Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing

Abstract

Biomolecular condensates are membraneless intracellular assemblies that often form via liquid−liquid phase separation and have the ability to concentrate biopolymers. Research over the past 10 years has revealed that condensates play fundamental roles in cellular organization and physiology, and our understanding of the molecular principles, components and forces underlying their formation has substantially increased. Condensate assembly is tightly regulated in the intracellular environment, and failure to control condensate properties, formation and dissolution can lead to protein misfolding and aggregation, which are often the cause of ageing-associated diseases. In this Review, we describe the mechanisms and regulation of condensate assembly and dissolution, highlight recent advances in understanding the role of biomolecular condensates in ageing and disease, and discuss how cellular stress, ageing-related loss of homeostasis and a decline in protein quality control may contribute to the formation of aberrant, disease-causing condensates. Our improved understanding of condensate pathology provides a promising path for the treatment of protein aggregation diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functions of condensates.
Fig. 2: Different material states of condensates and the mechanisms and processes regulating their conversion.
Fig. 3: Two distinct pathways leading to protein aggregation.
Fig. 4: The role of the protein quality control machinery in condensate quality control.
Fig. 5: Condensates with functions in protein quality control.
Fig. 6: Hallmarks of ageing that may be associated with aberrant condensates.

Similar content being viewed by others

References

  1. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    PubMed  Google Scholar 

  3. Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Protter, D. S. W. & Parker, R. Principles and properties of stress granules. Trends Cell Biol. 26, 668–679 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Panas, M. D., Ivanov, P. & Anderson, P. Mechanistic insights into mammalian stress granule dynamics. J. Cell Biol. 215, 313–323 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Alberti, S. & Dormann, D. Liquid–liquid phase separation in disease. Annu. Rev. Genet. 53, 171–194 (2019).

    CAS  PubMed  Google Scholar 

  7. Snead, W. T. & Gladfelter, A. S. The control centers of biomolecular phase separation: how membrane surfaces, PTMs, and active processes regulate condensation. Mol. Cell 76, 295–305 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hipp, M. S., Kasturi, P. & Hartl, F. U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20, 421–435 (2019).

    CAS  PubMed  Google Scholar 

  9. Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    CAS  PubMed  Google Scholar 

  10. Case, L. B., Zhang, X., Ditlev, J. A. & Rosen, M. K. Stoichiometry controls activity of phase-separated clusters of actin signaling proteins. Science 363, 1093–1097 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Franzmann, T. M. et al. Phase separation of a yeast prion protein promotes cellular fitness. Science 359, eaao5654 (2018).

    PubMed  Google Scholar 

  12. Klosin, A. et al. Phase separation provides a mechanism to reduce noise in cells. Science 367, 464–468 (2020).

    CAS  PubMed  Google Scholar 

  13. Riback, J. A. et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168, 1028–1040.e19 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shin, Y. et al. Liquid nuclear condensates mechanically sense and restructure the genome. Cell 175, 1481–1491.e13 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bienz, M. Head-to-tail polymerization in the assembly of biomolecular condensates. Cell 182, 799–811 (2020).

    CAS  PubMed  Google Scholar 

  16. Wu, H. & Fuxreiter, M. The Structure and dynamics of higher-order assemblies: amyloids, signalosomes, and granules. Cell 165, 1055–1066 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. McSwiggen, D. T., Mir, M., Darzacq, X. & Tjian, R. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev. 33, 1619–1634 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Holehouse, A. S. & Pappu, R. V. Functional implications of intracellular phase transitions. Biochemistry https://doi.org/10.1021/acs.biochem.7b01136 (2018).

    Article  PubMed  Google Scholar 

  19. Lyon, A. S., Peeples, W. B. & Rosen, M. K. A framework for understanding the functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-020-00303-z (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015). Molliex et al. find that hnRNPA1 assembles into liquid droplets by phase separation, which then age into a more solid-like state with time.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015). Patel et al. report that FUS assembles into liquid droplets by phase separation, which then age into a more solid-like state with time.

    CAS  PubMed  Google Scholar 

  22. Alberti, S. & Hyman, A. A. Are aberrant phase transitions a driver of cellular aging? Bioessays 38, 959–968 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Murakami, T. et al. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 88, 678–690 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou, H.-X., Nguemaha, V., Mazarakos, K. & Qin, S. Why do disordered and structured proteins behave differently in phase separation? Trends Biochem. Sci. 43, 499–516 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e16 (2018). The study by Wang et al. dissects the molecular grammar of FUS phase separation and condensate ageing.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Choi, J.-M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020).

    CAS  PubMed  Google Scholar 

  29. Semenov, A. N. & Rubinstein, M. Thermoreversible gelation in solutions of associative polymers. 1. Statics. Macromolecules 31, 1373–1385 (1998).

    CAS  Google Scholar 

  30. Roden, C. & Gladfelter, A. S. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-020-0264-6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Riback, J. A. et al. Composition-dependent thermodynamics of intracellular phase separation. Nature 581, 209–214 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Banani, S. F. et al. Compositional control of phase-separated cellular bodies. Cell 166, 651–663 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Langeberg, L. K. & Scott, J. D. Signalling scaffolds and local organization of cellular behaviour. Nat. Rev. Mol. Cell Biol. 16, 232–244 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ditlev, J. A., Case, L. B. & Rosen, M. K. Who’s in and who’s out-compositional control of biomolecular condensates. J. Mol. Biol. 430, 4666–4684 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Guillén-Boixet, J. et al. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181, 346–361.e17 (2020).

    PubMed  PubMed Central  Google Scholar 

  36. Yang, P. et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 181, 325–345.e28 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sanders, D. W. et al. Competing protein-RNA interaction networks control multiphase intracellular organization. Cell 181, 306–324.e28 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Falahati, H. & Wieschaus, E. Independent active and thermodynamic processes govern the nucleolus assembly in vivo. Proc. Natl Acad. Sci. USA 114, 1335–1340 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Monahan, Z. et al. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J. 36, 2951–2967 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hofweber, M. et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173, 706–719.e13 (2018). In this study, Hofweber et al. show that nuclear import receptors can regulate the phase-separation behaviour of FUS.

    CAS  PubMed  Google Scholar 

  42. Qamar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell 173, 720–734.e15 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pavitt, G. D. eIF2B, a mediator of general and gene-specific translational control. Biochem. Soc. Trans. 33, 1487–1492 (2005).

    CAS  PubMed  Google Scholar 

  44. Anderson, P. & Kedersha, N. Visibly stressed: the role of eIF2, TIA-1, and stress granules in protein translation. Cell Stress. Chaperones 7, 213–221 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Banerjee, P. R., Milin, A. N., Moosa, M. M., Onuchic, P. L. & Deniz, A. A. Reentrant phase transition drives dynamic substructure formation in ribonucleoprotein droplets. Angew. Chem. Int. Ed. Engl. 56, 11354–11359 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Maharana, S. et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360, 918–921 (2018). Maharana et al. find that RNA can buffer the phase separation behaviour of disease-causing RNA-binding proteins such as FUS, hnRNPA1 and TDP43.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Patel, A. et al. ATP as a biological hydrotrope. Science 356, 753–756 (2017).

    CAS  PubMed  Google Scholar 

  48. Hayes, M. H., Peuchen, E. H., Dovichi, N. J. & Weeks, D. L. Dual roles for ATP in the regulation of phase separated protein aggregates in Xenopus oocyte nucleoli. eLife 7, e35224 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. Harmon, T. S., Holehouse, A. S., Rosen, M. K. & Pappu, R. V. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. eLife 6, e30294 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. Iserman, C. et al. Condensation of Ded1p promotes a translational switch from housekeeping to stress protein production. Cell 181, 818–831.e19 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Jawerth, L. et al. Protein condensates as aging maxwell fluids. Science 370, 1317–1323 (2020).

    CAS  PubMed  Google Scholar 

  52. Roberts, S., Dzuricky, M. & Chilkoti, A. Elastin-like polypeptides as models of intrinsically disordered proteins. FEBS Lett. 589 (19 Pt A), 2477–2486 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Parry, B. R. et al. The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 156, 183–194 (2014).

    CAS  PubMed  Google Scholar 

  54. Iadanza, M. G., Jackson, M. P., Hewitt, E. W., Ranson, N. A. & Radford, S. E. A new era for understanding amyloid structures and disease. Nat. Rev. Mol. Cell Biol. 19, 755–773 (2018).

    CAS  PubMed  Google Scholar 

  55. Murthy, A. C. et al. Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain. Nat. Struct. Mol. Biol. 26, 637–648 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Burke, K. A., Janke, A. M., Rhine, C. L. & Fawzi, N. L. Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol. Cell 60, 231–241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mackenzie, I. R. et al. TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron 95, 808–816.e9 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Conicella, A. E., Zerze, G. H., Mittal, J. & Fawzi, N. L. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24, 1537–1549 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Murray, D. T. et al. Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains. Cell 171, 615–627.e16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ruckenstein, E. & Shulgin, I. L. Effect of salts and organic additives on the solubility of proteins in aqueous solutions. Adv. Colloid Interface Sci. 123-126, 97–103 (2006).

    CAS  PubMed  Google Scholar 

  61. Piazza, R. Protein interactions and association: an open challenge for colloid science. Curr. Opin. Colloid Interface Sci. 8, 515–522 (2004).

    CAS  Google Scholar 

  62. Saha, S. et al. Polar positioning of phase-separated liquid compartments in cells regulated by an mRNA competition mechanism. Cell 166, 1572–1584.e16 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Serio, T. R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321 (2000).

    CAS  PubMed  Google Scholar 

  64. Chatani, E. & Yamamoto, N. Recent progress on understanding the mechanisms of amyloid nucleation. Biophys. Rev. 10, 527–534 (2018).

    CAS  PubMed  Google Scholar 

  65. Jarosz, D. F. & Khurana, V. Specification of physiologic and disease states by distinct proteins and protein conformations. Cell 171, 1001–1014 (2017).

    CAS  PubMed  Google Scholar 

  66. Hughes, M. P. et al. Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks. Science 359, 698–701 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012). Kato et al. report that low complexity domains in RNA-binding proteins can assemble into gels through amyloid-like interactions.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Luo, F. et al. Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation. Nat. Struct. Mol. Biol. 25, 341–346 (2018).

    CAS  PubMed  Google Scholar 

  69. Kato, M. & McKnight, S. L. A solid-state conceptualization of information transfer from gene to message to protein. Annu. Rev. Biochem. 87, 351–390 (2018).

    CAS  PubMed  Google Scholar 

  70. Peran, I. & Mittag, T. Molecular structure in biomolecular condensates. Curr. Opin. Struct. Biol. 60, 17–26 (2019).

    PubMed  PubMed Central  Google Scholar 

  71. Kato, M. & McKnight, S. L. Cross-β polymerization of low complexity sequence domains. Cold Spring Harb. Perspect. Biol. 9, a023598 (2017).

    PubMed  PubMed Central  Google Scholar 

  72. Murthy, A. C. & Fawzi, N. L. The (un)structural biology of biomolecular liquid-liquid phase separation using NMR spectroscopy. J. Biol. Chem. 295, 2375–2384 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Breydo, L. & Uversky, V. N. Structural, morphological, and functional diversity of amyloid oligomers. FEBS Lett. 589, 2640–2648 (2015).

    CAS  PubMed  Google Scholar 

  74. Bemporad, F. & Chiti, F. Protein misfolded oligomers: experimental approaches, mechanism of formation, and structure-toxicity relationships. Chem. Biol. 19, 315–327 (2012).

    CAS  PubMed  Google Scholar 

  75. Michaels, T. C. T. et al. Author correction: dynamics of oligomer populations formed during the aggregation of Alzheimer’s Aβ42 peptide. Nat. Chem. 12, 497 (2020).

    CAS  PubMed  Google Scholar 

  76. Morel, B., Carrasco, M. P., Jurado, S., Marco, C. & Conejero-Lara, F. Dynamic micellar oligomers of amyloid beta peptides play a crucial role in their aggregation mechanisms. Phys. Chem. Chem. Phys. 20, 20597–20614 (2018).

    CAS  PubMed  Google Scholar 

  77. Edwin, N. J., Hammer, R. P., McCarley, R. L. & Russo, P. S. Reversibility of β-amyloid self-assembly: effects of pH and added salts assessed by fluorescence photobleaching recovery. Biomacromolecules 11, 341–347 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Babinchak, W. M. et al. The role of liquid-liquid phase separation in aggregation of the TDP-43 low complexity domain. J. Biol. Chem. 294, 6306–6317 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ray, S. et al. α-Synuclein aggregation nucleates through liquid-liquid phase separation. Nat. Chem. 12, 705–716 (2020). Ray et al. show that the disease-associated protein α-synuclein can assemble into liquid droplets by phase separation.

    CAS  PubMed  Google Scholar 

  80. Wegmann, S. et al. Tau protein liquid–liquid phase separation can initiate tau aggregation. EMBO J. 37, e98049 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. Ambadipudi, S., Biernat, J., Riedel, D., Mandelkow, E. & Zweckstetter, M. Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat. Commun. 8, 275 (2017). The studies by Wegmann et al. and Ambadipudi et al. indicate that the disease-associated protein Tau can assemble into liquid droplets by phase separation.

    PubMed  PubMed Central  Google Scholar 

  82. Franzmann, T. M. & Alberti, S. Protein phase separation as a stress survival strategy. Cold Spring Harb. Perspect. Biol. 11, a034058 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kroschwald, S. et al. Different material states of Pub1 condensates define distinct modes of stress adaptation and recovery. Cell Rep. 23, 3327–3339 (2018).

    CAS  PubMed  Google Scholar 

  84. Majumdar, A., Dogra, P., Maity, S. & Mukhopadhyay, S. Liquid–liquid phase separation is driven by large-scale conformational unwinding and fluctuations of intrinsically disordered protein molecules. J. Phys. Chem. Lett. 10, 3929–3936 (2019).

    CAS  PubMed  Google Scholar 

  85. Marrone, L. et al. FUS pathology in ALS is linked to alterations in multiple ALS-associated proteins and rescued by drugs stimulating autophagy. Acta Neuropathol. 138, 67–84 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rai, A. K., Chen, J.-X., Selbach, M. & Pelkmans, L. Kinase-controlled phase transition of membraneless organelles in mitosis. Nature 559, 211–216 (2018).

    CAS  PubMed  Google Scholar 

  87. Tauber, D. et al. Modulation of RNA condensation by the DEAD-Box protein eIF4A. Cell 180, 411–426.e16 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hondele, M. et al. DEAD-box ATPases are global regulators of phase-separated organelles. Nature 573, 144–148 (2019).

    CAS  PubMed  Google Scholar 

  89. Mugler, C. F. et al. ATPase activity of the DEAD-box protein Dhh1 controls processing body formation. eLife 5, e18746 (2016).

    PubMed  PubMed Central  Google Scholar 

  90. Jain, S. et al. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487–498 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kroschwald, S. et al. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. eLife 4, e06807 (2015).

    PubMed  PubMed Central  Google Scholar 

  92. Guo, L. et al. Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains. Cell 173, 677–692.e20 (2018). Guo et al. find that nuclear import receptors can reverse aberrant phase transitions of RNA-binding proteins such as FUS.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Yoshizawa, T. et al. Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites. Cell 173, 693–705.e22 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Boeynaems, S. et al. Phase separation of C9orf72 dipeptide repeats perturbs stress granule dynamics. Mol. Cell 65, 1044–1055.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mateju, D. et al. An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. EMBO J. 36, 1669–1687 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. White, M. R. et al. C9orf72 poly(PR) dipeptide repeats disturb biomolecular phase separation and disrupt nucleolar function. Mol. Cell 74, 713–728.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee, K.-H. et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 167, 774–788.e17 (2016). Lee et al. show that DRPs accumulate in various condensates and affect condensate properties, assembly and disassembly.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Weber, C., Michaels, T. & Mahadevan, L. Spatial control of irreversible protein aggregation. eLife 8, e42315 (2019).

    PubMed  PubMed Central  Google Scholar 

  99. Choi, S. I. et al. Protein solubility and folding enhancement by interaction with RNA. PLoS ONE 3, e2677 (2008).

    PubMed  PubMed Central  Google Scholar 

  100. Apicco, D. J. et al. Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nat. Neurosci. 21, 72–80 (2018).

    CAS  PubMed  Google Scholar 

  101. Ganassi, M. et al. A surveillance function of the HSPB8-BAG3-HSP70 chaperone complex ensures stress granule integrity and dynamism. Mol. Cell 63, 796–810 (2016).

    CAS  PubMed  Google Scholar 

  102. Bounedjah, O. et al. Free mRNA in excess upon polysome dissociation is a scaffold for protein multimerization to form stress granules. Nucleic Acids Res. 42, 8678–8691 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Schubert, U. et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404, 770–774 (2000).

    CAS  PubMed  Google Scholar 

  104. Brandman, O. & Hegde, R. S. Ribosome-associated protein quality control. Nat. Struct. Mol. Biol. 23, 7–15 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kapur, M. & Ackerman, S. L. mRNA translation gone awry: translation fidelity and neurological disease. Trends Genet. 34, 218–231 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Mediani, L. et al. Defective ribosomal products challenge nuclear function by impairing nuclear condensate dynamics and immobilizing ubiquitin. EMBO J. 38, e101341 (2019). Mediani et al. report that DRiPs accumulate in the nucleolus and PML bodies, changing their physical properties.

    PubMed  PubMed Central  Google Scholar 

  107. Pohl, C. & Dikic, I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science 366, 818–822 (2019).

    CAS  PubMed  Google Scholar 

  108. Kwon, S., Zhang, Y. & Matthias, P. The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev. 21, 3381–3394 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Xie, X. et al. Deubiquitylases USP5 and USP13 are recruited to and regulate heat-induced stress granules through their deubiquitylating activities. J. Cell Sci. 131, jcs210856 (2018).

    PubMed  Google Scholar 

  110. Dao, T. P. et al. Ubiquitin modulates liquid-liquid phase separation of UBQLN2 via disruption of multivalent interactions. Mol. Cell 69, 965–978.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Turakhiya, A. et al. ZFAND1 recruits p97 and the 26S proteasome to promote the clearance of arsenite-induced stress granules. Mol. Cell 70, 906–919.e7 (2018).

    CAS  PubMed  Google Scholar 

  112. Buchan, J. R., Kolaitis, R.-M., Taylor, J. P. & Parker, R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153, 1461–1474 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sun, D., Wu, R., Zheng, J., Li, P. & Yu, L. Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Cell Res. 28, 405–415 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Fujioka, Y. et al. Phase separation organizes the site of autophagosome formation. Nature 578, 301–305 (2020).

    CAS  PubMed  Google Scholar 

  115. Wang, Z. & Zhang, H. Phase separation, transition, and autophagic degradation of proteins in development and pathogenesis. Trends Cell Biol. 29, 417–427 (2019).

    CAS  PubMed  Google Scholar 

  116. Zhang, Y. et al. SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 136, 308–321 (2009).

    CAS  PubMed  Google Scholar 

  117. Min, H., Lee, Y.-U., Shim, Y.-H. & Kawasaki, I. Autophagy of germ-granule components, PGL-1 and PGL-3, contributes to DNA damage-induced germ cell apoptosis in C. elegans. PLoS Genet. 15, e1008150 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang, G., Wang, Z., Du, Z. & Zhang, H. mTOR regulates phase separation of PGL granules to modulate their autophagic degradation. Cell 174, 1492–1506.e22 (2018).

    CAS  PubMed  Google Scholar 

  119. Hernebring, M., Brolén, G., Aguilaniu, H., Semb, H. & Nyström, T. Elimination of damaged proteins during differentiation of embryonic stem cells. Proc. Natl Acad. Sci. USA 103, 7700–7705 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Bufalino, M. R., DeVeale, B. & van der Kooy, D. The asymmetric segregation of damaged proteins is stem cell-type dependent. J. Cell Biol. 201, 523–530 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Rujano, M. A. et al. Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLoS Biol. 4, e417 (2006).

    PubMed  PubMed Central  Google Scholar 

  122. Moore, D., Pilz, G., Araúzo-Bravo, M., Barral, Y. & Jessberger, S. A mechanism for the segregation of age in mammalian neural stem cells. Science 349, 1334–1338 (2015).

    CAS  Google Scholar 

  123. Kaganovich, D., Kopito, R. & Frydman, J. Misfolded proteins partition between two distinct quality control compartments. Nature 454, 1088–1095 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Sontag, E. M., Samant, R. S. & Frydman, J. Mechanisms and functions of spatial protein quality control. Annu. Rev. Biochem. 86, 97–122 (2017).

    CAS  PubMed  Google Scholar 

  125. Miller, S. B. M. et al. Compartment-specific aggregases direct distinct nuclear and cytoplasmic aggregate deposition. EMBO J. 34, 778–797 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Specht, S., Miller, S. B. M., Mogk, A. & Bukau, B. Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae. J. Cell Biol. 195, 617–629 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Spokoini, R. et al. Confinement to organelle-associated inclusion structures mediates asymmetric inheritance of aggregated protein in budding yeast. Cell Rep. 2, 738–747 (2012).

    CAS  PubMed  Google Scholar 

  128. Escusa-Toret, S., Vonk, W. I. M. & Frydman, J. Spatial sequestration of misfolded proteins by a dynamic chaperone pathway enhances cellular fitness during stress. Nat. Cell Biol. 15, 1231–1243 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Frottin, F. et al. The nucleolus functions as a phase-separated protein quality control compartment. Science 365, 342–347 (2019). The study by Frottin et al. shows that the nucleolus functions as a protein quality compartment for nuclear misfolded proteins.

    CAS  PubMed  Google Scholar 

  130. Audas, T. E. et al. Adaptation to stressors by systemic protein amyloidogenesis. Dev. Cell https://doi.org/10.1016/j.devcel.2016.09.002 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Munder, M. C. et al. A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy. eLife 5, e09347 (2016).

    PubMed  PubMed Central  Google Scholar 

  132. Webb, B. A., Chimenti, M., Jacobson, M. P. & Barber, D. L. Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11, 671–677 (2011).

    CAS  PubMed  Google Scholar 

  133. Akerfelt, M., Morimoto, R. I. & Sistonen, L. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11, 545–555 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Malinovska, L., Kroschwald, S., Munder, M. C., Richter, D. & Alberti, S. Molecular chaperones and stress-inducible protein-sorting factors coordinate the spatiotemporal distribution of protein aggregates. Mol. Biol. Cell 23, 3041–3056 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ungelenk, S. et al. Small heat shock proteins sequester misfolding proteins in near-native conformation for cellular protection and efficient refolding. Nat. Commun. 7, 13673 (2016).

    PubMed  PubMed Central  Google Scholar 

  136. Ho, C.-T. et al. Cellular sequestrases maintain basal Hsp70 capacity ensuring balanced proteostasis. Nat. Commun. 10, 4851 (2019).

    PubMed  PubMed Central  Google Scholar 

  137. Shorter, J. & Southworth, D. R. Spiraling in control: structures and mechanisms of the Hsp104 disaggregase. Cold Spring Harb. Perspect. Biol. 11, a034033 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Cherkasov, V. et al. Coordination of translational control and protein homeostasis during severe heat stress. Curr. Biol. 23, 2452–2462 (2013).

    CAS  PubMed  Google Scholar 

  139. Wallace, E. W. J. et al. Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell 162, 1286–1298 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    PubMed  PubMed Central  Google Scholar 

  141. Labbadia, J. & Morimoto, R. I. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84, 435–464 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Hartl, F. U. Cellular homeostasis and aging. Annu. Rev. Biochem. 85, 1–4 (2016).

    CAS  PubMed  Google Scholar 

  143. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    CAS  PubMed  Google Scholar 

  144. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    CAS  PubMed  Google Scholar 

  145. McGurk, L. et al. Poly(ADP-ribose) prevents pathological phase separation of TDP-43 by promoting liquid demixing and stress granule localization. Mol. Cell 703-717.e9 (2018).

  146. Shin, Y. et al. Spatiotemporal control of intracellular phase transitions using light-activated optodroplets. Cell 168, 159–171.e14 (2017).

    CAS  PubMed  Google Scholar 

  147. Ramaswami, M., Taylor, J. P. & Parker, R. Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154, 727–736 (2013).

    CAS  PubMed  Google Scholar 

  148. Zhang, P. et al. Chronic optogenetic induction of stress granules is cytotoxic and reveals the evolution of ALS-FTD pathology. eLife 8, e39578 (2019).

    PubMed  PubMed Central  Google Scholar 

  149. Mann, J. R. et al. RNA binding antagonizes neurotoxic phase transitions of TDP-43. Neuron 102, 321–338.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Gasset-Rosa, F. et al. Cytoplasmic TDP-43 de-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death. Neuron 102, 339–357.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Asakawa, K., Handa, H. & Kawakami, K. Optogenetic modulation of TDP-43 oligomerization accelerates ALS-related pathologies in the spinal motor neurons. Nat. Commun. 11, 1004 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Gopal, P. P., Nirschl, J. J., Klinman, E. & Holzbaur, E. L. F. Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons. Proc. Natl Acad. Sci. USA 114, E2466–E2475 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Alberti, S. & Carra, S. Quality control of membraneless organelles. J. Mol. Biol. 430, 4711–4729 (2018).

    CAS  PubMed  Google Scholar 

  154. Alberti, S., Mateju, D., Mediani, L. & Carra, S. Granulostasis: protein quality control of RNP granules. Front. Mol. Neurosci. 10, 84 (2017).

    PubMed  PubMed Central  Google Scholar 

  155. Sen, P., Shah, P. P., Nativio, R. & Berger, S. L. Epigenetic mechanisms of longevity and aging. Cell 166, 822–839 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Adams, P. D. Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Gene 397, 84–93 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Sanulli, S. et al. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature 575, 390–394 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Gibson, B. A. et al. Organization of chromatin by intrinsic and regulatephase D separation. Cell 179, 470–484.e21 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Stegeman, R. & Weake, V. M. Transcriptional signatures of aging. J. Mol. Biol. 429, 2427–2437 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Naumann, M. et al. Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation. Nat. Commun. 9, 335 (2018).

    PubMed  PubMed Central  Google Scholar 

  163. Kilic, S. et al. Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments. EMBO J. 38, e101379 (2019).

    PubMed  PubMed Central  Google Scholar 

  164. Min, J., Wright, W. E. & Shay, J. W. Clustered telomeres in phase-separated nuclear condensates engage mitotic DNA synthesis through BLM and RAD52. Genes Dev. 33, 814–827 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Case, L. B., Ditlev, J. A. & Rosen, M. K. Regulation of transmembrane signaling by phase separation. Annu. Rev. Biophys. 48, 465–494 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Niaki, A. G. et al. Loss of dynamic RNA interaction and aberrant phase separation induced by two distinct types of ALS/FTD-linked FUS mutations. Mol. Cell 77, 82–94.e4 (2020).

    CAS  PubMed  Google Scholar 

  167. Cloer, E. W. et al. p62-dependent phase separation of patient-derived KEAP1 mutations and NRF2. Mol. Cell. Biol. https://doi.org/10.1128/MCB.00644-17 (2018).

  168. Morelli, F. F. et al. Aberrant compartment formation by HSPB2 mislocalizes lamin a and compromises nuclear integrity and function. Cell Rep. 20, 2100–2115 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Peskett, T. R. et al. A liquid to solid phase transition underlying pathological huntingtin Exon1 aggregation. Mol. Cell 70, 588–601.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Bouchard, J. J. et al. Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments. Mol. Cell 72, 19–36.e8 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Latonen, L. Nucleolar aggresomes as counterparts of cytoplasmic aggresomes in proteotoxic stress. Bioessays 33, 386–395 (2011).

    CAS  PubMed  Google Scholar 

  173. Miller, S. B. M., Mogk, A. & Bukau, B. Spatially organized aggregation of misfolded proteins as cellular stress defense strategy. J. Mol. Biol. 427, 1564–1574 (2015).

    CAS  PubMed  Google Scholar 

  174. Hegyi, H. & Tompa, P. Intrinsically disordered proteins display no preference for chaperone binding in vivo. PLoS Comput. Biol. 4, e1000017 (2008).

    PubMed  PubMed Central  Google Scholar 

  175. Mine, Y., Noutomi, T. & Haga, N. Thermally induced changes in egg white proteins. J. Agric. Food Chem. 38, 2122–2125 (1990).

    CAS  Google Scholar 

  176. Ciryam, P. et al. Spinal motor neuron protein supersaturation patterns are associated with inclusion body formation in ALS. Proc. Natl Acad. Sci. USA 114, E3935–E3943 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Ciryam, P., Kundra, R., Morimoto, R. I., Dobson, C. M. & Vendruscolo, M. Supersaturation is a major driving force for protein aggregation in neurodegenerative diseases. Trends Pharmacol. Sci. 36, 72–77 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Ciryam, P., Tartaglia, G. G., Morimoto, R. I., Dobson, C. M. & Vendruscolo, M. Widespread aggregation and neurodegenerative diseases are associated with supersaturated proteins. Cell Rep. 5, 781–790 (2013).

    CAS  PubMed  Google Scholar 

  179. Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    CAS  PubMed  Google Scholar 

  180. Liebman, S. W. & Chernoff, Y. O. Prions in yeast. Genetics 191, 1041–1072 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Harvey, Z. H., Chen, Y. & Jarosz, D. F. Protein-based inheritance: epigenetics beyond the chromosome. Mol. Cell 69, 195–202 (2017).

    PubMed  PubMed Central  Google Scholar 

  182. True, H. L. & Lindquist, S. L. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477–483 (2000).

    CAS  PubMed  Google Scholar 

  183. Si, K. & Kandel, E. R. The role of functional prion-like proteins in the persistence of memory. Cold Spring Harb. Perspect. Biol. 8, a021774 (2016).

    PubMed  PubMed Central  Google Scholar 

  184. Cai, X., Xu, H. & Chen, Z. J. Prion-like polymerization in immunity and inflammation. Cold Spring Harb. Perspect. Biol. 9, a021774 (2017).

    Google Scholar 

  185. King, O. D., Gitler, A. D. & Shorter, J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res. 1462, 61–80 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Malinovska, L., Kroschwald, S. & Alberti, S. Protein disorder, prion propensities, and self-organizing macromolecular collectives. Biochim. Biophys. Acta 1834, 918–931 (2013).

    CAS  PubMed  Google Scholar 

  187. Han, T. W. et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149, 768–779 (2012).

    CAS  PubMed  Google Scholar 

  188. Kwon, I. et al. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155, 1049–1060 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Brady, J. P. et al. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. Proc. Natl Acad. Sci. USA 114, E8194–E8203 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Ryan, V. H. et al. Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation. Mol. Cell 69, 465–479.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.A. acknowledges funding by the European Research Council (PhaseAge, 725836) and the Deutsche Forschungsgemeinschaft (SPP 2191). We also thank our colleagues Serena Carra, Axel Mogk, Titus Franzmann, Rohit Pappu, Ivan Dikic, Christoph Weber and Jordina Guillen-Boixet for their helpful comments. A.A.H. acknowledges funding from the Max Planck Society and the NOMIS foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.A. and A.A.H. contributed equally to all aspects of the writing and editing of the manuscript.

Corresponding authors

Correspondence to Simon Alberti or Anthony A. Hyman.

Ethics declarations

Competing interests

S.A. is an adviser and A.A.H. a founder of Dewpoint Therapeutics.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks Monika Fuxreiter and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Intrinsically disordered

An intrinsically disordered protein or region lacks a dominant 3D structure and adopts a range of conformational states.

Avidity

Refers to the accumulated strength of multiple individual interactions between two molecules and is commonly referred to as functional affinity.

Cooperativity

A key feature of systems of interacting molecular components that leads to collective properties not present in the individual components.

Multivalence

Valence or valency is the number of chemical bonds that a molecule can form, with multivalence referring to a molecule with a valence greater than two.

Head-to-tail polymerization

Refers to the mechanism of polymerization of biomolecules with two distinct interaction surfaces (a head and a tail) that have to interact in order to assemble into a polymer.

Heterotypic interactions

Refers to interactions between dissimilar molecules, the opposite being homotypic interactions.

Hydrotrope

A compound that solubilizes hydrophobic compounds in aqueous solutions by means other than micellar solubilization.

Optical tweezers

A scientific instrument that uses a highly focused laser beam to hold and move microscopic objects such as droplets in a manner similar to tweezers.

Prion-like disordered regions

A segment of a protein that is intrinsically disordered and similar in amino acid composition to yeast prions, which contain a large fraction of polar amino acids such as asparagine, glutamine and serine.

Amyloid fibrils

Amyloids are aggregates of proteins characterized by a fibrillar morphology, a β-sheet secondary structure and the ability to be stained by particular dyes such as Congo red and thioflavin T.

Cross-β-sheets

A highly ordered and tightly packed secondary structure in which individual β-strands are arranged into sheets with an orientation perpendicular to the axis of the fibre.

hnRNPA1

Heterogeneous nuclear ribonucleoprotein A1 is a nuclear RNA-binding protein that has been linked to amyotrophic lateral sclerosis and multisystem proteinopathies.

TDP43

TAR DNA-binding protein 43 is a nuclear RNA-binding protein that is hyper-phosphorylated, ubiquitylated and aggregated in frontotemporal dementia and in amyotrophic lateral sclerosis.

Tau

A protein that has been linked to various neurodegenerative diseases with roles in maintaining the stability of microtubules in neurons of the central nervous system.

α-Synuclein

A protein that has been linked to Parkinson disease that is found mainly in neurons in specialized structures called presynaptic terminals.

Re-entrant phase transition

Re-entrant behaviour of a phase transition means that a continuous change of a parameter leads to phase disappearance during one transition and reappearance in another.

Superoxide dismutase 1

(SOD1). A superoxide dismutase enzyme that has been implicated in apoptosis and familial forms of amyotrophic lateral sclerosis.

Dipeptide repeat (DPR) proteins

DPR proteins are generated from repeat-associated non-ATG (RAN) translation of mutant C9ORF72 transcripts and have been linked to amyotrophic lateral sclerosis and frontotemporal dementia.

P granules

P granules are Caenorhabditis elegans ‘germ granules’, a class of perinuclear RNA granules specific to the germ line. They were the first condensates to be identified as liquid-like.

Stem-cell exhaustion

Is the age-related deficiency of stem cells, a hallmark that is directly responsible for many of the problems associated with ageing such as frailty and a weakened immune system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alberti, S., Hyman, A.A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat Rev Mol Cell Biol 22, 196–213 (2021). https://doi.org/10.1038/s41580-020-00326-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-020-00326-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing