Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CD8+ T cell differentiation and dysfunction in cancer

Abstract

CD8+ T cells specific for cancer cells are detected within tumours. However, despite their presence, tumours progress. The clinical success of immune checkpoint blockade and adoptive T cell therapy demonstrates the potential of CD8+ T cells to mediate antitumour responses; however, most patients with cancer fail to achieve long-term responses to immunotherapy. Here we review CD8+ T cell differentiation to dysfunctional states during tumorigenesis. We highlight similarities and differences between T cell dysfunction and other hyporesponsive T cell states and discuss the spatio-temporal factors contributing to T cell state heterogeneity in tumours. An important challenge is predicting which patients will respond to immunotherapeutic interventions and understanding which T cell subsets mediate the clinical response. We explore our current understanding of what determines T cell responsiveness and resistance to immunotherapy and point out the outstanding research questions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Carcinogenesis and tumour-specific CD8+ T cell differentiation: a two-phase differentiation programme.
Fig. 2: Models of CD8+ T cell differentiation and dysfunction in tumours and exhaustion during chronic infections.
Fig. 3: Two modules of tumour-specific T cell dysfunction programming: loss of effector function and exhaustion phenotype.
Fig. 4: Tumour-specific CD8+ T cell subsets and states mediating immunotherapy responses.

Similar content being viewed by others

References

  1. De Plaen, E. et al. Immunogenic (tum-) variants of mouse tumor P815: cloning of the gene of tum- antigen P91A and identification of the tum- mutation. Proc. Natl Acad. Sci. USA 85, 2274–2278 (1988). This is the first study to identify a somatic mutation in a mouse cancer cell line variant creating a cytolytic T lymphocyte-recognized epitope using a cloning-based approach.

    PubMed  PubMed Central  Google Scholar 

  2. Mandelboim, O. et al. CTL induction by a tumour-associated antigen octapeptide derived from a murine lung carcinoma. Nature 369, 67–71 (1994). This study uses protein extraction and fractionation to identify a peptide epitope in a mouse lung cancer cell line containing an amino acid-altering mutation recognized by cytolytic T lymphocytes.

    CAS  PubMed  Google Scholar 

  3. Monach, P. A., Meredith, S. C., Siegel, C. T. & Schreiber, H. A unique tumor antigen produced by a single amino acid substitution. Immunity 2, 45–59 (1995). This study is the first to identify a mutation in a mouse cancer cell creating a tumour-specific CD4+ T cell-recognized epitope.

    CAS  PubMed  Google Scholar 

  4. Coulie, P. G. et al. A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc. Natl Acad. Sci. USA 92, 7976–7980 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wolfel, T. et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269, 1281–1284 (1995).

    CAS  PubMed  Google Scholar 

  6. Lennerz, V. et al. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc. Natl Acad. Sci. USA 102, 16013–16018 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. van der Bruggen, P. et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643–1647 (1991). This study is the first to show that human cancer cells express antigens recognizable by human cytolytic T lymphocytes.

    PubMed  Google Scholar 

  8. Jager, E. et al. Monitoring CD8 T cell responses to NY-ESO-1: correlation of humoral and cellular immune responses. Proc. Natl Acad. Sci. USA 97, 4760–4765 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schumacher, T. N., Scheper, W. & Kvistborg, P. Cancer neoantigens. Annu. Rev. Immunol. 37, 173–200 (2019).

    CAS  PubMed  Google Scholar 

  10. Renkvist, N., Castelli, C., Robbins, P. F. & Parmiani, G. A listing of human tumor antigens recognized by T cells. Cancer Immunol. Immunother. 50, 3–15 (2001).

    CAS  PubMed  Google Scholar 

  11. Hellstrom, I., Hellstrom, K. E., Pierce, G. E. & Yang, J. P. Cellular and humoral immunity to different types of human neoplasms. Nature 220, 1352–1354 (1968). This study describes the paradoxical finding that tumour-reactive immune cells are found in tumours from human patients although the tumours continue to progress, now known as the Hellstrom paradox.

    CAS  PubMed  Google Scholar 

  12. Hellstrom, K. E. & Hellstrom, I. From the Hellstrom paradox toward cancer cure. Prog. Mol. Biol. Transl. Sci. 164, 1–24 (2019).

    CAS  PubMed  Google Scholar 

  13. ElTanbouly, M. A. & Noelle, R. J. Rethinking peripheral T cell tolerance: checkpoints across a T cell’s journey. Nat. Rev. Immunol. 21, 257–267 (2020).

    PubMed  Google Scholar 

  14. Schietinger, A. & Greenberg, P. D. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 35, 51–60 (2014).

    CAS  PubMed  Google Scholar 

  15. Speiser, D. E., Ho, P. C. & Verdeil, G. Regulatory circuits of T cell function in cancer. Nat. Rev. Immunol. 16, 599–611 (2016).

    CAS  PubMed  Google Scholar 

  16. Wells, A. D. New insights into the molecular basis of T cell anergy: anergy factors, avoidance sensors, and epigenetic imprinting. J. Immunol. 182, 7331–7341 (2009).

    CAS  PubMed  Google Scholar 

  17. Mueller, D. L. Mechanisms maintaining peripheral tolerance. Nat. Immunol. 11, 21–27 (2010).

    CAS  PubMed  Google Scholar 

  18. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

    CAS  PubMed  Google Scholar 

  19. Baumeister, S. H., Freeman, G. J., Dranoff, G. & Sharpe, A. H. Coinhibitory pathways in immunotherapy for cancer. Annu. Rev. Immunol. 34, 539–573 (2016).

    CAS  PubMed  Google Scholar 

  20. Bader, J. E., Voss, K. & Rathmell, J. C. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol. Cell 78, 1019–1033 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Anderson, K. G., Stromnes, I. M. & Greenberg, P. D. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell 31, 311–325 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Henning, A. N., Roychoudhuri, R. & Restifo, N. P. Epigenetic control of CD8+ T cell differentiation. Nat. Rev. Immunol. 18, 340–356 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, Y., Zander, R., Khatun, A., Schauder, D. M. & Cui, W. Transcriptional and epigenetic regulation of effector and memory CD8 T cell differentiation. Front. Immunol. 9, 2826 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    CAS  PubMed  Google Scholar 

  25. Heath, W. R. & Carbone, F. R. Cross-presentation, dendritic cells, tolerance and immunity. Annu. Rev. Immunol. 19, 47–64 (2001).

    CAS  PubMed  Google Scholar 

  26. Hernandez, J., Aung, S., Redmond, W. L. & Sherman, L. A. Phenotypic and functional analysis of CD8+ T cells undergoing peripheral deletion in response to cross-presentation of self-antigen. J. Exp. Med. 194, 707–717 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Redmond, W. L., Marincek, B. C. & Sherman, L. A. Distinct requirements for deletion versus anergy during CD8 T cell peripheral tolerance in vivo. J. Immunol. 174, 2046–2053 (2005).

    CAS  PubMed  Google Scholar 

  28. Kurts, C., Kosaka, H., Carbone, F. R., Miller, J. F. & Heath, W. R. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8+ T cells. J. Exp. Med. 186, 239–245 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Redmond, W. L. & Sherman, L. A. Peripheral tolerance of CD8 T lymphocytes. Immunity 22, 275–284 (2005). This study shows that naive T cells activated by a self-antigen undergo different fates depending on antigen dose and duration.

    CAS  PubMed  Google Scholar 

  30. Schietinger, A., Delrow, J. J., Basom, R. S., Blattman, J. N. & Greenberg, P. D. Rescued tolerant CD8 T cells are preprogrammed to reestablish the tolerant state. Science 335, 723–727 (2012). This study is one of the first to show that T cell self-tolerance is an imprinted differentiation state persisting in the absence of a self-antigen.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, J. C. & Rosenberg, S. A. Adoptive T-cell therapy for cancer. Adv. Immunol. 130, 279–294 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Baitsch, L. et al. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J. Clin. Invest. 121, 2350–2360 (2011). This study is the first to perform transcriptional profiling on tumour-reactive T cells from human tumours and show exhaustion-associated programmes.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Stevanovic, S. et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science 356, 200–205 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pittet, M. J. et al. High frequencies of naive Melan-A/MART-1-specific CD8+ T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. J. Exp. Med. 190, 705–715 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ohashi, P. S. et al. Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65, 305–317 (1991). This is one of the first studies to describe how ignorance can be overcome, causing autoimmunity.

    CAS  PubMed  Google Scholar 

  37. Overwijk, W. W. et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med. 198, 569–580 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Parish, I. A. & Heath, W. R. Too dangerous to ignore: self-tolerance and the control of ignorant autoreactive T cells. Immunol. Cell Biol. 86, 146–152 (2008).

    CAS  PubMed  Google Scholar 

  39. Kurts, C. et al. CD8 T cell ignorance or tolerance to islet antigens depends on antigen dose. Proc. Natl Acad. Sci. USA 96, 12703–12707 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zippelius, A. et al. Effector function of human tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance. Cancer Res. 64, 2865–2873 (2004).

    CAS  PubMed  Google Scholar 

  41. Ochsenbein, A. F. et al. Immune surveillance against a solid tumor fails because of immunological ignorance. Proc. Natl Acad. Sci. USA 96, 2233–2238 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Schwartz, R. H. T cell anergy. Annu. Rev. Immunol. 21, 305–334 (2003).

    CAS  PubMed  Google Scholar 

  43. Macian, F., Im, S. H., Garcia-Cozar, F. J. & Rao, A. T-cell anergy. Curr. Opin. Immunol. 16, 209–216 (2004).

    CAS  PubMed  Google Scholar 

  44. Melero, I., Bach, N. & Chen, L. Costimulation, tolerance and ignorance of cytolytic T lymphocytes in immune responses to tumor antigens. Life Sci. 60, 2035–2041 (1997).

    CAS  PubMed  Google Scholar 

  45. Martinez, G. J. et al. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. Immunity 42, 265–278 (2015). This study demonstrates that TCR-driven NFAT activation in the absence of its AP-1 binding partners is a key driver of T cell anergy and exhaustion.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mognol, G. P. et al. Exhaustion-associated regulatory regions in CD8+ tumor-infiltrating T cells. Proc. Natl Acad. Sci. USA 114, E2776–E2785 (2017). This study is one of the first to describe epigenetic and transcriptional programmes of tumour-specific CD8+ T cells in mouse models.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007). This study is one of the earliest to map transcriptional programmes in CD8+ T cells differentiating during acute versus chronic infection in mice and identifying hallmarks of CD8+ T cell exhaustion.

    CAS  PubMed  Google Scholar 

  48. Wherry, E. J., Blattman, J. N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol. 77, 4911–4927 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Frebel, H. et al. Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice. J. Exp. Med. 209, 2485–2499 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zinselmeyer, B. H. et al. PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis. J. Exp. Med. 210, 757–774 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cornberg, M. et al. Clonal exhaustion as a mechanism to protect against severe immunopathology and death from an overwhelming CD8 T cell response. Front. Immunol. 4, 475 (2013).

    PubMed  PubMed Central  Google Scholar 

  52. Schmitz, J. E. et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283, 857–860 (1999).

    CAS  PubMed  Google Scholar 

  53. Jin, X. et al. Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med. 189, 991–998 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pircher, H. et al. Viral escape by selection of cytotoxic T cell-resistant virus variants in vivo. Nature 346, 629–633 (1990).

    CAS  PubMed  Google Scholar 

  55. Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Noy, R. & Pollard, J. W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41, 49–61 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cassetta, L. & Pollard, J. W. Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug Discov. 17, 887–904 (2018).

    CAS  PubMed  Google Scholar 

  58. Savage, P. A., Malchow, S. & Leventhal, D. S. Basic principles of tumor-associated regulatory T cell biology. Trends Immunol. 34, 33–40 (2013).

    CAS  PubMed  Google Scholar 

  59. Gajewski, T. F., Schreiber, H. & Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Spranger, S. & Gajewski, T. F. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat. Rev. Cancer 18, 139–147 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bezzi, M. et al. Diverse genetic-driven immune landscapes dictate tumor progression through distinct mechanisms. Nat. Med. 24, 165–175 (2018).

    CAS  PubMed  Google Scholar 

  64. Tamborero, D. et al. A pan-cancer landscape of interactions between solid tumors and infiltrating immune cell populations. Clin. Cancer Res. 24, 3717–3728 (2018).

    CAS  PubMed  Google Scholar 

  65. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wellenstein, M. D. & de Visser, K. E. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity 48, 399–416 (2018).

    CAS  PubMed  Google Scholar 

  67. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015). This study shows that specific oncogenic mutations in cancer cells can impact immune cell recruitment and antitumour immune responses.

    CAS  PubMed  Google Scholar 

  68. Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).

    CAS  PubMed  Google Scholar 

  69. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  70. Ochsenbein, A. F. et al. Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature 411, 1058–1064 (2001).

    CAS  PubMed  Google Scholar 

  71. Bottcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dadi, S. et al. Cancer immunosurveillance by tissue-resident innate lymphoid cells and innate-like T cells. Cell 164, 365–377 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).

    CAS  PubMed  Google Scholar 

  74. Eggert, T. et al. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell 30, 533–547 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Frey, N., Venturelli, S., Zender, L. & Bitzer, M. Cellular senescence in gastrointestinal diseases: from pathogenesis to therapeutics. Nat. Rev. Gastroenterol. Hepatol. 15, 81–95 (2018).

    CAS  PubMed  Google Scholar 

  76. Mascaux, C. et al. Immune evasion before tumour invasion in early lung squamous carcinogenesis. Nature 571, 570–575 (2019).

    CAS  PubMed  Google Scholar 

  77. Spiotto, M. T. et al. Increasing tumor antigen expression overcomes “ignorance” to solid tumors via crosspresentation by bone marrow-derived stromal cells. Immunity 17, 737–747 (2002).

    CAS  PubMed  Google Scholar 

  78. Zinkernagel, R. M. Immunity against solid tumors? Int. J. Cancer 93, 1–5 (2001).

    CAS  PubMed  Google Scholar 

  79. Schietinger, A. et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45, 389–401 (2016). This study uses a genetic cancer mouse model and shows that CD8+ T cell dysfunction is induced early during tumorigenesis and is progressive, driven primarily by antigen exposure, and shares hallmarks with human TILs from late-stage metastatic tumours.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Giordano, M. et al. Molecular profiling of CD8 T cells in autochthonous melanoma identifies Maf as driver of exhaustion. EMBO J. 34, 2042–2058 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Singer, M. et al. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell 166, 1500–1511 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775–789 (2019). This study uses single-cell transcriptional and TCR profiling and shows that TILs in human melanoma are heterogeneous, with tumour-reactive T cells expressing hallmarks of dysfunction.

    CAS  PubMed  Google Scholar 

  84. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018). This study uses transcriptional and epigenetic profiling of melanoma-infiltrating TILs from patients who received ICB and identifies features associated with improved response.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018). This study finds that a high number of human TILs are not in fact tumour reactive and identifies surface markers such as CD39 that enrich tumour-reactive CD8+ TILs.

    CAS  PubMed  Google Scholar 

  86. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zheng, C. et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342–1356 (2017).

    CAS  PubMed  Google Scholar 

  88. Chevrier, S. et al. An immune atlas of clear cell renal cell carcinoma. Cell 169, 736–749 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lavin, Y. et al. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169, 750–765 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat. Med. 25, 89–94 (2019). This study demonstrates that the fraction of tumour-reactive T cells within a tumour is highly variable, and thus tumours with high numbers of infiltrating T cells could actually have very few tumour-reactive T cells and be quantitatively ‘hot’ but qualitatively ‘cold’ tumours.

    CAS  PubMed  Google Scholar 

  91. Guo, X. et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat. Med. 24, 978–985 (2018).

    CAS  PubMed  Google Scholar 

  92. Zhang, L. et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 564, 268–272 (2018).

    CAS  PubMed  Google Scholar 

  93. Savas, P. et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat. Med. 24, 986–993 (2018).

    CAS  PubMed  Google Scholar 

  94. Zhou, P. et al. In vivo discovery of immunotherapy targets in the tumour microenvironment. Nature 506, 52–57 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Dong, M. B. et al. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell 178, 1189–1204 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Pan, D. et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770–775 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Patel, S. J. et al. Identification of essential genes for cancer immunotherapy. Nature 548, 537–542 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545, 452–456 (2017). This study shows that dysfunctional tumour-specific T cells undergo epigenetic changes over time within tumours which determine therapeutic reprogrammability, and biomarkers can be associated with reprogrammable or non-reprogrammable T cell dysfunction states.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Thommen, D. S. et al. Progression of lung cancer is associated with increased dysfunction of T cells defined by coexpression of multiple inhibitory receptors. Cancer Immunol. Res. 3, 1344–1355 (2015).

    CAS  PubMed  Google Scholar 

  101. Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Minnie, S. A. et al. Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade. Blood 132, 1675–1688 (2018).

    CAS  PubMed  Google Scholar 

  103. Muller, M. R. & Rao, A. NFAT, immunity and cancer: a transcription factor comes of age. Nat. Rev. Immunol. 10, 645–656 (2010).

    PubMed  Google Scholar 

  104. Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016). This study shows the epigenetic inflexibility of the exhausted T cell population during chronic infections, limiting reinvigoration by ICB.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165–1169 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016). Together with He et al. (2016), this study demonstrates that TCF1+CXCR5+ progenitor T cells in secondary lymphoid organs sustain antiviral T cell responses during chronic viral infection and are targets of PD1 therapy.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8(+) T cells sustain the immune response to chronic viral infections. Immunity 45, 415–427 (2016). Together with Im et al. (2016), this study demonstrates that TCF1-expressing progenitor T cells give rise to the more terminally differentiated exhausted T cell pool during chronic viral infection.

    CAS  PubMed  Google Scholar 

  108. Verbeek, S. et al. An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature 374, 70–74 (1995).

    CAS  PubMed  Google Scholar 

  109. Escobar, G., Mangani, D. & Anderson, A. C. T cell factor 1: a master regulator of the T cell response in disease. Sci. Immunol. 5, eabb9726 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat. Med. 15, 808–813 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Jeannet, G. et al. Essential role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell memory. Proc. Natl Acad. Sci. USA 107, 9777–9782 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Pais Ferreira, D. et al. Central memory CD8+ T cells derive from stem-like Tcf7hi effector cells in the absence of cytotoxic differentiation. Immunity 53, 985–1000 (2020).

    CAS  PubMed  Google Scholar 

  113. Lin, W. W. et al. CD8+ T lymphocyte self-renewal during effector cell determination. Cell Rep. 17, 1773–1782 (2016). This study demonstrates that in the initial cell divisions following T cell activation, the level of TCF1 expression determines whether CD8+ T cells become memory T cells or adopt a terminally differentiated effector fate.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. He, R. et al. Follicular CXCR5-expressing CD8+ T cells curtail chronic viral infection. Nature 537, 412–428 (2016).

    CAS  PubMed  Google Scholar 

  115. Wu, T. et al. The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci. Immunol. 1, eaai8593 (2016).

    PubMed  PubMed Central  Google Scholar 

  116. Wieland, D. et al. TCF1+ hepatitis C virus-specific CD8+ T cells are maintained after cessation of chronic antigen stimulation. Nat. Commun. 8, 15050 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. Leong, Y. A. et al. CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles. Nat. Immunol. 17, 1187–1196 (2016).

    CAS  PubMed  Google Scholar 

  118. Beltra, J. C. et al. Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms. Immunity 52, 825–841 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Paley, M. A. et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 338, 1220–1225 (2012). This study is the first to describe the heterogeneity of the exhausted T cell pool consisting of progenitor and terminally differentiated exhausted T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Yao, C. et al. Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in chronic infection. Nat. Immunol. 20, 890–901 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Borsa, M. et al. Modulation of asymmetric cell division as a mechanism to boost CD8+ T cell memory. Sci. Immunol. 4, eaav1730 (2019).

    CAS  PubMed  Google Scholar 

  122. Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019). This study demonstrates that TOX is a key transcription factor driving dysfunctional programmes in tumour-specific T cells, and that the exhaustion phenotype is uncoupled from the loss of effector function.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019). Together with Scott et al. (2019) and Khan et al. (2019), this study shows the importance of TOX in regulating exhaustion programmes during chronic viral infection, although TOX is not required for functional CD8+ T cell differentiation.

    CAS  PubMed  Google Scholar 

  124. Khan, O. et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature 571, 211–218 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. O’Flaherty, E. & Kaye, J. TOX defines a conserved subfamily of HMG-box proteins. BMC Genomics 4, 13 (2003).

    PubMed  PubMed Central  Google Scholar 

  126. Aliahmad, P. & Kaye, J. Development of all CD4 T lineages requires nuclear factor TOX. J. Exp. Med. 205, 245–256 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Aliahmad, P., Seksenyan, A. & Kaye, J. The many roles of TOX in the immune system. Curr. Opin. Immunol. 24, 173–177 (2012).

    CAS  PubMed  Google Scholar 

  128. Seehus, C. R. et al. The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor. Nat. Immunol. 16, 599–608 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Page, N. et al. Expression of the DNA-binding factor TOX promotes the encephalitogenic potential of microbe-induced autoreactive CD8+ T cells. Immunity 48, 937–950 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, X. et al. TOX promotes the exhaustion of antitumor CD8+ T cells by preventing PD1 degradation in hepatocellular carcinoma. J. Hepatol. 71, 731–741 (2019).

    CAS  PubMed  Google Scholar 

  131. Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Heim, K. et al. TOX defines the degree of CD8+ T cell dysfunction in distinct phases of chronic HBV infection. Gut https://doi.org/10.1136/gutjnl-2020-322404 (2020).

    Article  PubMed  Google Scholar 

  133. Wang, Z. et al. PD-1hi CD8+ resident memory T cells balance immunity and fibrotic sequelae. Sci. Immunol. 4, eaaw1217 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Hombrink, P. et al. Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells. Nat. Immunol. 17, 1467–1478 (2016).

    CAS  PubMed  Google Scholar 

  135. Kurd, N. S. et al. Early precursors and molecular determinants of tissue-resident memory CD8+ T lymphocytes revealed by single-cell RNA sequencing. Sci. Immunol. 5, eaaz6894 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Sekine, T. et al. TOX is expressed by exhausted and polyfunctional human effector memory CD8+ T cells. Sci. Immunol. 5, eaba7918 (2020).

    CAS  PubMed  Google Scholar 

  137. Alegre, M. L. et al. Regulation of surface and intracellular expression of CTLA4 on mouse T cells. J. Immunol. 157, 4762–4770 (1996).

    CAS  PubMed  Google Scholar 

  138. Nagaraj, S. et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat. Med. 13, 828–835 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Kammertoens, T. et al. Tumour ischaemia by interferon-gamma resembles physiological blood vessel regression. Nature 545, 98–102 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Listopad, J. J. et al. Fas expression by tumor stroma is required for cancer eradication. Proc. Natl Acad. Sci. USA 110, 2276–2281 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Engels, B., Rowley, D. A. & Schreiber, H. Targeting stroma to treat cancers. Semin. Cancer Biol. 22, 41–49 (2012).

    CAS  PubMed  Google Scholar 

  142. Zhang, B. et al. Equilibrium between host and cancer caused by effector T cells killing tumor stroma. Cancer Res. 68, 1563–1571 (2008).

    CAS  PubMed  Google Scholar 

  143. Zhang, B. et al. Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J. Exp. Med. 204, 49–55 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Martinez-Lostao, L., Anel, A. & Pardo, J. How do cytotoxic lymphocytes kill cancer cells? Clin. Cancer Res. 21, 5047–5056 (2015).

    CAS  PubMed  Google Scholar 

  145. Abd Hamid, M. et al. Defective interferon gamma production by tumor-specific CD8+ T cells is associated with 5’methylcytosine-guanine hypermethylation of interferon gamma promoter. Front. Immunol. 11, 310 (2020).

    PubMed  PubMed Central  Google Scholar 

  146. Salerno, F., Turner, M. & Wolkers, M. C. Dynamic post-transcriptional events governing CD8+ T cell homeostasis and effector function. Trends Immunol. 41, 240–254 (2020).

    CAS  PubMed  Google Scholar 

  147. Salerno, F. & Wolkers, M. C. T-cells require post-transcriptional regulation for accurate immune responses. Biochem. Soc. Trans. 43, 1201–1207 (2015).

    CAS  PubMed  Google Scholar 

  148. Salerno, F. et al. Critical role of post-transcriptional regulation for IFN-gamma in tumor-infiltrating T cells. Oncoimmunology 8, e1532762 (2019). This study demonstrates the importance of post-transcriptional regulation of IFNγ in TILs, explaining why high levels of Ifng mRNA found in exhausted/dysfunctional T cells do not correlate with IFNγ expression.

    PubMed  Google Scholar 

  149. Villarino, A. V. et al. Posttranscriptional silencing of effector cytokine mRNA underlies the anergic phenotype of self-reactive T cells. Immunity 34, 50–60 (2011). This is an early study showing cytokine mRNA translation regulation by 3′ untranslated region (A+U)-rich elements, suggesting a mechanism for loss of effector function in anergic T cells subsequently also shown by Salerno et al. (2019) in TILs.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Zelinskyy, G. et al. CD8+ T-cell dysfunction due to cytolytic granule deficiency in persistent Friend retrovirus infection. J. Virol. 79, 10619–10626 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Radoja, S. et al. CD8+ tumor-infiltrating T cells are deficient in perforin-mediated cytolytic activity due to defective microtubule-organizing center mobilization and lytic granule exocytosis. J. Immunol. 167, 5042–5051 (2001).

    CAS  PubMed  Google Scholar 

  152. Berg, N. N., Puente, L. G., Dawicki, W. & Ostergaard, H. L. Sustained TCR signaling is required for mitogen-activated protein kinase activation and degranulation by cytotoxic T lymphocytes. J. Immunol. 161, 2919–2924 (1998).

    CAS  PubMed  Google Scholar 

  153. Wei, S. et al. Control of lytic function by mitogen-activated protein kinase/extracellular regulatory kinase 2 (ERK2) in a human natural killer cell line: identification of perforin and granzyme B mobilization by functional ERK2. J. Exp. Med. 187, 1753–1765 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Radoja, S. & Frey, A. B. Cancer-induced defective cytotoxic T lymphocyte effector function: another mechanism how antigenic tumors escape immune-mediated killing. Mol. Med. 6, 465–479 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Macian, F. et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109, 719–731 (2002).

    CAS  PubMed  Google Scholar 

  156. Schenkel, J. M. et al. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346, 98–101 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Molodtsov, A. & Turk, M. J. Tissue resident CD8 memory T cell responses in cancer and autoimmunity. Front. Immunol. 9, 2810 (2018).

    PubMed  PubMed Central  Google Scholar 

  158. Gebhardt, T., Palendira, U., Tscharke, D. C. & Bedoui, S. Tissue-resident memory T cells in tissue homeostasis, persistent infection, and cancer surveillance. Immunol. Rev. 283, 54–76 (2018).

    CAS  PubMed  Google Scholar 

  159. Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).

    CAS  PubMed  Google Scholar 

  160. Milner, J. J. et al. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. Nature 552, 253–257 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Milner, J. J. et al. Heterogenous populations of tissue-resident CD8+ T cells are generated in response to infection and malignancy. Immunity 52, 808–824 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Edwards, J. et al. CD103+ tumor-resident CD8+ T cells are associated with improved survival in immunotherapy-naive melanoma patients and expand significantly during anti-PD-1 treatment. Clin. Cancer Res. 24, 3036–3045 (2018).

    CAS  PubMed  Google Scholar 

  163. Park, S. L. et al. Tissue-resident memory CD8+ T cells promote melanoma-immune equilibrium in skin. Nature 565, 366–371 (2019).

    CAS  PubMed  Google Scholar 

  164. Malik, B. T. et al. Resident memory T cells in the skin mediate durable immunity to melanoma. Sci. Immunol. 2, eaam6346 (2017).

    PubMed  PubMed Central  Google Scholar 

  165. Harjunpaa, H., Llort Asens, M., Guenther, C. & Fagerholm, S. C. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front. Immunol. 10, 1078 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Fridman, W. H., Zitvogel, L., Sautes-Fridman, C. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 14, 717–734 (2017).

    CAS  PubMed  Google Scholar 

  167. Gros, A. et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest. 124, 2246–2259 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Pasetto, A. et al. Tumor- and neoantigen-reactive T-cell receptors can be identified based on their frequency in fresh tumor. Cancer Immunol. Res. 4, 734–743 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Inozume, T. et al. Selection of CD8+PD-1+ lymphocytes in fresh human melanomas enriches for tumor-reactive T cells. J. Immunother. 33, 956–964 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24, 994–1004 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Duhen, T. et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat. Commun. 9, 2724 (2018). Together with Simoni et al. (2018), this study shows that CD39 can be used to enrich tumour-reactive CD8+ T cells in human tumours.

    PubMed  PubMed Central  Google Scholar 

  172. Erkes, D. A. et al. Virus-specific CD8+ T cells infiltrate melanoma lesions and retain function independently of PD-1 expression. J. Immunol. 198, 2979–2988 (2017).

    CAS  PubMed  Google Scholar 

  173. Bos, R., Marquardt, K. L., Cheung, J. & Sherman, L. A. Functional differences between low- and high-affinity CD8+ T cells in the tumor environment. Oncoimmunology 1, 1239–1247 (2012).

    PubMed  PubMed Central  Google Scholar 

  174. Lyman, M. A. et al. The fate of low affinity tumor-specific CD8+ T cells in tumor-bearing mice. J. Immunol. 174, 2563–2572 (2005).

    CAS  PubMed  Google Scholar 

  175. Schmid, D. A. et al. Evidence for a TCR affinity threshold delimiting maximal CD8 T cell function. J. Immunol. 184, 4936–4946 (2010).

    CAS  PubMed  Google Scholar 

  176. Sette, A. et al. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J. Immunol. 153, 5586–5592 (1994).

    CAS  PubMed  Google Scholar 

  177. Zhong, S. et al. T-cell receptor affinity and avidity defines antitumor response and autoimmunity in T-cell immunotherapy. Proc. Natl Acad. Sci. USA 110, 6973–6978 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Engels, B. et al. Relapse or eradication of cancer is predicted by peptide-major histocompatibility complex affinity. Cancer Cell 23, 516–526 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Fritsch, E. F. et al. HLA-binding properties of tumor neoepitopes in humans. Cancer Immunol. Res. 2, 522–529 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Hoffmann, M. M. & Slansky, J. E. T-cell receptor affinity in the age of cancer immunotherapy. Mol. Carcinog. 59, 862–870 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Stone, J. D., Harris, D. T. & Kranz, D. M. TCR affinity for p/MHC formed by tumor antigens that are self-proteins: impact on efficacy and toxicity. Curr. Opin. Immunol. 33, 16–22 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Blankenstein, T., Leisegang, M., Uckert, W. & Schreiber, H. Targeting cancer-specific mutations by T cell receptor gene therapy. Curr. Opin. Immunol. 33, 112–119 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004).

    CAS  PubMed  Google Scholar 

  184. Sautes-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019).

    CAS  PubMed  Google Scholar 

  185. Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).

    CAS  PubMed  Google Scholar 

  186. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).

    CAS  PubMed  Google Scholar 

  188. Jansen, C. S. et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019). This study demonstrates that in human kidney cancers TCF1+CD8+ T cells reside in dense APC niches, whereas clonally related, more differentiated CD8+ T cells are found outside these intratumoural niches.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Haslam, A. & Prasad, V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open. 2, e192535 (2019).

    PubMed  PubMed Central  Google Scholar 

  190. Kalbasi, A. & Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 20, 25–39 (2020).

    CAS  PubMed  Google Scholar 

  191. Fares, C. M., Van Allen, E. M., Drake, C. G., Allison, J. P. & Hu-Lieskovan, S. Mechanisms of resistance to immune checkpoint blockade: why does checkpoint inhibitor immunotherapy not work for all patients? Am. Soc. Clin. Oncol. Educ. Book. 39, 147–164 (2019).

    PubMed  Google Scholar 

  192. Fridman, W. H., Pages, F., Sautes-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).

    CAS  PubMed  Google Scholar 

  193. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006). This is one of the earliest studies to show the correlation between immune cell infiltration in human tumours and clinical outcomes.

    CAS  PubMed  Google Scholar 

  194. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    PubMed  PubMed Central  Google Scholar 

  195. Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Schoenfeld, A. J. et al. Clinical and molecular correlates of PD-L1 expression in patients with lung adenocarcinomas. Ann. Oncol. 31, 599–608 (2020).

    CAS  PubMed  Google Scholar 

  197. Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133–150 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Huang, A. C. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Wu, T. D. et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 579, 274–278 (2020).

    CAS  PubMed  Google Scholar 

  201. Brummelman, J. et al. High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors. J. Exp. Med. 215, 2520–2535 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211 (2019).

    CAS  PubMed  Google Scholar 

  203. Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1-CD8+ tumor-infiltrating T cells. Immunity 50, 181–194 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019). This study uses paired single-cell transcriptomic and TCR analysis to show that rather than intratumoural T cells, novel clonotypes from the periphery preferentially expand and infiltrate into tumours in response to immune checkpoint therapy.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Dammeijer, F. et al. The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell 38, 685–700.e8 (2020). This study shows that in a mouse tumour model, PD1 or PDL1 immune checkpoint therapy expanded progenitor T cells in TDLNs rather than TILs, and that these progenitor T cells then infiltrated tumours.

    CAS  PubMed  Google Scholar 

  206. Vodnala, S. K. et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science 363, eaau0135 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Gros, A. et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat. Med. 22, 433–438 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Cohen, C. J. et al. Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. J. Clin. Invest. 125, 3981–3991 (2015).

    PubMed  PubMed Central  Google Scholar 

  210. Gros, A. et al. Recognition of human gastrointestinal cancer neoantigens by circulating PD-1+ lymphocytes. J. Clin. Invest. 129, 4992–5004 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Sharma, P. & Allison, J. P. Dissecting the mechanisms of immune checkpoint therapy. Nat. Rev. Immunol. 20, 75–76 (2020).

    CAS  PubMed  Google Scholar 

  213. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    CAS  PubMed  Google Scholar 

  214. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Romero, P. et al. The human vaccines project: a roadmap for cancer vaccine development. Sci. Transl. Med. 8, 334ps9 (2016).

    PubMed  Google Scholar 

  216. Leko, V. & Rosenberg, S. A. Identifying and targeting human tumor antigens for T cell-based immunotherapy of solid tumors. Cancer Cell 38, 454–472 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Stromnes, I. M., Schmitt, T. M., Chapuis, A. G., Hingorani, S. R. & Greenberg, P. D. Re-adapting T cells for cancer therapy: from mouse models to clinical trials. Immunol. Rev. 257, 145–164 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Schoenfeld, A. J. & Hellmann, M. D. Acquired resistance to immune checkpoint inhibitors. Cancer Cell 37, 443–455 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Schurch, C. M. et al. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 182, 1341–1359 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Allam, M., Cai, S. & Coskun, A. F. Multiplex bioimaging of single-cell spatial profiles for precision cancer diagnostics and therapeutics. NPJ Precis. Oncol. 4, 11 (2020).

    PubMed  PubMed Central  Google Scholar 

  221. Sun, C. et al. Spatially resolved metabolomics to discover tumor-associated metabolic alterations. Proc. Natl Acad. Sci. USA 116, 52–57 (2019).

    CAS  PubMed  Google Scholar 

  222. Rozenblatt-Rosen, O. et al. The human tumor atlas network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Thornton, C. A. et al. Spatially mapped single-cell chromatin accessibility. Nat. Comms 12, 1274 (2021).

    CAS  Google Scholar 

  224. Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Gonzalez-Gugel, E., Saxena, M. & Bhardwaj, N. Modulation of innate immunity in the tumor microenvironment. Cancer Immunol. Immunother. 65, 1261–1268 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Russell, S. J. & Barber, G. N. Oncolytic viruses as antigen-agnostic cancer vaccines. Cancer Cell 33, 599–605 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Flood, B. A., Higgs, E. F., Li, S., Luke, J. J. & Gajewski, T. F. STING pathway agonism as a cancer therapeutic. Immunol. Rev. 290, 24–38 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Zhou, T. et al. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature 583, 609–614 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Ochoa de Olza, M., Navarro Rodrigo, B., Zimmermann, S. & Coukos, G. Turning up the heat on non-immunoreactive tumours: opportunities for clinical development. Lancet Oncol. 21, e419–e430 (2020).

    CAS  PubMed  Google Scholar 

  230. Galluzzi, L., Humeau, J., Buque, A., Zitvogel, L. & Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 17, 725–741 (2020).

    PubMed  Google Scholar 

  231. Zou, W., Wolchok, J. D. & Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 8, 328rv324 (2016).

    Google Scholar 

  232. Peng, D. et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249–253 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Topper, M. J., Vaz, M., Marrone, K. A., Brahmer, J. R. & Baylin, S. B. The emerging role of epigenetic therapeutics in immuno-oncology. Nat. Rev. Clin. Oncol. 17, 75–90 (2020).

    PubMed  Google Scholar 

  234. Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530–534 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Liu, X. et al. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature 567, 525–529 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Roth, T. L. et al. Pooled knockin targeting for genome engineering of cellular immunotherapies. Cell 181, 728–744 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Wei, J. et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 576, 471–476 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Smyth, M. J., Dunn, G. P. & Schreiber, R. D. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv. Immunol. 90, 1–50 (2006).

    CAS  PubMed  Google Scholar 

  240. Engels, E. A. Epidemiologic perspectives on immunosuppressed populations and the immunosurveillance and immunocontainment of cancer. Am. J. Transpl. 19, 3223–3232 (2019).

    Google Scholar 

  241. Dranoff, G. Experimental mouse tumour models: what can be learnt about human cancer immunology? Nat. Rev. Immunol. 12, 61–66 (2011).

    PubMed  Google Scholar 

  242. Zitvogel, L., Pitt, J. M., Daillere, R., Smyth, M. J. & Kroemer, G. Mouse models in oncoimmunology. Nat. Rev. Cancer 16, 759–773 (2016).

    CAS  PubMed  Google Scholar 

  243. Yang, W. et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat. Med. 25, 767–775 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Tabachnick-Cherny, S., Pulliam, T., Church, C., Koelle, D. M. & Nghiem, P. Polyomavirus-driven Merkel cell carcinoma: Prospects for therapeutic vaccine development. Mol. Carcinog. 59, 807–821 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Heemskerk, B., Kvistborg, P. & Schumacher, T. N. The cancer antigenome. EMBO J. 32, 194–203 (2013).

    CAS  PubMed  Google Scholar 

  246. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    CAS  PubMed  Google Scholar 

  247. Blankenstein, T. Do autochthonous tumors interfere with effector T cell responses? Semin. Cancer Biol. 17, 267–274 (2007).

    CAS  PubMed  Google Scholar 

  248. Willimsky, G. & Blankenstein, T. Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437, 141–146 (2005). This study demonstrates in an autochthonous sporadic cancer mouse model that tumour-specific CD8+ T cells become hyporesponsive early during tumorigenesis.

    CAS  PubMed  Google Scholar 

  249. Willimsky, G. et al. Immunogenicity of premalignant lesions is the primary cause of general cytotoxic T lymphocyte unresponsiveness. J. Exp. Med. 205, 1687–1700 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Shankaran, V. et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    CAS  PubMed  Google Scholar 

  251. Koebel, C. M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007). Together with Shankaran et al. (2001), this study demonstrates that CD8+ T cells contribute to cancer immunosurveillance in methylcholanthrene-induced tumour mouse models.

    CAS  PubMed  Google Scholar 

  252. Kammertoens, T., Qin, Z., Briesemeister, D., Bendelac, A. & Blankenstein, T. B-cells and IL-4 promote methylcholanthrene-induced carcinogenesis but there is no evidence for a role of T/NKT-cells and their effector molecules (Fas-ligand, TNF-alpha, perforin). Int. J. Cancer 131, 1499–1508 (2012).

    CAS  PubMed  Google Scholar 

  253. Rosenthal, R. et al. Neoantigen-directed immune escape in lung cancer evolution. Nature 567, 479–485 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Van den Eynden, J., Jimenez-Sanchez, A., Miller, M. L. & Larsson, E. Lack of detectable neoantigen depletion signals in the untreated cancer genome. Nat. Genet. 51, 1741–1748 (2019).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the V Foundation Scholar Award (M.P.), Vanderbilt Digestive Disease Research Center Young Investigator and Pilot Award (P30DK058404) (M.P.), the Vanderbilt-Ingram Cancer Center Breast Cancer SPORE Career Enhancement Program (P50CA098131) (M.P.), NIH NCI grants DP2CA225212 (A.S.) and U54CA209975, the Lloyd Old Star Awards Program from the Cancer Research Institute (A.S.), the Pershing Square Award (A.S.), and the Josie Robertson Young Investigator Award (A.S.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Mary Philip or Andrea Schietinger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks D. Speiser and other anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Immune checkpoint blockade

(ICB). Therapy for cancer using specific antibodies that block interactions between inhibitory ‘checkpoint’ receptors on immune cells and their ligands on cancer and stromal cells.

Central tolerance

A process occurring during thymic T cell development in which thymocytes bearing rearranged T cell receptors with too high affinity for self-antigen–MHC complexes are eliminated (negative selection).

Peripheral tolerance

Process by which self-reactive T cells that escaped central tolerance and entered the periphery are inactivated by induction of apoptosis (peripheral deletion), suppression by CD4+ regulatory T cells or induction of cell-intrinsic hyporesponsive programmes (tolerance).

Cold tumours

Non-T-cell-inflamed tumours as opposed to hot tumours, which are T cell-inflamed tumours that have high levels of inflammatory cytokines and T cell infiltration and are associated with a better response to immune checkpoint blockade.

Tertiary lymphoid structures

Organized immune cell aggregates within parenchymal tissues similar to secondary follicles in lymph nodes, comprising a T cell zone of mainly helper and follicular helper CD4+ T cells and mature dendritic cells, as well as a follicular zone with B cells and follicular dendritic cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Philip, M., Schietinger, A. CD8+ T cell differentiation and dysfunction in cancer. Nat Rev Immunol 22, 209–223 (2022). https://doi.org/10.1038/s41577-021-00574-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00574-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer