of lymphatic vasculature identifies candidates for manipulation of cell traffic. Proc. Natl Acad. Sci. USA 113, 10643–10648 (2016).

    Google Scholar 

  44. Xiang, M. et al. A single-cell transcriptional roadmap of the mouse and human lymph node lymphatic vasculature. Preprint at BioRxiv https://doi.org/10.1101/2019.12.31.892166 (2019).

    Article  Google Scholar 

  45. Fujimoto, N. et al. Single-cell mapping reveals new markers and functions of lymphatic endothelial cells in lymph nodes. Preprint at BioRxiv https://doi.org/10.1101/2020.01.09.900241 (2020).

    Article  Google Scholar 

  46. Esterházy, D. et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature 569, 126–130 (2019).

    PubMed  PubMed Central  Google Scholar 

  47. Wiig, H. & Swartz, M. A. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol. Rev. 92, 1005–1060 (2012).

    CAS  PubMed  Google Scholar 

  48. Hansen, K. C., D’Alessandro, A., Clement, C. C. & Santambrogio, L. Lymph formation, composition and circulation: a proteomics perspective. Int. Immunol. 27, 219–227 (2015).

    CAS  PubMed  Google Scholar 

  49. Clement, C. C. et al. Quantitative profiling of the lymph node clearance capacity. Sci. Rep. 8, 11253 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Sainte-Marie, G. & Peng, F. S. Evidence for the existence of a subsinus layer of the peripheral cortex in the lymph node of the rat. Cell Tissue Res. 239, 37–42 (1985).

    CAS  PubMed  Google Scholar 

  51. Nikles, S. A. & Heath, T. J. Pathways of lymph flow through intestinal lymph nodes in the horse. Anat. Rec. 232, 126–132 (1992).

    CAS  PubMed  Google Scholar 

  52. Phan, T. G., Grigorova, I., Okada, T. & Cyster, J. G. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat. Immunol. 8, 992–1000 (2007).

    CAS  PubMed  Google Scholar 

  53. Roozendaal, R. et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30, 264–276 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gretz, J. E., Norbury, C. C., Anderson, A. O., Proudfoot, A. E. I. & Shaw, S. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J. Exp. Med. 192, 1425–1440 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sixt, M. et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19–29 (2005).

    CAS  PubMed  Google Scholar 

  56. Kähäri, L. et al. Transcytosis route mediates rapid delivery of intact antibodies to draining lymph nodes. J. Clin. Invest. 129, 3086–3102 (2019). This study identifies a constitutive fluid-phase transcytosis pathway through the subcapsular sinus floor LECs, which allows instant transfer of lymph-borne molecules to the parenchyma of the draining LN.

    PubMed  PubMed Central  Google Scholar 

  57. Gerner, M. Y., Casey, K. A., Kastenmuller, W. & Germain, R. N. Dendritic cell and antigen dispersal landscapes regulate T cell immunity. J. Exp. Med. 214, 3105–3122 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rantakari, P. et al. The endothelial protein PLVAP in lymphatics controls the entry of lymphocytes and antigens into lymph nodes. Nat. Immunol. 16, 386–396 (2015).

    CAS  PubMed  Google Scholar 

  59. Bearer, E. L. & Orci, L. Endothelial fenestral diaphragms: a quick-freeze, deep-etch study. J. Cell Biol. 100, 418–428 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Stan, R. V. Endothelial stomatal and fenestral diaphragms in normal vessels and angiogenesis. J. Cell. Mol. Med. 11, 621–643 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Reynoso, G. V. et al. Lymph node conduits transport virions for rapid T cell activation. Nat. Immunol. 20, 602–612 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gretz, J. E., Kaldjian, E. P., Anderson, A. O. & Shaw, S. Sophisticated strategies for information encounter in the lymph node: the reticular network as a conduit of soluble information and a highway for cell traffic. J. Immunol. 157, 495–499 (1996).

    CAS  PubMed  Google Scholar 

  63. Fossum, S. The architecture of rat lymph nodes. IV. Distribution of ferritin and colloidal carbon in the draining lymph nodes after foot-pad injection. Scand. J. Immunol. 12, 433–441 (1980).

    CAS  PubMed  Google Scholar 

  64. Pfeiffer, F. et al. Distinct molecular composition of blood and lymphatic vascular endothelial cell junctions establishes specific functional barriers within the peripheral lymph node. Eur. J. Immunol. 38, 2142–2155 (2008).

    CAS  PubMed  Google Scholar 

  65. Hisano, Y. et al. Lysolipid receptor cross-talk regulates lymphatic endothelial junctions in lymph nodes. J. Exp. Med. 216, 1582–1598 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Clark, S. L. The reticulum of lymph nodes in mice studied with the electron microscope. Am. J. Anat. 110, 217–257 (1962).

    PubMed  Google Scholar 

  67. Forkert, P. G., Thliveris, J. A. & Bertalanffy, F. D. Structure of sinuses in the human lymph node. Cell Tissue Res. 183, 115–130 (1977).

    CAS  PubMed  Google Scholar 

  68. van Ewijk, W., Brekelmans, P. J., Jacobs, R. & Wisse, E. Lymphoid microenvironments in the thymus and lymph node. Scanning Microsc. 2, 2129–2140 (1988).

    PubMed  Google Scholar 

  69. Nopajaroonsri, C. & Simon, G. T. Phagocytosis of colloidal carbon in a lymph node. Am. J. Pathol. 65, 25–42 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yeo, K. P. & Angeli, V. Bidirectional crosstalk between lymphatic endothelial cell and T cell and its implications in tumor immunity. Front. Immunol. 8, 83 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. Cohen, J. N. et al. Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J. Exp. Med. 207, 681–688 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Fletcher, A. L. et al. Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J. Exp. Med. 207, 689–697 (2010). Together with Cohen et al. (2010), this paper discovers that LN LECs can serve as antigen-presenting cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lund, A. W. et al. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep. 1, 191–199 (2012).

    CAS  PubMed  Google Scholar 

  74. Nörder, M. et al. Lymph node-derived lymphatic endothelial cells express functional costimulatory molecules and impair dendritic cell-induced allogenic T-cell proliferation. FASEB J. 26, 2835–2846 (2012).

    PubMed  Google Scholar 

  75. Dubrot, J. et al. Lymph node stromal cells acquire peptide–MHCII complexes from dendritic cells and induce antigen-specific CD4+ T cell tolerance. J. Exp. Med. 211, 1153–1166 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tewalt, E. F. et al. Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood 120, 4772–4782 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rouhani, S. J. et al. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat. Commun. 6, 6771 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hirosue, S. et al. Steady-state antigen scavenging, cross-presentation, and CD8+ T cell priming: a new role for lymphatic endothelial cells. J. Immunol. 192, 5002–5011 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lukacs-Kornek, V. et al. Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat. Immunol. 12, 1096–1104 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hara, T. et al. Identification of IL-7-producing cells in primary and secondary lymphoid organs using IL-7-GFP knock-in mice. J. Immunol. 189, 1577–1584 (2012).

    CAS  PubMed  Google Scholar 

  81. Lemaire, L. C. J. M., van Deventer, S. J. H., van Lanschot, J. J. B., Meenan, J. & Gouma, D. J. Phenotypical characterization of cells in the thoracic duct of patients with and without systemic inflammatory response syndrome and multiple organ failure. Scand. J. Immunol. 47, 69–75 (1998).

    CAS  PubMed  Google Scholar 

  82. Farstad, I. N., Norstein, J. & Brandtzaeg, P. Phenotypes of B and T cells in human intestinal and mesenteric lymph. Gastroenterology 112, 163–173 (1997).

    CAS  PubMed  Google Scholar 

  83. Braun, A. et al. Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration. Nat. Immunol. 12, 879–887 (2011). This study shows, using adoptive cell transfers directly into the afferent lymphatics, how dendritic cells and naive T cells use different sinus systems for their entry into the LN parenchyma.

    CAS  PubMed  Google Scholar 

  84. Qu, C. et al. Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J. Exp. Med. 200, 1231–1241 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lammermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008).

    PubMed  Google Scholar 

  86. Lok, L. S. C. et al. Phenotypically distinct neutrophils patrol uninfected human and mouse lymph nodes. Proc. Natl Acad. Sci. USA 116, 19083–19089 (2019).

    CAS  PubMed  Google Scholar 

  87. Hampton, H. R. & Chtanova, T. The lymph node neutrophil. Semin. Immunol. 28, 129–136 (2016).

    CAS  PubMed  Google Scholar 

  88. Hampton, H. R., Bailey, J., Tomura, M., Brink, R. & Chtanova, T. Microbe-dependent lymphatic migration of neutrophils modulates lymphocyte proliferation in lymph nodes. Nat. Commun. 6, 7139 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Jakubzick, C. et al. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39, 599–610 (2013).

    CAS  PubMed  Google Scholar 

  90. Gray, E. E., Friend, S., Suzuki, K., Phan, T. G. & Cyster, J. G. Subcapsular sinus macrophage fragmentation and CD169+ bleb acquisition by closely associated IL-17-committed innate-like lymphocytes. PLoS One 7, e38258 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kastenmüller, W., Torabi-Parizi, P., Subramanian, N., Lämmermann, T. & Germain, R. N. A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread. Cell 150, 1235–1248 (2012).

    PubMed  PubMed Central  Google Scholar 

  92. Dutton, E. E. et al. Peripheral lymph nodes contain migratory and resident innate lymphoid cell populations. Sci. Immunol. 4, eaau8082 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang, Y. et al. Migratory and adhesive cues controlling innate-like lymphocyte surveillance of the pathogen-exposed surface of the lymph node. eLife 5, e18156 (2016).

    PubMed  PubMed Central  Google Scholar 

  94. Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002).

    CAS  PubMed  Google Scholar 

  95. Wei, S. H. et al. Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat. Immunol. 6, 1228–1235 (2005). Together with Mandala et al. (2002), this paper identifies the phospholipid messenger S1P as the first known mechanism guiding the egress of lymphocytes from the LN parenchyma.

    CAS  PubMed  Google Scholar 

  96. Singer, I. I. et al. Sphingosine-1-phosphate agonists increase macrophage homing, lymphocyte contacts, and endothelial junctional complex formation in murine lymph nodes. J. Immunol. 175, 7151–7161 (2005).

    CAS  PubMed  Google Scholar 

  97. Pham, T. H. et al. Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J. Exp. Med. 207, 17–27 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Pappu, R. et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316, 295–298 (2007).

    CAS  PubMed  Google Scholar 

  99. Zhu, X., Ren, K., Zeng, Y. Z., Zheng, Z. & Yi, G. H. Biological function of SPNS2: from zebrafish to human. Mol. Immunol. 103, 55–62 (2018).

    CAS  PubMed  Google Scholar 

  100. Mendoza, A. et al. The transporter Spns2 is required for secretion of lymph but not plasma sphingosine-1-phosphate. Cell Rep. 2, 1104–1110 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Mendoza, A. et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature 546, 158–161 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Urso, K. et al. IL4RA on lymphatic endothelial cells promotes T cell egress during sclerodermatous graft versus host disease. JCI Insight 1, e88057 (2016).

    PubMed  PubMed Central  Google Scholar 

  103. Tay, M. H. D. et al. Halted lymphocyte egress via efferent lymph contributes to lymph node hypertrophy during hypercholesterolemia. Front. Immunol. 10, 575 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Druzd, D. et al. Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses. Immunity 46, 120–132 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ito, K. et al. Integrin α9 on lymphatic endothelial cells regulates lymphocyte egress. Proc. Natl Acad. Sci. USA 111, 3080–3085 (2014).

    CAS  PubMed  Google Scholar 

  106. Jenne, C. N. et al. T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J. Exp. Med. 206, 2469–2481 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Suan, D. et al. T follicular helper cells have distinct modes of migration and molecular signatures in naive and memory immune responses. Immunity 42, 704–718 (2015).

    CAS  PubMed  Google Scholar 

  108. Pabst, O. et al. Cutting edge: egress of newly generated plasma cells from peripheral lymph nodes depends on β2 integrin. J. Immunol. 174, 7492–7495 (2005).

    CAS  PubMed  Google Scholar 

  109. Reichardt, P. et al. A role for LFA-1 in delaying T-lymphocyte egress from lymph nodes. EMBO J. 32, 829–843 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Irjala, H. et al. Mannose receptor is a novel ligand for L-selectin and mediates lymphocyte binding to lymphatic endothelium. J. Exp. Med. 194, 1033–1042 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Salmi, M., Karikoski, M., Elima, K., Rantakari, P. & Jalkanen, S. CD44 binds to macrophage mannose receptor on lymphatic endothelium and supports lymphocyte migration via afferent lymphatics. Circ. Res. 112, 1577–1582 (2013).

    CAS  PubMed  Google Scholar 

  112. Bovay, E. et al. Multiple roles of lymphatic vessels in peripheral lymph node development. J. Exp. Med. 215, 2760–2777 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Onder, L. et al. Lymphatic endothelial cells control initiation of lymph node organogenesis. Immunity 47, 80–92 (2017). This provocative study indicates that LECs are the initial lymphoid tissue organizer (LTo) cell type operative during organogenesis of LNs.

    CAS  PubMed  Google Scholar 

  114. Eikelenboom, P., Nassy, J. J., Post, J., Versteeg, J. C. & Langevoort, H. L. The histogenesis of lymph nodes in rat and rabbit. Anat. Rec. 190, 201–215 (1978).

    CAS  PubMed  Google Scholar 

  115. Bailey, R. P. & Weiss, L. Ontogeny of human fetal lymph nodes. Am. J. Anat. 142, 15–27 (1975).

    CAS  PubMed  Google Scholar 

  116. Díaz-Flores, L., Gutiérrez, R., Pino García, M., González-Gómez, M. & Carrasco, J. L. Intussusceptive lymphangiogenesis in the sinuses of developing human foetal lymph nodes. Ann. Anat. 226, 73–83 (2019).

    PubMed  Google Scholar 

  117. van de Pavert, S. A. & Mebius, R. E. New insights into the development of lymphoid tissues. Nat. Rev. Immunol. 10, 664–674 (2010).

    PubMed  Google Scholar 

  118. Vondenhoff, M. F. et al. Lymph sacs are not required for the initiation of lymph node formation. Development 136, 29–34 (2009).

    CAS  PubMed  Google Scholar 

  119. Lee, Y. G. & Koh, G. Y. Coordinated lymphangiogenesis is critical in lymph node development and maturation. Dev. Dyn. 245, 1189–1197 (2016).

    CAS  PubMed  Google Scholar 

  120. Mondor, I. et al. Lymphatic endothelial cells are essential components of the subcapsular sinus macrophage niche. Immunity 50, 1453–1466 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Camara, A. et al. Lymph node mesenchymal and endothelial stromal cells cooperate via the RANK–RANKL cytokine axis to shape the sinusoidal macrophage niche. Immunity 50, 1467–1481 (2019). Together with Mondor et al. (2019), this paper shows that LEC-derived signals are essential for the maintenance of a suitable niche for subcapsular and medullary sinus macrophages.

    CAS  PubMed  Google Scholar 

  122. Angeli, V. et al. B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24, 203–215 (2006).

    CAS  PubMed  Google Scholar 

  123. Kataru, R. P. et al. Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood 113, 5650–5659 (2009).

    CAS  PubMed  Google Scholar 

  124. Halin, C., Tobler, N. E., Vigl, B., Brown, L. F. & Detmar, M. VEGF-A produced by chronically inflamed tissue induces lymphangiogenesis in draining lymph nodes. Blood 110, 3158–3167 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Dubey, L. K., Karempudi, P., Luther, S. A., Ludewig, B. & Harris, N. L. Interactions between fibroblastic reticular cells and B cells promote mesenteric lymph node lymphangiogenesis. Nat. Commun. 8, 367 (2017).

    PubMed  PubMed Central  Google Scholar 

  126. Schulz, O. et al. Hypertrophy of infected Peyer’s patches arises from global, interferon-receptor, and CD69-independent shutdown of lymphocyte egress. Mucosal Immunol. 7, 892–904 (2014).

    CAS  PubMed  Google Scholar 

  127. Shiow, L. R. et al. CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440, 540–544 (2006).

    CAS  PubMed  Google Scholar 

  128. Tan, K. W. et al. Expansion of cortical and medullary sinuses restrains lymph node hypertrophy during prolonged inflammation. J. Immunol. 188, 4065–4080 (2012).

    CAS  PubMed  Google Scholar 

  129. Kataru, R. P. et al. T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity 34, 96–107 (2011).

    CAS  PubMed  Google Scholar 

  130. Lucas, E. D. et al. Type 1 IFN and PD-L1 coordinate lymphatic endothelial cell expansion and contraction during an inflammatory immune response. J. Immunol. 201, 1735–1747 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Tamburini, B. A., Burchill, M. A. & Kedl, R. M. Antigen capture and archiving by lymphatic endothelial cells following vaccination or viral infection. Nat. Commun. 5, 3989 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kedl, R. M. et al. Migratory dendritic cells acquire and present lymphatic endothelial cell-archived antigens during lymph node contraction. Nat. Commun. 8, 2034 (2017).

    PubMed  PubMed Central  Google Scholar 

  133. Chtanova, T. et al. Dynamics of neutrophil migration in lymph nodes during infection. Immunity 29, 487–496 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Gorlino, C. V. et al. Neutrophils exhibit differential requirements for homing molecules in their lymphatic and blood trafficking into draining lymph nodes. J. Immunol. 193, 1966–1974 (2014).

    CAS  PubMed  Google Scholar 

  135. Abadie, V. et al. Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood 106, 1843–1850 (2005).

    CAS  PubMed  Google Scholar 

  136. Schilthuis, M. et al. Lymphatic endothelial cells promote productive and latent HIV infection in resting CD4+ T cells. Virol. J. 15, 152 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Bryant-Hudson, K. M. et al. HSV-1 targets lymphatic vessels in the eye and draining lymph node of mice leading to edema in the absence of a functional type I interferon response. Am. J. Pathol. 183, 1233–1242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Tenner-Rácz, K. et al. Immunohistochemical, electron microscopic and in situ hybridization evidence for the involvement of lymphatics in the spread of HIV-1. AIDS 2, 299–309 (1988).

    PubMed  Google Scholar 

  139. Lerner, T. R. et al. Lymphatic endothelial cells are a replicative niche for Mycobacterium tuberculosis. J. Clin. Invest. 126, 1093–1108 (2016).

    PubMed  PubMed Central  Google Scholar 

  140. Karaman, S. & Detmar, M. Mechanisms of lymphatic metastasis. J. Clin. Invest. 124, 922–928 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Broggi, M. A. S. et al. Tumor-associated factors are enriched in lymphatic exudate compared to plasma in metastatic melanoma patients. J. Exp. Med. 216, 1091–1107 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Tammela, T. & Alitalo, K. Lymphangiogenesis: molecular mechanisms and future promise. Cell 140, 460–476 (2010).

    CAS  PubMed  Google Scholar 

  143. Jeong, H. S. et al. Investigation of the lack of angiogenesis in the formation of lymph node metastases. J. Natl Cancer Inst. 107, djv155 (2015).

    PubMed  PubMed Central  Google Scholar 

  144. Kuczynski, E. A., Vermeulen, P. B., Pezzella, F., Kerbel, R. S. & Reynolds, A. R. Vessel co-option in cancer. Nat. Rev. Clin. Oncol. 16, 469–493 (2019).

    CAS  PubMed  Google Scholar 

  145. Volk-Draper, L. et al. Myeloid-derived lymphatic endothelial cell progenitors significantly contribute to lymphatic metastasis in clinical breast cancer. Am. J. Pathol. 189, 2269–2292 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Hood, J. L. The association of exosomes with lymph nodes. Semin. Cell Dev. Biol. 67, 29–38 (2017).

    CAS  PubMed  Google Scholar 

  147. Wortzel, I., Dror, S., Kenific, C. M. & Lyden, D. Exosome-mediated metastasis: communication from a distance. Dev. Cell 49, 347–360 (2019).

    CAS  PubMed  Google Scholar 

  148. Brown, M. et al. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science 359, 1408–1411 (2018).

    CAS  PubMed  Google Scholar 

  149. Das, S. et al. Tumor cell entry into the lymph node is controlled by CCL1 chemokine expressed by lymph node lymphatic sinuses. J. Exp. Med. 210, 1509–1528 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Yang, Y. & Oliver, G. Development of the mammalian lymphatic vasculature. J. Clin. Invest. 124, 888–897 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Klotz, L. et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 522, 62–67 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Petrova, T. V. & Koh, G. Y. Organ-specific lymphatic vasculature: from development to pathophysiology. J. Exp. Med. 215, 35–49 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Potente, M. & Mäkinen, T. Vascular heterogeneity and specialization in development and disease. Nat. Rev. Mol. Cell Biol. 18, 477–494 (2017).

    CAS  PubMed  Google Scholar 

  154. Kerjaschki, D. The lymphatic vasculature revisited. J. Clin. Invest. 124, 874–877 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Machnik, A. et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 15, 545–552 (2009).

    CAS  PubMed  Google Scholar 

  156. Triacca, V., Güç, E., Kilarski, W. W., Pisano, M. & Swartz, M. A. Transcellular pathways in lymphatic endothelial cells regulate changes in solute transport by fluid stress. Circ. Res. 120, 1440–1452 (2017).

    CAS  PubMed  Google Scholar 

  157. Weber, M. et al. Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 339, 328–332 (2013).

    CAS  PubMed  Google Scholar 

  158. Huang, L. H., Elvington, A. & Randolph, G. J. The role of the lymphatic system in cholesterol transport. Front. Pharmacol. 6, 182 (2015).

    PubMed  PubMed Central  Google Scholar 

  159. Hokkanen, K., Tirronen, A. & Ylä-Herttuala, S. Intestinal lymphatic vessels and their role in chylomicron absorption and lipid homeostasis. Curr. Opin. Lipidol. 30, 370–376 (2019).

    CAS  PubMed  Google Scholar 

  160. Alitalo, K. The lymphatic vasculature in disease. Nat. Med. 17, 1371–1380 (2011).

    CAS  PubMed  Google Scholar 

  161. Swartz, M. A. & Lund, A. W. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat. Rev. Cancer 12, 210–219 (2012).

    CAS  PubMed  Google Scholar 

  162. Lynskey, N. N. et al. Rapid lymphatic dissemination of encapsulated group A Streptococci via lymphatic vessel endothelial receptor-1 interaction. PLoS Pathog. 11, e1005137 (2015).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Takeda for discussions. This work was supported by the Academy of Finland, Cancer Foundation Finland and Juselius Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Marko Salmi.

Ethics declarations

Competing interests

The authors own stock in Faron Pharmaceuticals.

Additional information

Peer review information

Nature Reviews Immunology thanks V. Angeli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Fibroblastic reticular cells

(FRCs). Specialized reticular fibroblasts located in the T cell areas of lymph nodes and other secondary lymphoid organs that produce collagen-rich reticular fibres and form stromal networks and conduits that are important for the trafficking of immune cells.

High endothelial venules

Specialized venules that occur in secondary lymphoid organs, except the spleen. High endothelial venules allow continuous transmigration of lymphocytes as a consequence of the constitutive expression of adhesion molecules and chemokines on their luminal surface.

Extravasation cascade

The multistep process of leukocyte infiltration through the endothelium. This process proceeds through the stages of leukocyte rolling, adhesion, diapedesis and, finally, migration to the surrounding tissues.

B cell follicles

Aggregates of B cells in lymphoid tissues. They contain naive B cells, as well as activated, proliferating and maturing B cells in germinal centres. B cell follicles are contiguous with T cell zones.

Immunoproteasome

A form of proteasome with unique subunits. Immunoproteasome has distinct cleavage-site preferences, which may improve antigen presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalkanen, S., Salmi, M. Lymphatic endothelial cells of the lymph node. Nat Rev Immunol 20, 566–578 (2020). https://doi.org/10.1038/s41577-020-0281-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-020-0281-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing