Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging applications of zeolites in catalysis, separation and host–guest assembly

Abstract

Zeolites are a family of microporous crystalline materials, which, since the 1940s, have had an indispensable role in the chemical industry as catalysts, adsorbents and ion exchangers. Advances in synthetic methodologies and characterization techniques have enabled the fabrication of new zeolitic materials, with emerging applications in diverse areas. By tuning their porous architectures, framework compositions and crystal morphologies, coupled with the incorporation of exotic active species, zeolites and zeolite-based materials have exhibited unprecedentedly high performance in many challenging processes. In this Review, we focus on the high-efficiency catalytic production of industrially important hydrocarbons and oxygenates using non-petrochemical feedstocks, energy-efficient separations of hydrocarbon mixtures that are difficult using conventional methods and materials, and host–guest assemblies that exhibit physical properties unprecedented to either the zeolite hosts or free guest species. Finally, we provide our perspectives on future directions for the development of zeolitic materials to meet the ever-growing demands from diverse fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Performance of traditional and zeolite-based Fischer–Tropsch catalysts.
Fig. 2: Reaction scheme for CO2 hydrogenation to gasoline over Na–Fe3O4/ZSM-5 catalyst.
Fig. 3: Separation properties of a water-conducting membrane made from defect-free Na-A zeolite.
Fig. 4: Pressure-induced organization of ethanol and water within the ferrierite zeolite.

Similar content being viewed by others

References

  1. Breck, D. W. Zeolite Molecular Sieves: Structure, Chemistry, and Use (Wiley, 1973).

  2. Xu, R., Pang, W., Yu, J., Huo, Q. & Chen, J. Chemistry of Zeolites and Related Porous Materials (Wiley, 2007).

  3. Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).

    CAS  Google Scholar 

  4. McCusker, L. B., Liebau, F. & Engelhardt, G. Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts (IUPAC Recommendations 2001). Pure Appl. Chem. 73, 381–394 (2001).

    CAS  Google Scholar 

  5. Li, Y. & Yu, J. New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations. Chem. Rev. 114, 7268–7316 (2014).

    CAS  Google Scholar 

  6. Barrer, R. M. 435. Syntheses and reactions of mordenite. J. Chem. Soc. https://doi.org/10.1039/JR9480002158 (1948).

  7. Breck, D. W. Crystalline zeolite Y. US Patent 3130007 (1964).

  8. Argaucer, R. J. & Landolt, G. R. Crystalline zeolite ZSM-5 and method of preparing the same. US Patent 3702886 (1972).

  9. Flanigen, E. M. et al. Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature 271, 512–516 (1978).

    CAS  Google Scholar 

  10. Wilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R. & Flanigen, E. M. Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. J. Am. Chem. Soc. 104, 1146–1147 (1982).

    CAS  Google Scholar 

  11. Karge, H. G. & Weitkamp, J. Adsorption and Diffusion (Springer, 2008).

  12. Kaneko, K. & Rodríguez-Reinoso, F. Nanoporous Materials for Gas Storage (Springer, 2019).

  13. Moliner, M., Martínez, C. & Corma, A. Synthesis strategies for preparing useful small pore zeolites and zeotypes for gas separations and catalysis. Chem. Mater. 26, 246–258 (2014).

    CAS  Google Scholar 

  14. Rangnekar, N., Mittal, N., Elyassi, B., Caro, J. & Tsapatsis, M. Zeolite membranes – a review and comparison with MOFs. Chem. Soc. Rev. 44, 7128–7154 (2015).

    CAS  Google Scholar 

  15. Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373–2420 (1997).

    CAS  Google Scholar 

  16. Čejka, J., Corma, A. & Zones, S. Zeolites and Catalysis: Synthesis, Reactions and Applications (Wiley, 2010).

  17. Niwa, M., Katada, N. & Okumura, K. Characterization and Design of Zeolite Catalysts: Solid Acidity, Shape Selectivity and Loading Properties (Springer, 2010).

  18. Martínez, C. & Corma, A. Inorganic molecular sieves: preparation, modification and industrial application in catalytic processes. Coord. Chem. Rev. 255, 1558–1580 (2011).

    Google Scholar 

  19. Moliner, M., Martínez, C. & Corma, A. Multipore zeolites: synthesis and catalytic applications. Angew. Chem. Int. Ed. 54, 3560–3579 (2015).

    CAS  Google Scholar 

  20. Hagen, J. Industrial Catalysis: A Practical Approach (Wiley, 2015).

  21. Chai, Y. et al. Nobel metal particles confined in zeolites: synthesis, characterization, and applications. Adv. Sci. 6, 1900299 (2019).

    Google Scholar 

  22. Li, Y., Cao, H. & Yu, J. Toward a new era of designed synthesis of nanoporous zeolitic materials. ACS Nano 12, 4096–4104 (2018).

    CAS  Google Scholar 

  23. Wang, N., Sun, Q. & Yu, J. Ultrasmall metal nanoparticles confined within crystalline nanoporous materials: a fascinating class of nanocatalysts. Adv. Mater. 31, 1803966 (2019).

    Google Scholar 

  24. Bai, R., Song, Y., Li, Y. & Yu, J. Creating hierarchical pores in zeolite catalysts. Trends Chem. 1, 601–611 (2019).

    CAS  Google Scholar 

  25. Li, Y., Li, L. & Yu, J. Applications of zeolites in sustainable chemistry. Chem 3, 928–949 (2017).

    CAS  Google Scholar 

  26. Zhang, Q., Yu, J. & Corma, A. Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities. Adv. Mater. 32, 2002927 (2020).

    Google Scholar 

  27. Yarulina, I., Chowdhury, A. D., Meirer, F., Weckhuysen, B. M. & Gascon, J. Recent trends and fundamental insights in the methanol-to-hydrocarbons process. Nat. Catal. 1, 398–411 (2018).

    CAS  Google Scholar 

  28. Ruddy, D. A. et al. Methanol to high-octane gasoline within a market-responsive biorefinery concept enabled by catalysis. Nat. Catal. 2, 632–640 (2019).

    CAS  Google Scholar 

  29. Snyder, B. E. R. et al. The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature 536, 317–321 (2016).

    CAS  Google Scholar 

  30. Sushkevich, V. L., Palagin, D., Ranocchiari, M. & van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017).

    CAS  Google Scholar 

  31. Jin, Z. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 367, 193–197 (2020).

    CAS  Google Scholar 

  32. Shan, J., Li, M., Allard, L. F., Lee, S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–608 (2017).

    CAS  Google Scholar 

  33. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    Google Scholar 

  34. Bereciartua, P. J. et al. Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science 358, 1068–1071 (2017).

    CAS  Google Scholar 

  35. Jeon, M. Y. et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 543, 690–694 (2017).

    CAS  Google Scholar 

  36. Kumar, P. et al. One-dimensional intergrowths in two-dimensional zeolite nanosheets and their effect on ultra-selective transport. Nat. Mater. 19, 443–449 (2020).

    CAS  Google Scholar 

  37. Li, H. et al. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels. Science 367, 667–671 (2020).

    CAS  Google Scholar 

  38. Fenwick, O. et al. Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites. Nat. Mater. 15, 1017–1022 (2016).

    CAS  Google Scholar 

  39. Grandjean, D. et al. Origin of the bright photoluminescence of few-atom silver clusters confined in LTA zeolites. Science 361, 686–690 (2018).

    CAS  Google Scholar 

  40. Liu, J. et al. Carbon dots in zeolites: a new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Sci. Adv. 3, e1603171 (2017).

    Google Scholar 

  41. Farrusseng, D. & Tuel, A. in Encapsulated Catalysts 335–386 (Elsevier, 2017).

  42. Zhang, J. et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat. Catal. 1, 540–546 (2018).

    CAS  Google Scholar 

  43. Wu, S.-M., Yang, X.-Y. & Janiak, C. Confinement effects in zeolite-confined noble metals. Angew. Chem. Int. Ed. 58, 12340–12354 (2019).

    CAS  Google Scholar 

  44. Cheng, W.-C. et al. in Handbook of Heterogeneous Catalysis (eds Ertl, G., Knözinger, H., Schüth, F. & Weitkamp, J.) 2741–2778 (Wiley, 2008).

  45. Friedel, R. A. & Anderson, R. B. Composition of synthetic liquid fuels. I. Product distribution and analysis of C5—C8 paraffin isomers from cobalt catalyst. J. Am. Chem. Soc. 72, 1212–1215 (1950).

    CAS  Google Scholar 

  46. Li, J. et al. Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nat. Catal. 1, 787–793 (2018).

    CAS  Google Scholar 

  47. Ahn, J. H., Temel, B. & Iglesia, E. Selective homologation routes to 2,2,3-trimethylbutane on solid acids. Angew. Chem. Int. Ed. 48, 3814–3816 (2009).

    CAS  Google Scholar 

  48. Hazari, N., Iglesia, E., Labinger, J. A. & Simonetti, D. A. Selective homogeneous and heterogeneous catalytic conversion of methanol/dimethyl ether to triptane. Acc. Chem. Res. 45, 653–662 (2012).

    CAS  Google Scholar 

  49. Huber, G. W., Iborra, S. & Corma, A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006).

    CAS  Google Scholar 

  50. Khodakov, A. Y., Chu, W. & Fongarland, P. Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 107, 1692–1744 (2007).

    CAS  Google Scholar 

  51. Wei, J. et al. Directly converting CO2 into a gasoline fuel. Nat. Commun. 8, 15174 (2017).

    Google Scholar 

  52. Gao, P. et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 9, 1019–1024 (2017).

    CAS  Google Scholar 

  53. Chang, C. D. & Lang, W. H. Process for manufacturing olefins. US Patent 4025576 (1977).

  54. Yang, M., Fan, D., Wei, Y., Tian, P. & Liu, Z. Recent progress in methanol-to-olefins (MTO) catalysts. Adv. Mater. 31, 1902181 (2019).

    CAS  Google Scholar 

  55. Sun, Q., Xie, Z. & Yu, J. The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion. Natl Sci. Rev. 5, 542–558 (2018).

    CAS  Google Scholar 

  56. Ferri, P. et al. Impact of zeolite framework composition and flexibility on methanol-to-olefins selectivity: confinement or diffusion? Angew. Chem. Int. Ed. 59, 19708–19715 (2020).

    CAS  Google Scholar 

  57. Olsbye, U. et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew. Chem. Int. Ed. 51, 5810–5831 (2012).

    CAS  Google Scholar 

  58. Gallego, E. M. et al. “Ab initio” synthesis of zeolites for preestablished catalytic reactions. Science 355, 1051–1054 (2017).

    CAS  Google Scholar 

  59. Li, C. et al. Synthesis of reaction-adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure-directing agents. Nat. Catal. 1, 547–554 (2018).

    CAS  Google Scholar 

  60. Yarulina, I. et al. Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Nat. Chem. 10, 804–812 (2018).

    CAS  Google Scholar 

  61. Torres Galvis, H. M. & de Jong, K. P. Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal. 3, 2130–2149 (2013).

    CAS  Google Scholar 

  62. Jiao, F. et al. Selective conversion of syngas to light olefins. Science 351, 1065–1068 (2016).

    CAS  Google Scholar 

  63. Cheng, K. et al. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon–carbon coupling. Angew. Chem. Int. Ed. 55, 4725–4728 (2016).

    CAS  Google Scholar 

  64. Su, J. et al. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts. Nat. Commun. 10, 1297 (2019).

    Google Scholar 

  65. Batamack, P. T. D., Mathew, T. & Prakash, G. K. S. One-pot conversion of methane to light olefins or higher hydrocarbons through H-SAPO-34-catalyzed in situ halogenation. J. Am. Chem. Soc. 139, 18078–18083 (2017).

    CAS  Google Scholar 

  66. Chai, Y. et al. Acetylene-selective hydrogenation catalyzed by cationic nickel confined in zeolite. J. Am. Chem. Soc. 141, 9920–9927 (2019).

    CAS  Google Scholar 

  67. Zhou, X. et al. Observation of an oxonium ion intermediate in ethanol dehydration to ethene on zeolite. Nat. Commun. 10, 1961 (2019).

    Google Scholar 

  68. Zhao, P. et al. Entrapped single tungstate site in zeolite for cooperative catalysis of olefin metathesis with brønsted acid site. J. Am. Chem. Soc. 140, 6661–6667 (2018).

    CAS  Google Scholar 

  69. Wang, S. et al. Selective conversion of CO2 into propene and butene. Chem 6, 3344–3363 (2020).

    CAS  Google Scholar 

  70. Sadrameli, S. M. Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: A state-of-the-art review II: Catalytic cracking review. Fuel 173, 285–297 (2016).

    CAS  Google Scholar 

  71. Zhu, J. et al. Ultrafast encapsulation of metal nanoclusters into MFI zeolite in the course of its crystallization: catalytic application for propane dehydrogenation. Angew. Chem. Int. Ed. 59, 19669–19674 (2020).

    CAS  Google Scholar 

  72. Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2016).

    Google Scholar 

  73. Sun, Q. et al. Subnanometer bimetallic platinum–zinc clusters in zeolites for propane dehydrogenation. Angew. Chem. Int. Ed. 59, 19450–19459 (2020).

    CAS  Google Scholar 

  74. Niziolek, A. M., Onel, O. & Floudas, C. A. Production of benzene, toluene, and xylenes from natural gas via methanol: process synthesis and global optimization. AIChE J. 62, 1531–1556 (2016).

    CAS  Google Scholar 

  75. Cheng, K. et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability. Chem 3, 334–347 (2017).

    CAS  Google Scholar 

  76. Zhao, B. et al. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts. Chem 3, 323–333 (2017).

    CAS  Google Scholar 

  77. Kumar, A., Song, K., Liu, L., Han, Y. & Bhan, A. Absorptive hydrogen scavenging for enhanced aromatics yield during non-oxidative methane dehydroaromatization on Mo/H-ZSM-5 catalysts. Angew. Chem. Int. Ed. 57, 15577–15582 (2018).

    CAS  Google Scholar 

  78. Kosinov, N. et al. Reversible nature of coke formation on Mo/ZSM-5 methane dehydroaromatization catalysts. Angew. Chem. Int. Ed. 58, 7068–7072 (2019).

    CAS  Google Scholar 

  79. Kosinov, N. & Hensen, E. J. M. Reactivity, selectivity, and stability of zeolite-based catalysts for methane dehydroaromatization. Adv. Mater. 32, 2002565 (2020).

    CAS  Google Scholar 

  80. Menon, U., Rahman, M. & Khatib, S. J. A critical literature review of the advances in methane dehydroaromatization over multifunctional metal-promoted zeolite catalysts. Appl. Catal. A 608, 117870 (2020).

    CAS  Google Scholar 

  81. Zhou, Y. et al. Ethylene dehydroaromatization over Ga-ZSM-5 catalysts: nature and role of gallium speciation. Angew. Chem. Int. Ed. 59, 19592–19601 (2020).

    CAS  Google Scholar 

  82. Chowdhury, A. D. et al. Electrophilic aromatic substitution over zeolites generates Wheland-type reaction intermediates. Nat. Catal. 1, 23–31 (2018).

    CAS  Google Scholar 

  83. Chen, N. Y., Kaeding, W. W. & Dwyer, F. G. Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts. J. Am. Chem. Soc. 101, 6783–6784 (1979).

    CAS  Google Scholar 

  84. Wang, C. et al. Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene. Nat. Commun. 10, 4348 (2019).

    Google Scholar 

  85. Zhang, J. et al. A Pd@zeolite catalyst for nitroarene hydrogenation with high product selectivity by sterically controlled adsorption in the zeolite micropores. Angew. Chem. Int. Ed. 56, 9747–9751 (2017).

    CAS  Google Scholar 

  86. Sun, Q. et al. Zeolite-encaged single-atom rhodium catalysts: highly-efficient hydrogen generation and shape-selective tandem hydrogenation of nitroarenes. Angew. Chem. Int. Ed. 58, 18570–18576 (2019).

    CAS  Google Scholar 

  87. Olivos-Suarez, A. I. et al. Strategies for the direct catalytic valorization of methane using heterogeneous catalysis: challenges and opportunities. ACS Catal. 6, 2965–2981 (2016).

    CAS  Google Scholar 

  88. Snyder, B. E. R., Bols, M. L., Schoonheydt, R. A., Sels, B. F. & Solomon, E. I. Iron and copper active sites in zeolites and their correlation to metalloenzymes. Chem. Rev. 118, 2718–2768 (2018).

    CAS  Google Scholar 

  89. Pappas, D. K. et al. The nuclearity of the active site for methane to methanol conversion in Cu-mordenite: a quantitative assessment. J. Am. Chem. Soc. 140, 15270–15278 (2018).

    CAS  Google Scholar 

  90. Kosinov, N., Liu, C., Hensen, E. J. M. & Pidko, E. A. Engineering of transition metal catalysts confined in zeolites. Chem. Mater. 30, 3177–3198 (2018).

    CAS  Google Scholar 

  91. Xu, J., Wang, Q. & Deng, F. Metal active sites and their catalytic functions in zeolites: insights from solid-state NMR spectroscopy. Acc. Chem. Res. 52, 2179–2189 (2019).

    CAS  Google Scholar 

  92. Kang, J. et al. Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis. Nat. Commun. 11, 827 (2020).

    CAS  Google Scholar 

  93. Wang, C. et al. Direct conversion of syngas to ethanol within zeolite crystals. Chem 6, 646–657 (2020).

    CAS  Google Scholar 

  94. Wang, X. et al. NMR-spectroscopic evidence of intermediate-dependent pathways for acetic acid formation from methane and carbon monoxide over a ZnZSM-5 zeolite catalyst. Angew. Chem. Int. Ed. 51, 3850–3853 (2012).

    CAS  Google Scholar 

  95. Wu, J.-F. et al. Mechanistic insight into the formation of acetic acid from the direct conversion of methane and carbon dioxide on zinc-modified H–ZSM-5 zeolite. J. Am. Chem. Soc. 135, 13567–13573 (2013).

    CAS  Google Scholar 

  96. Tang, Y. et al. Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. Nat. Commun. 9, 1231 (2018).

    Google Scholar 

  97. Chao, C. C. Process for separating nitrogen from mixtures thereof with less polar substances. US Patent 4859217 (1989).

  98. Auerbach, S. M., Carrado, K. A. & Dutta, P. K. Handbook of Zeolite Science and Technology (Marcel Dekker, 2003).

  99. Ockwig, N. W. & Nenoff, T. M. Membranes for hydrogen separation. Chem. Rev. 107, 4078–4110 (2007).

    CAS  Google Scholar 

  100. Pera-Titus, M. Porous inorganic membranes for CO2 capture: present and prospects. Chem. Rev. 114, 1413–1492 (2014).

    CAS  Google Scholar 

  101. Shah, M. S., Tsapatsis, M. & Siepmann, J. I. Hydrogen sulfide capture: from absorption in polar liquids to oxide, zeolite, and metal–organic framework adsorbents and membranes. Chem. Rev. 117, 9755–9803 (2017).

    CAS  Google Scholar 

  102. Gehre, M., Guo, Z., Rothenberg, G. & Tanase, S. Sustainable separations of C4-hydrocarbons by using microporous materials. ChemSusChem 10, 3947–3963 (2017).

    CAS  Google Scholar 

  103. Dakhchoune, M. et al. Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets. Nat. Mater. 20, 362–369 (2021).

    CAS  Google Scholar 

  104. Kim, D., Jeon, M. Y., Stottrup, B. L. & Tsapatsis, M. para-xylene ultra-selective zeolite MFI membranes fabricated from nanosheet monolayers at the air-water interface. Angew. Chem. Int. Ed. 57, 480–485 (2018).

    CAS  Google Scholar 

  105. Cao, Z. et al. Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines. Sci. Adv. 4, eaau8634 (2018).

    CAS  Google Scholar 

  106. Lai, Z. et al. Microstructural optimization of a zeolite membrane for organic vapor separation. Science 300, 456–460 (2003).

    CAS  Google Scholar 

  107. Varoon, K. et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 334, 72–75 (2011).

    CAS  Google Scholar 

  108. Wu, Y. et al. Enhanced propene/propane separation by directional decoration of the 12-membered rings of mordenite with ZIF fragments. Angew. Chem. Int. Ed. 59, 6765–6768 (2020).

    CAS  Google Scholar 

  109. Chai, Y. et al. Control of zeolite pore interior for chemoselective alkyne/olefin separations. Science 368, 1002–1006 (2020).

    CAS  Google Scholar 

  110. Liu, Y. et al. Uniform hierarchical MFI nanosheets prepared via anisotropic etching for solution-based sub–100-nm-thick oriented MFI layer fabrication. Sci. Adv. 6, eaay5993 (2020).

    CAS  Google Scholar 

  111. Swenson, P., Tanchuk, B., Bastida, E., An, W. & Kuznicki, S. M. Water desalination and de-oiling with natural zeolite membranes — potential application for purification of SAGD process water. Desalination 286, 442–446 (2012).

    CAS  Google Scholar 

  112. Kasai, P. H. Electron spin resonance studies of γ- and X-ray-irradiated zeolites. J. Chem. Phys. 43, 3322–3327 (1965).

    CAS  Google Scholar 

  113. Choi, S., Dickson, R. M. & Yu, J. Developing luminescent silver nanodots for biological applications. Chem. Soc. Rev. 41, 1867–1891 (2012).

    CAS  Google Scholar 

  114. Wang, N., Tang, Z. K., Li, G. D. & Chen, J. S. Single-walled 4 Å carbon nanotube arrays. Nature 408, 50–51 (2000).

    CAS  Google Scholar 

  115. Hamilton, B., Rimmer, J. S., Anderson, M. & Leigh, D. White light emission from C60 molecules confined in molecular cage materials. Adv. Mater. 5, 583–585 (1993).

    CAS  Google Scholar 

  116. Mac Dougall, J. E. et al. Synthesis and characterization of group III-V semiconductor clusters: gallium phosphide GaP in zeolite Y. J. Am. Chem. Soc. 111, 8006–8007 (1989).

    Google Scholar 

  117. Kim, H. S. & Yoon, K. B. Increase of third-order nonlinear optical activity of PdS quantum dots in zeolite Y by increasing cation size. J. Am. Chem. Soc. 134, 2539–2542 (2012).

    CAS  Google Scholar 

  118. Borja, M. & Dutta, P. K. Storage of light energy by photoelectron transfer across a sensitized zeolite–solution interface. Nature 362, 43–45 (1993).

    CAS  Google Scholar 

  119. Sykora, M. & Kincaid, J. R. Photochemical energy storage in a spatially organized zeolite-based photoredox system. Nature 387, 162–164 (1997).

    CAS  Google Scholar 

  120. Calzaferri, G., Huber, S., Maas, H. & Minkowski, C. Host–guest antenna materials. Angew. Chem. Int. Ed. 42, 3732–3758 (2003).

    CAS  Google Scholar 

  121. Alabarse, F. G. et al. Mechanism of H2O insertion and chemical bond formation in AlPO4-54·xH2O at high pressure. J. Am. Chem. Soc. 137, 584–587 (2015).

    CAS  Google Scholar 

  122. Bukowski, B. C., Bates, J. S., Gounder, R. & Greeley, J. Defect-mediated ordering of condensed water structures in microporous zeolites. Angew. Chem. Int. Ed. 58, 16422–16426 (2019).

    CAS  Google Scholar 

  123. Coutiño-Gonzalez, E. et al. Silver clusters in zeolites: from self-assembly to ground-breaking luminescent properties. Acc. Chem. Res. 50, 2353–2361 (2017).

    Google Scholar 

  124. Kennes, K. et al. Silver zeolite composites-based LEDs: a novel solid-state lighting approach. Adv. Funct. Mater. 27, 1606411 (2017).

    Google Scholar 

  125. Lim, S. Y., Shen, W. & Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015).

    CAS  Google Scholar 

  126. Mu, Y. et al. Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence. Chem. Sci. 7, 3564–3568 (2016).

    CAS  Google Scholar 

  127. Zhang, H. et al. Carbon dots in porous materials: host–guest synergy for enhanced performance. Angew. Chem. Int. Ed. 59, 19390–19402 (2020).

    CAS  Google Scholar 

  128. Wang, B. et al. Red room-temperature phosphorescence of CDs@zeolite composites triggered by heteroatoms in zeolite frameworks. ACS Cent. Sci. 5, 349–356 (2019).

    CAS  Google Scholar 

  129. Wang, B. et al. Carbon dots in a matrix: energy-transfer-enhanced room-temperature red phosphorescence. Angew. Chem. Int. Ed. 58, 18443–18448 (2019).

    CAS  Google Scholar 

  130. Zhang, H. et al. Carbon dots-in-zeolite via in-situ solvent-free thermal crystallization: achieving high-efficiency and ultralong afterglow dual emission. CCS Chem. 2, 118–127 (2020).

    CAS  Google Scholar 

  131. Kehr, N. S., Ergün, B., Lülf, H. & De Cola, L. Spatially controlled channel entrances functionalization of zeolites L. Adv. Mater. 26, 3248–3252 (2014).

    CAS  Google Scholar 

  132. Davis, M. E., Saldarriaga, C., Montes, C., Garces, J. & Crowdert, C. A molecular sieve with eighteen-membered rings. Nature 331, 698–699 (1988).

    CAS  Google Scholar 

  133. McCusker, L. B., Baerlocher, C. H., Jahn, E. & Bülow, M. The triple helix inside the large-pore aluminophosphate molecular sieve VPI-5. Zeolites 11, 308–313 (1991).

    CAS  Google Scholar 

  134. Arletti, R. et al. Irreversible conversion of a water–ethanol solution into an organized two-dimensional network of alternating supramolecular units in a hydrophobic zeolite under pressure. Angew. Chem. Int. Ed. 56, 2105–2109 (2017).

    CAS  Google Scholar 

  135. Pham, T. C. T. et al. Capture of iodine and organic iodides using silica zeolites and the semiconductor behaviour of iodine in a silica zeolite. Energy Environ. Sci. 9, 1050–1062 (2016).

    CAS  Google Scholar 

  136. Chapman, S. et al. Probing the design rationale of a high-performing faujasitic zeotype engineered to have hierarchical porosity and moderated acidity. Angew. Chem. Int. Ed. 59, 19561–19569 (2020).

    CAS  Google Scholar 

  137. Sun, M. et al. Micron-sized zeolite beta single crystals featuring intracrystal interconnected ordered macro-meso-microporosity displaying superior catalytic performance. Angew. Chem. Int. Ed. 59, 19582–19591 (2020).

    CAS  Google Scholar 

  138. Jiao, Y. et al. Creation of Al-enriched mesoporous ZSM-5 nanoboxes with high catalytic activity: converting tetrahedral extra-framework al into framework sites by post treatment. Angew. Chem. Int. Ed. 59, 19478–19486 (2020).

    CAS  Google Scholar 

  139. Konnov, S. V. et al. Novel strategy for the synthesis of ultra-stable single-site Mo-ZSM-5 zeolite nanocrystals. Angew. Chem. Int. Ed. 59, 19553–19560 (2020).

    CAS  Google Scholar 

  140. Awala, H. et al. Template-free nanosized faujasite-type zeolites. Nat. Mater. 14, 447–451 (2015).

    CAS  Google Scholar 

  141. Park, S. H., Choi, W., Choi, H. J. & Hong, S. B. Organic-free synthesis of silicoaluminophosphate molecular sieves. Angew. Chem. Int. Ed. 57, 9413–9418 (2018).

    CAS  Google Scholar 

  142. Debost, M. et al. Synthesis of discrete CHA zeolite nanocrystals without organic templates for selective CO2 capture. Angew. Chem. Int. Ed. 59, 23491–23495 (2020).

    CAS  Google Scholar 

  143. Meng, X. & Xiao, F.-S. Green routes for synthesis of zeolites. Chem. Rev. 114, 1521–1543 (2014).

    CAS  Google Scholar 

  144. Sheng, N. et al. Insights of the crystallization process of molecular sieve AlPO4-5 prepared by solvent-free synthesis. J. Am. Chem. Soc. 138, 6171–6176 (2016).

    CAS  Google Scholar 

  145. Feng, G. et al. Accelerated crystallization of zeolites via hydroxyl free radicals. Science 351, 1188–1191 (2016).

    CAS  Google Scholar 

  146. Feng, G. et al. Radical-facilitated green synthesis of highly ordered mesoporous silica materials. J. Am. Chem. Soc. 140, 4770–4773 (2018).

    CAS  Google Scholar 

  147. Chen, X. et al. Gamma-ray irradiation to accelerate crystallization of mesoporous zeolites. Angew. Chem. Int. Ed. 59, 11325–11329 (2020).

    CAS  Google Scholar 

  148. Wang, J. et al. Organic-free synthesis of zeolite Y with high Si/Al ratios: combined strategy of in situ hydroxyl radical assistance and post-synthesis treatment. Angew. Chem. Int. Ed. 59, 17225–17228 (2020).

    CAS  Google Scholar 

  149. Dusselier, M., Van Wouwe, P., Dewaele, A., Jacobs, P. A. & Sels, B. F. Shape-selective zeolite catalysis for bioplastics production. Science 349, 78–80 (2015).

    CAS  Google Scholar 

  150. Gumidyala, A., Wang, B. & Crossley, S. Direct carbon-carbon coupling of furanics with acetic acid over Brønsted zeolites. Sci. Adv. 2, e1601072 (2016).

    Google Scholar 

  151. Ennaert, T. et al. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem. Soc. Rev. 45, 584–611 (2016).

    CAS  Google Scholar 

  152. Clatworthy, E. B. et al. Emphasis on the properties of metal-containing zeolites operating outside the comfort zone of current heterogeneous catalytic reactions. Angew. Chem. Int. Ed. 59, 19414–19432 (2020).

    CAS  Google Scholar 

  153. Gao, F., Mei, D., Wang, Y., Szanyi, J. & Peden, C. H. F. Selective catalytic reduction over Cu/SSZ-13: linking homo- and heterogeneous catalysis. J. Am. Chem. Soc. 139, 4935–4942 (2017).

    CAS  Google Scholar 

  154. Marberger, A. et al. Time-resolved copper speciation during selective catalytic reduction of NO on Cu-SSZ-13. Nat. Catal. 1, 221–227 (2018).

    CAS  Google Scholar 

  155. Khivantsev, K. et al. Achieving atomic dispersion of highly loaded transition metals in small-pore zeolite SSZ-13: high-capacity and high-efficiency low-temperature CO and passive NOx adsorbers. Angew. Chem. Int. Ed. 57, 16672–16677 (2018).

    CAS  Google Scholar 

  156. Liu, L. et al. Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nat. Commun. 9, 574 (2018).

    Google Scholar 

  157. Wang, N. et al. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 138, 7484–7487 (2016).

    CAS  Google Scholar 

  158. Sun, Q. et al. Subnanometric hybrid Pd-M(OH)2, M = Ni, Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation. Chem 3, 477–493 (2017).

    CAS  Google Scholar 

  159. Sun, Q., Wang, N., Xu, Q. & Yu, J. Nanopore-supported metal nanocatalysts for efficient hydrogen generation from liquid-phase chemical hydrogen storage materials. Adv. Mater. 32, 2001818 (2020).

    CAS  Google Scholar 

  160. Sun, Q. et al. Zeolite-encaged Pd–Mn nanocatalysts for CO2 hydrogenation and formic acid dehydrogenation. Angew. Chem. Int. Ed. 59, 20183–20191 (2020).

    CAS  Google Scholar 

  161. Zhou, C. et al. Efficient synthesis of dimethyl ether from methanol in a bifunctional zeolite membrane reactor. Angew. Chem. Int. Ed. 55, 12678–12682 (2016).

    CAS  Google Scholar 

  162. Van der Borght, K. et al. Insights into the reaction mechanism of ethanol conversion into hydrocarbons on H-ZSM-5. Angew. Chem. Int. Ed. 55, 12817–12821 (2016).

    Google Scholar 

  163. Liu, Y. et al. Enhancing the catalytic activity of hydronium ions through constrained environments. Nat. Commun. 8, 14113 (2017).

    Google Scholar 

  164. Shi, H., Eckstein, S., Vjunov, A., Camaioni, D. M. & Lercher, J. A. Tailoring nanoscopic confines to maximize catalytic activity of hydronium ions. Nat. Commun. 8, 15442 (2017).

    Google Scholar 

  165. Petrov, A. W. et al. Stable complete methane oxidation over palladium based zeolite catalysts. Nat. Commun. 9, 2545 (2018).

    Google Scholar 

  166. Grosso-Giordano, N. A. et al. Dynamic reorganization and confinement of TiIV active sites controls olefin epoxidation catalysis on two-dimensional zeotypes. J. Am. Chem. Soc. 141, 7090–7106 (2019).

    CAS  Google Scholar 

  167. Bregante, D. T. et al. Cooperative effects between hydrophilic pores and solvents: catalytic consequences of hydrogen bonding on alkene epoxidation in zeolites. J. Am. Chem. Soc. 141, 7302–7319 (2019).

    CAS  Google Scholar 

  168. Wang, L. et al. Controllable cyanation of carbon-hydrogen bonds by zeolite crystals over manganese oxide catalyst. Nat. Commun. 8, 15240 (2017).

    Google Scholar 

  169. Ryoo, R. et al. Rare-earth–platinum alloy nanoparticles in mesoporous zeolite for catalysis. Nature 585, 221–224 (2020).

    CAS  Google Scholar 

  170. Wang, C. et al. π-Interactions between cyclic carbocations and aromatics cause zeolite deactivation in methanol-to-hydrocarbon conversion. Angew. Chem. Int. Ed. 59, 7198–7202 (2020).

    CAS  Google Scholar 

  171. Zhou, J. et al. Directed transforming of coke to active intermediates in methanol-to-olefins catalyst to boost light olefins selectivity. Nat. Commun. 12, 17 (2021).

    CAS  Google Scholar 

  172. Feng, X. et al. Kr/Xe separation over a chabazite zeolite membrane. J. Am. Chem. Soc. 138, 9791–9794 (2016).

    CAS  Google Scholar 

  173. Kim, C., Cho, H. S., Chang, S., Cho, S. J. & Choi, M. An ethylenediamine-grafted Y zeolite: a highly regenerable carbon dioxide adsorbent via temperature swing adsorption without urea formation. Energy Environ. Sci. 9, 1803–1811 (2016).

    CAS  Google Scholar 

  174. Georgieva, V. M. et al. Triggered gate opening and breathing effects during selective CO2 adsorption by merlinoite zeolite. J. Am. Chem. Soc. 141, 12744–12759 (2019).

    CAS  Google Scholar 

  175. Jeong, Y. et al. An hetero-epitaxially grown zeolite membrane. Angew. Chem. Int. Ed. 58, 18654–18662 (2019).

    CAS  Google Scholar 

  176. Li, G. K. et al. Temperature-regulated guest admission and release in microporous materials. Nat. Commun. 8, 15777 (2017).

    Google Scholar 

  177. Wu, Y. et al. Decorated traditional zeolites with subunits of metal-organic frameworks for CH4/N2 separation. Angew. Chem. Int. Ed. 58, 10241–10244 (2019).

    CAS  Google Scholar 

  178. Shah, M. S., Tsapatsis, M. & Siepmann, J. I. Identifying optimal zeolitic sorbents for sweetening of highly sour natural gas. Angew. Chem. Int. Ed. 55, 5938–5942 (2016).

    CAS  Google Scholar 

  179. Li, Y.-X. et al. Enhancing oxidation resistance of Cu(I) by tailoring microenvironment in zeolites for efficient adsorptive desulfurization. Nat. Commun. 11, 3206 (2020).

    CAS  Google Scholar 

  180. Krajnc, A. et al. Superior performance of microporous aluminophosphate with LTA topology in solar-energy storage and heat reallocation. Adv. Energy Mater. 7, 1601815 (2017).

    Google Scholar 

  181. Tiriolo, R. et al. Sub-micrometer zeolite films on gold-coated silicon wafers with single-crystal-like dielectric constant and elastic modulus. Adv. Funct. Mater. 27, 1700864 (2017).

    Google Scholar 

  182. Yuan, Z. et al. A highly ion-selective zeolite flake layer on porous membranes for flow battery applications. Angew. Chem. Int. Ed. 55, 3058–3062 (2016).

    CAS  Google Scholar 

  183. Chi, X. et al. A highly stable and flexible zeolite electrolyte solid-state Li–air battery. Nature 592, 551–557 (2021).

    CAS  Google Scholar 

  184. Yu, L. et al. A tightly-bonded and flexible mesoporous zeolite-cotton hybrid hemostat. Nat. Commun. 10, 1932 (2019).

    Google Scholar 

  185. Kim, K. et al. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template. Nature 535, 131–135 (2016).

    CAS  Google Scholar 

  186. Choi, C. H. et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016).

    CAS  Google Scholar 

  187. Li, J. & Sun, J. Application of X-ray diffraction and electron crystallography for solving complex structure problems. Acc. Chem. Res. 50, 2737–2745 (2017).

    CAS  Google Scholar 

  188. Ma, Y., Oleynikov, P. & Terasaki, O. Electron crystallography for determining the handedness of a chiral zeolite nanocrystal. Nat. Mater. 16, 755–759 (2017).

    CAS  Google Scholar 

  189. Smeets, S. et al. Well-defined silanols in the structure of the calcined high-silica zeolite SSZ-70: new understanding of a successful catalytic material. J. Am. Chem. Soc. 139, 16803–16812 (2017).

    CAS  Google Scholar 

  190. Shen, B. et al. Atomic spatial and temporal imaging of local structures and light elements inside zeolite frameworks. Adv. Mater. 32, 1906103 (2019).

    Google Scholar 

  191. Liu, L. et al. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5. Angew. Chem. Int. Ed. 59, 819–825 (2020).

    CAS  Google Scholar 

  192. Zhang, Q. et al. Electron microscopy studies of local structural modulations in zeolite crystals. Angew. Chem. Int. Ed. 59, 19403–19413 (2020).

    CAS  Google Scholar 

  193. Zheng, A., Li, S., Liu, S.-B. & Deng, F. Acidic properties and structure–activity correlations of solid acid catalysts revealed by solid-state NMR spectroscopy. Acc. Chem. Res. 49, 655–663 (2016).

    CAS  Google Scholar 

  194. Xu, J., Wang, Q., Li, S. & Deng, F. Solid-State NMR in Zeolite Catalysis Vol. 103 (Springer, 2019).

  195. Heard, C. J. et al. Fast room temperature lability of aluminosilicate zeolites. Nat. Commun. 10, 4690 (2019).

    Google Scholar 

  196. Sushkevich, V. L., Verel, R. & van Bokhoven, J. A. Pathways of methane transformation over copper-exchanged mordenite as revealed by in situ NMR and IR spectroscopy. Angew. Chem. Int. Ed. 59, 910–918 (2020).

    CAS  Google Scholar 

  197. Pugh, S. M., Wright, P. A., Law, D. J., Thompson, N. & Ashbrook, S. E. Facile, room-temperature 17O enrichment of zeolite frameworks revealed by solid-state NMR spectroscopy. J. Am. Chem. Soc. 142, 900–906 (2020).

    CAS  Google Scholar 

  198. Li, S. et al. Recent advances of solid-state NMR spectroscopy for microporous materials. Adv. Mater. 32, 2002879 (2020).

    CAS  Google Scholar 

  199. Qi, G. et al. gem-Diol-type intermediate in the activation of a ketone on Sn-β zeolite as studied by solid-state NMR spectroscopy. Angew. Chem. Int. Ed. 59, 19532–19538 (2020).

    CAS  Google Scholar 

  200. Paolucci, C. et al. Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 357, 898–903 (2017).

    CAS  Google Scholar 

  201. Imbao, J., van Bokhoven, J. A., Clark, A. & Nachtegaal, M. Elucidating the mechanism of heterogeneous Wacker oxidation over Pd-Cu/zeolite Y by transient XAS. Nat. Commun. 11, 1118 (2020).

    Google Scholar 

  202. Zhang, T., Chen, Z., Walsh, A. G., Li, Y. & Zhang, P. Single-atom catalysts supported by crystalline porous materials: views from the inside. Adv. Mater. 32, 2002910 (2020).

    CAS  Google Scholar 

  203. Bols, M. L. et al. Spectroscopic identification of the α-Fe/α-O active site in Fe-CHA zeolite for the low-temperature activation of the methane C–H bond. J. Am. Chem. Soc. 140, 12021–12032 (2018).

    CAS  Google Scholar 

  204. Fu, D. et al. Elucidating zeolite channel geometry–reaction intermediate relationships for the methanol-to-hydrocarbon process. Angew. Chem. Int. Ed. 59, 20024–20030 (2020).

    CAS  Google Scholar 

  205. Mahyuddin, M. H., Shiota, Y., Staykov, A. & Yoshizawa, K. Theoretical overview of methane hydroxylation by copper–oxygen species in enzymatic and zeolitic catalysts. Acc. Chem. Res. 51, 2382–2390 (2018).

    CAS  Google Scholar 

  206. Grajciar, L. et al. Towards operando computational modeling in heterogeneous catalysis. Chem. Soc. Rev. 47, 8307–8348 (2018).

    CAS  Google Scholar 

  207. Moliner, M., Román-Leshkov, Y. & Corma, A. Machine learning applied to zeolite synthesis: the missing link for realizing high-throughput discovery. Acc. Chem. Res. 52, 2971–2980 (2019).

    CAS  Google Scholar 

  208. Boyd, P. G., Lee, Y. & Smit, B. Computational development of the nanoporous materials genome. Nat. Rev. Mater. 2, 17037 (2017).

    CAS  Google Scholar 

  209. Daeyaert, F., Ye, F. & Deem, M. W. Machine-learning approach to the design of OSDAs for zeolite beta. Proc. Natl Acad. Sci. USA 116, 3413–3418 (2019).

    CAS  Google Scholar 

  210. Muraoka, K., Sada, Y., Miyazaki, D., Chaikittisilp, W. & Okubo, T. Linking synthesis and structure descriptors from a large collection of synthetic records of zeolite materials. Nat. Commun. 10, 4459 (2019).

    Google Scholar 

  211. Kim, B., Lee, S. & Kim, J. Inverse design of porous materials using artificial neural networks. Sci. Adv. 6, eaax9324 (2020).

    CAS  Google Scholar 

  212. Clayson, I. G., Hewitt, D., Hutereau, M., Pope, T. & Slater, B. High throughput methods in the synthesis, characterization, and optimization of porous materials. Adv. Mater. 32, 2002780 (2020).

    CAS  Google Scholar 

  213. Freeze, J. G., Kelly, H. R. & Batista, V. S. Search for catalysts by inverse design: artificial intelligence, mountain climbers, and alchemists. Chem. Rev. 119, 6595–6612 (2019).

    CAS  Google Scholar 

  214. Toyao, T. et al. Machine learning for catalysis informatics: recent applications and prospects. ACS Catal. 10, 2260–2297 (2020).

    CAS  Google Scholar 

  215. Baerlocher, Ch. & McCusker, L. B. Database of zeolite structures. IZA http://www.iza-structure.org/databases/ (2020).

  216. Foster, M. D. & Treacy, M. M. J. Atlas of prospective zeolite structures. IZA http://www.hypotheticalzeolites.net/ (2018).

  217. COD. Predicted crystallography open database. crystallography.net http://www.crystallography.net/pcod/ (2009).

  218. Li, Y. & Yu, J. Hypothetical zeolite structures. figshare https://doi.org/10.6084/m9.figshare.c.4424417 (2019).

    Article  Google Scholar 

  219. Li, Y. & Yu, J. AlPO structures. figshare https://doi.org/10.6084/m9.figshare.7822574 (2020).

  220. Li, J., Yu, J. & Xu, R. ZEOBANK. Zeobank http://zeobank.jlu.edu.cn/ (2020).

  221. Jensen, Z. et al. A machine learning approach to zeolite synthesis enabled by automatic literature data extraction. ACS Cent. Sci. 5, 892–899 (2019).

    CAS  Google Scholar 

  222. Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant nos. 21920102005, 21835002 and 21621001), the National Key Research and Development Program of China (grant no. 2016YFB0701100) and the 111 Project (grant no. B17020).

Author information

Authors and Affiliations

Authors

Contributions

J.Y. conceived the general outlook of the manuscript. Both authors wrote and edited the manuscript prior to submission.

Corresponding author

Correspondence to Jihong Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yu, J. Emerging applications of zeolites in catalysis, separation and host–guest assembly. Nat Rev Mater 6, 1156–1174 (2021). https://doi.org/10.1038/s41578-021-00347-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00347-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing