Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular functions of the protein kinase ATM and their relevance to human disease

Abstract

The protein kinase ataxia telangiectasia mutated (ATM) is a master regulator of double-strand DNA break (DSB) signalling and stress responses. For three decades, ATM has been investigated extensively to elucidate its roles in the DNA damage response (DDR) and in the pathogenesis of ataxia telangiectasia (A-T), a human neurodegenerative disease caused by loss of ATM. Although hundreds of proteins have been identified as ATM phosphorylation targets and many important roles for this kinase have been identified, it is still unclear how ATM deficiency leads to the early-onset cerebellar degeneration that is common in all individuals with A-T. Recent studies suggest the existence of links between ATM deficiency and other cerebellum-specific neurological disorders, as well as the existence of broader similarities with more common neurodegenerative disorders. In this Review, we discuss recent structural insights into ATM regulation, and possible aetiologies of A-T phenotypes, including reactive oxygen species, mitochondrial dysfunction, alterations in transcription, R-loop metabolism and alternative splicing, defects in cellular proteostasis and metabolism, and potential pathogenic roles for hyper-poly(ADP-ribosyl)ation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Known ATM activation mechanisms.
Fig. 2: ATM structure.
Fig. 3: A subset of the roles for ATM in DNA repair.
Fig. 4: Roles for ATM in redox homeostasis and consequences of the loss of this function in mitochondria.
Fig. 5: PARP hyperactivity in the absence of ATM.
Fig. 6: Model of ataxia telangiectasia pathogenesis.

Similar content being viewed by others

References

  1. Rothblum-Oviatt, C. et al. Ataxia telangiectasia: a review. Orphanet J. Rare Dis. 11, 159 (2016).

    PubMed  PubMed Central  Google Scholar 

  2. Shiloh, Y. & Ziv, Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 14, 197–210 (2013).

    CAS  PubMed  Google Scholar 

  3. Concannon, P. & Gatti, R. A. Diversity of ATM gene mutations detected in patients with ataxia-telangiectasia. Hum. Mutat. 10, 100–107 (1997).

    CAS  PubMed  Google Scholar 

  4. Lovejoy, C. A. & Cortez, D. Common mechanisms of PIKK regulation. DNA Repair. 8, 1004–1008 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Paull, T. T. Mechanisms of ATM activation. Annu. Rev. Biochem. 84, 711–738 (2015).

    CAS  PubMed  Google Scholar 

  6. Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).

    CAS  PubMed  Google Scholar 

  8. Bensimon, A. et al. ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage. Sci. Signal. 3, rs3 (2010).

    CAS  PubMed  Google Scholar 

  9. Schlam-Babayov, S. et al. Phosphoproteomics reveals novel modes of function and inter-relationships among PIKKs in response to genotoxic stress. EMBO J. 40, e104400 (2021).

    PubMed  Google Scholar 

  10. Lavin, M. F. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat. Rev. Mol. Cell Biol. 9, 759–769 (2008).

    CAS  PubMed  Google Scholar 

  11. Zhang, Y. et al. Mitochondrial redox sensing by the kinase ATM maintains cellular antioxidant capacity. Sci. Signal. 11, eaaq0702 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. Lee, J.-H. et al. ATM directs DNA damage responses and proteostasis via genetically separable pathways. Sci. Signal. 11, eaan5598 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Guo, Z., Kozlov, S., Lavin, M. F., Person, M. D. & Paull, T. T. ATM activation by oxidative stress. Science 330, 517–521 (2010).

    CAS  PubMed  Google Scholar 

  14. Corcoles-Saez, I. et al. Essential function of Mec1, the budding yeast ATM/ATR checkpoint-response kinase, in protein homeostasis. Dev. Cell 46, 495–503.e2 (2018).

    CAS  PubMed  Google Scholar 

  15. Cosentino, C., Grieco, D. & Costanzo, V. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J. 30, 546–555 (2011).

    CAS  PubMed  Google Scholar 

  16. Sharma, N. K. et al. Intrinsic mitochondrial DNA repair defects in ataxia telangiectasia. DNA Repair. 13, 22–31 (2014).

    CAS  PubMed  Google Scholar 

  17. D’Souza, A. D., Parish, I. A., Krause, D. S., Kaech, S. M. & Shadel, G. S. Reducing mitochondrial ROS improves disease-related pathology in a mouse model of ataxia-telangiectasia. Mol. Ther. 21, 42–48 (2013).

    PubMed  Google Scholar 

  18. Tresini, M. et al. The core spliceosome as target and effector of non-canonical ATM signalling. Nature 523, 53–58 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Katzenberger, R. J., Marengo, M. S. & Wassarman, D. A. ATM and ATR pathways signal alternative splicing of Drosophila TAF1 pre-mRNA in response to DNA damage. Mol. Cell Biol. 26, 9256–9267 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sarkar, A. et al. Ataxia telangiectasia mutated interacts with Parkin and induces mitophagy independent of kinase activity. Evidence from mantle cell lymphoma. Haematologica 106, 495–512 (2021).

    CAS  PubMed  Google Scholar 

  21. Yates, L. A. et al. Cryo-EM structure of nucleotide-bound Tel1ATM unravels the molecular basis of inhibition and structural rationale for disease-associated mutations. Structure 28, 96–104.e3 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Baretic´, D. et al. Structures of closed and open conformations of dimeric human ATM. Sci. Adv. 3, e1700933 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. Jansma, M. et al. Near-complete structure and model of Tel1ATM from Chaetomium thermophilum reveals a robust autoinhibited ATP state. Structure 28, 83–95.e5 (2020).

    CAS  PubMed  Google Scholar 

  24. Wang, X. et al. Structure of the intact ATM/Tel1 kinase. Nat. Commun. 7, 11655 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lau, W. C. Y. et al. Structure of the human dimeric ATM kinase. Cell Cycle 15, 1117–1124 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee, J. H. & Paull, T. T. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308, 551–554 (2005).

    CAS  PubMed  Google Scholar 

  27. Uziel, T. et al. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22, 5612–5621 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou, Y. et al. Regulation of the DNA damage response by DNA-PKcs inhibitory phosphorylation of ATM. Mol. Cell 65, 91–104 (2017).

    CAS  PubMed  Google Scholar 

  29. Sun, Y., Jiang, X., Chen, S., Fernandes, N. & Price, B. D. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc. Natl Acad. Sci. USA 102, 13182–13187 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun, Y., Xu, Y., Roy, K. & Price, B. D. DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity. Mol. Cell Biol. 27, 8502–8509 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    CAS  PubMed  Google Scholar 

  32. Kozlov, S. V. et al. Autophosphorylation and ATM activation: additional sites add to the complexity. J. Biol. Chem. 286, 9107–9119 (2010).

    PubMed  PubMed Central  Google Scholar 

  33. Kozlov, S. V. et al. Involvement of novel autophosphorylation sites in ATM activation. EMBO J. 25, 3504–3514 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Khoronenkova, S. V. Mechanisms of non-canonical activation of ataxia telangiectasia mutated. Biochem. Mosc. 81, 1669–1675 (2016).

    CAS  Google Scholar 

  35. Khoronenkova, S. V. & Dianov, G. L. ATM prevents DSB formation by coordinating SSB repair and cell cycle progression. Proc. Natl Acad. Sci. USA 112, 3997–4002 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin, C. P., Ban, Y., Lyu, Y. L. & Liu, L. F. Proteasome-dependent processing of topoisomerase I-DNA adducts into DNA double strand breaks at arrested replication forks. J. Biol. Chem. 284, 28084–28092 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sordet, O. et al. Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks. EMBO Rep. 10, 887–893 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sordet, O., Nakamura, A. J., Redon, C. E. & Pommier, Y. DNA double-strand breaks and ATM activation by transcription-blocking DNA lesions. Cell Cycle 9, 274–278 (2010).

    CAS  PubMed  Google Scholar 

  39. Cristini, A. et al. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions. Nucleic Acids Res. 44, 1161–1178 (2016).

    CAS  PubMed  Google Scholar 

  40. Yang, C. et al. Aurora-B mediated ATM serine 1403 phosphorylation is required for mitotic ATM activation and the spindle checkpoint. Mol. Cell 44, 597–608 (2011).

    PubMed  PubMed Central  Google Scholar 

  41. Yeo, A. J. et al. Impaired endoplasmic reticulum-mitochondrial signaling in ataxia-telangiectasia. iScience 24, 101972 (2021).

    CAS  PubMed  Google Scholar 

  42. Chow, H.-M. et al. ATM is activated by ATP depletion and modulates mitochondrial function through NRF1. J. Cell Biol. 218, 909–928 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Xin, J. et al. Structural basis of allosteric regulation of Tel1/ATM kinase. Cell Res. 29, 655–665 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang, H. et al. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature 552, 368–373 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tubbs, A. & Nussenzweig, A. Endogenous DNA damage as a source of genomic instability in cancer. Cell 168, 644–656 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. McKinnon, P. J. Genome integrity and disease prevention in the nervous system. Genes Dev. 31, 1180–1194 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Santivasi, W. L. & Xia, F. Ionizing radiation-induced DNA damage, response, and repair. Antioxid. Redox Signal. 21, 251–259 (2014).

    CAS  PubMed  Google Scholar 

  48. Chatterjee, N. & Walker, G. C. Mechanisms of DNA damage, repair, and mutagenesis. Env. Mol. Mutagen. 58, 235–263 (2017).

    CAS  Google Scholar 

  49. Stiff, T. et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 64, 2390–2396 (2004).

    CAS  PubMed  Google Scholar 

  50. Wang, H., Wang, M., Wang, H., Böcker, W. & Iliakis, G. Complex H2AX phosphorylation patterns by multiple kinases including ATM and DNA-PK in human cells exposed to ionizing radiation and treated with kinase inhibitors. J. Cell Physiol. 202, 492–502 (2005).

    CAS  PubMed  Google Scholar 

  51. Caron, P. et al. Non-redundant functions of ATM and DNA-PKcs in response to DNA double-strand breaks. Cell Rep. 13, 1598–1609 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Burma, S., Chen, B. P., Murphy, M., Kurimasa, A. & Chen, D. J. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J. Biol. Chem. 276, 42462–42467 (2001).

    CAS  PubMed  Google Scholar 

  53. Coster, G. & Goldberg, M. The cellular response to DNA damage: a focus on MDC1 and its interacting proteins. Nucleus 1, 166–178 (2010).

    PubMed  Google Scholar 

  54. Wu, L., Luo, K., Lou, Z. & Chen, J. MDC1 regulates intra-S-phase checkpoint by targeting NBS1 to DNA double-strand breaks. Proc. Natl Acad. Sci. USA 105, 11200–11205 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Melander, F. et al. Phosphorylation of SDT repeats in the MDC1 N terminus triggers retention of NBS1 at the DNA damage-modified chromatin. J. Cell Biol. 181, 213–226 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Spycher, C. et al. Constitutive phosphorylation of MDC1 physically links the MRE11-RAD50-NBS1 complex to damaged chromatin. J. Cell Biol. 181, 227–240 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Shiloh, Y. The cerebellar degeneration in ataxia-telangiectasia: a case for genome instability. DNA Repair. 95, 102950 (2020).

    CAS  PubMed  Google Scholar 

  58. Blackford, A. N. & Jackson, S. P. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol. Cell 66, 801–817 (2017).

    CAS  PubMed  Google Scholar 

  59. Symington, L. S. Mechanism and regulation of DNA end resection in eukaryotes. Crit. Rev. Biochem. Mol. Biol. 51, 195–212 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Marechal, A. & Zou, L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb. Perspect. Biol. 5, a012716 (2013).

    PubMed  PubMed Central  Google Scholar 

  61. Kastan, M. B. & Lim, D. The many substrates and functions of ATM. Nat. Rev. Mol. Cell Biol. 1, 179–186 (2000).

    CAS  PubMed  Google Scholar 

  62. Kowalczykowski, S. C. An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 7, a016410 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. Sartori, A. A. et al. Human CtIP promotes DNA end resection. Nature 450, 509–514 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. You, Z. et al. CtIP links DNA double-strand break sensing to resection. Mol. Cell 36, 954–969 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, H. et al. The interaction of CtIP and Nbs1 connects CDK and ATM to regulate HR-mediated double-strand break repair. PLoS Genet. 9, e1003277 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Peterson, S. E. et al. Activation of DSB processing requires phosphorylation of CtIP by ATR. Mol. Cell 49, 657–667 (2013).

    CAS  PubMed  Google Scholar 

  67. Bolderson, E. et al. Phosphorylation of Exo1 modulates homologous recombination repair of DNA double-strand breaks. Nucleic acids Res. 38, 1821–1831 (2010).

    CAS  PubMed  Google Scholar 

  68. Ababou, M. et al. ATM-dependent phosphorylation and accumulation of endogenous BLM protein in response to ionizing radiation. Oncogene 19, 5955–5963 (2000).

    CAS  PubMed  Google Scholar 

  69. Cortez, D., Wang, Y., Qin, J. & Elledge, S. J. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286, 1162–1166 (1999).

    CAS  PubMed  Google Scholar 

  70. Xu, B., O’Donnell, A. H., Kim, S. T. & Kastan, M. B. Phosphorylation of serine 1387 in Brca1 is specifically required for the Atm-mediated S-phase checkpoint after ionizing irradiation. Cancer Res. 62, 4588–4591 (2002).

    CAS  PubMed  Google Scholar 

  71. Gatei, M. et al. Role for ATM in DNA damage-induced phosphorylation of BRCA1. Cancer Res. 60, 3299–3304 (2000).

    CAS  PubMed  Google Scholar 

  72. Ahlskog, J. K., Larsen, B. D., Achanta, K. & Sørensen, C. S. ATM/ATR-mediated phosphorylation of PALB2 promotes RAD51 function. EMBO Rep. 17, 671–681 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kijas, A. W. et al. ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through exonuclease 1. Nucleic Acids Res. 43, 8352–8367 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Di Virgilio, M., Ying, C. Y. & Gautier, J. PIKK-dependent phosphorylation of Mre11 induces MRN complex inactivation by disassembly from chromatin. DNA Repair. 8, 1311–1320 (2009).

    PubMed  PubMed Central  Google Scholar 

  75. Zhao, X. et al. Cell cycle-dependent control of homologous recombination. Acta Biochim. Biophys. Sin. 49, 655–668 (2017).

    CAS  PubMed  Google Scholar 

  76. Aylon, Y., Liefshitz, B. & Kupiec, M. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J. 23, 4868–4875 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ferretti, L. P., Lafranchi, L. & Sartori, A. A. Controlling DNA-end resection: a new task for CDKs. Front. Genet. 4, 99 (2013).

    PubMed  PubMed Central  Google Scholar 

  78. Simoneau, A., Robellet, X., Ladouceur, A.-M. & D’Amours, D. Cdk1-dependent regulation of the Mre11 complex couples DNA repair pathways to cell cycle progression. Cell Cycle 13, 1078–1090 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Falck, J. et al. CDK targeting of NBS1 promotes DNA-end resection, replication restart and homologous recombination. EMBO Rep. 13, 561–568 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Buis, J., Stoneham, T., Spehalski, E. & Ferguson, D. O. Mre11 regulates CtIP-dependent double-strand break repair by interaction with CDK2. Nat. Struct. Mol. Biol. 19, 246–252 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Tomimatsu, N. et al. Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice. Nat. Commun. 5, 3561 (2014).

    PubMed  Google Scholar 

  82. Huertas, P., Cortes-Ledesma, F., Sartori, A. A., Aguilera, A. & Jackson, S. P. CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455, 689–692 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Huertas, P. & Jackson, S. P. Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J. Biol. Chem. 284, 9558–9565 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Chang, H. H. Y., Pannunzio, N. R., Adachi, N. & Lieber, M. R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18, 495–506 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang, G. et al. Super-resolution imaging identifies PARP1 and the Ku complex acting as DNA double-strand break sensors. Nucleic Acids Res. 46, 3446–3457 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Britton, S., Coates, J. & Jackson, S. P. A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J. Cell Biol. 202, 579–595 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Jette, N. & Lees-Miller, S. P. The DNA-dependent protein kinase: A multifunctional protein kinase with roles in DNA double strand break repair and mitosis. Prog. Biophys. Mol. Biol. 117, 194–205 (2015).

    CAS  PubMed  Google Scholar 

  88. Chen, B. P. et al. Ataxia telangiectasia mutated (ATM) is essential for DNA-PKcs phosphorylations at the Thr-2609 cluster upon DNA double strand break. J. Biol. Chem. 282, 6582–6587 (2007).

    CAS  PubMed  Google Scholar 

  89. Riballo, E. et al. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol. Cell 16, 715–724 (2004).

    CAS  PubMed  Google Scholar 

  90. Goodarzi, A. A. et al. DNA-PK autophosphorylation facilitates Artemis endonuclease activity. EMBO J. 25, 3880–3889 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Imamichi, S., Sharma, M. K., Kamdar, R. P., Fukuchi, M. & Matsumoto, Y. Ionizing radiation-induced XRCC4 phosphorylation is mediated through ATM in addition to DNA-PK. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 90, 365–372 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yu, Y. et al. DNA-PK and ATM phosphorylation sites in XLF/Cernunnos are not required for repair of DNA double strand breaks. DNA Repair. 7, 1680–1692 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Sastre-Moreno, G. et al. Regulation of human polλ by ATM-mediated phosphorylation during non-homologous end joining. DNA Repair. 51, 31–45 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Mirman, Z. & de Lange, T. 53BP1: a DSB escort. Genes Dev. 34, 7–23 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Bothmer, A. et al. Regulation of DNA end joining, resection, and immunoglobulin class switch recombination by 53BP1. Mol. Cell 42, 319–329 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chapman, J. R. et al. RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol. Cell 49, 858–871 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Feng, L., Fong, K.-W., Wang, J., Wang, W. & Chen, J. RIF1 counteracts BRCA1-mediated end resection during DNA repair. J. Biol. Chem. 288, 11135–11143 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zimmermann, M., Lottersberger, F., Buonomo, S. B., Sfeir, A. & de Lange, T. 53BP1 regulates DSB repair using Rif1 to control 5′ end resection. Science 339, 700–704 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Di Virgilio, M. et al. Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science 339, 711–715 (2013).

    PubMed  Google Scholar 

  100. Callen, E. et al. 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. Cell 153, 1266–1280 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Balmus, G. et al. ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks. Nat. Commun. 10, 87 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Nakamura, K. et al. Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination. Mol. Cell 81, 1084–1099 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Britton, S. et al. ATM antagonizes NHEJ proteins assembly and DNA-ends synapsis at single-ended DNA double strand breaks. Nucleic Acids Res. 48, 9710–9723 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Katsuki, Y., Jeggo, P. A., Uchihara, Y., Takata, M. & Shibata, A. DNA double-strand break end resection: a critical relay point for determining the pathway of repair and signaling. Genome Instab. Dis. 1, 155–171 (2020).

    Google Scholar 

  106. Ceccaldi, R., Rondinelli, B. & D’Andrea, A. D. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26, 52–64 (2016).

    CAS  PubMed  Google Scholar 

  107. Deshpande, R. A. et al. DNA-dependent protein kinase promotes DNA end processing by MRN and CtIP. Sci. Adv. 6, eaay0922 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Ingram, S. P. et al. Mechanistic modelling supports entwined rather than exclusively competitive DNA double-strand break repair pathway. Sci. Rep. 9, 6359 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kakarougkas, A. & Jeggo, P. A. DNA DSB repair pathway choice: an orchestrated handover mechanism. Br. J. Radiol. 87, 20130685 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer 6, 789–802 (2006).

    CAS  PubMed  Google Scholar 

  111. Pommier, Y. Drugging topoisomerases: lessons and challenges. ACS Chem. Biol. 8, 82–95 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Alagoz, M., Chiang, S. C., Sharma, A. & El-Khamisy, S. F. ATM deficiency results in accumulation of DNA-topoisomerase I covalent intermediates in neural cells. PLoS ONE 8, e58239 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Katyal, S. et al. Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes. Nat. Neurosci. 17, 813–821 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Das, B. B. et al. Optimal function of the DNA repair enzyme TDP1 requires its phosphorylation by ATM and/or DNA-PK. EMBO J. 28, 3667–3680 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Chiang, S.-C., Carroll, J. & El-Khamisy, S. F. TDP1 serine 81 promotes interaction with DNA ligase IIIalpha and facilitates cell survival following DNA damage. Cell Cycle 9, 588–595 (2010).

    CAS  PubMed  Google Scholar 

  116. Yamamoto, K. et al. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors. eLife 5, e14709 (2016).

    PubMed  PubMed Central  Google Scholar 

  117. Yamamoto, K. et al. Kinase-dead ATM protein causes genomic instability and early embryonic lethality in mice. J. Cell Biol. 198, 305–313 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Daniel, J. A. et al. Loss of ATM kinase activity leads to embryonic lethality in mice. J. Cell Biol. 198, 295–304 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Pommier, Y., Leo, E., Zhang, H. & Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 17, 421–433 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Pommier, Y. et al. Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2). DNA Repair 19, 114–129 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Álvarez-Quilón, A. et al. ATM specifically mediates repair of double-strand breaks with blocked DNA ends. Nat. Commun. 5, 3347 (2014).

    PubMed  Google Scholar 

  122. Álvarez-Quilón, A. et al. Endogenous topoisomerase II-mediated DNA breaks drive thymic cancer predisposition linked to ATM deficiency. Nat. Commun. 11, 910 (2020).

    PubMed  PubMed Central  Google Scholar 

  123. Tamaichi, H. et al. Ataxia telangiectasia mutated-dependent regulation of topoisomerase II alpha expression and sensitivity to topoisomerase II inhibitor. Cancer Sci. 104, 178–184 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Hoa, N. N. et al. Mre11 Is essential for the removal of lethal topoisomerase 2 covalent cleavage complexes. Mol. Cell 64, 580–592 (2016).

    CAS  PubMed  Google Scholar 

  125. Yamaguchi-Iwai, Y. et al. Mre11 is essential for the maintenance of chromosomal DNA in vertebrate cells. EMBO J. 18, 6619–6629 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Lee, K. C. et al. MRE11 facilitates the removal of human topoisomerase II complexes from genomic DNA. Biol. Open 1, 863–873 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Aparicio, T., Baer, R., Gottesman, M. & Gautier, J. MRN, CtIP, and BRCA1 mediate repair of topoisomerase II-DNA adducts. J. Cell Biol. 212, 399–408 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Keeney, S. & Neale, M. J. Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. Biochemical Soc. Trans. 34, 523–525 (2006).

    CAS  Google Scholar 

  129. Chanut, P., Britton, S., Coates, J., Jackson, S. P. & Calsou, P. Coordinated nuclease activities counteract Ku at single-ended DNA double-strand breaks. Nat. Commun. 7, 12889 (2016).

    PubMed  PubMed Central  Google Scholar 

  130. Lee, J.-H., Ryu, S. W., Ender, N. A., Paull, T. T. & Paull, T. T. Poly-ADP-ribosylation drives loss of protein homeostasis in ATM and Mre11 deficiency. Mol. Cell 81, 1515–1533 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Chou, W.-C. et al. Chk2-dependent phosphorylation of XRCC1 in the DNA damage response promotes base excision repair. EMBO J. 27, 3140–3150 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Jiang, B., Glover, J. N. & Weinfeld, M. Neurological disorders associated with DNA strand-break processing enzymes. Mech. Ageing Dev. 161, 130–140 (2017).

    CAS  PubMed  Google Scholar 

  133. Hoch, N. C. et al. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature 541, 87–91 (2017).

    CAS  PubMed  Google Scholar 

  134. Yoon, G. & Caldecott, K. W. Nonsyndromic cerebellar ataxias associated with disorders of DNA single-strand break repair. Handb. Clin. Neurol. 155, 105–115 (2018).

    PubMed  Google Scholar 

  135. Muñoz, M. J. et al. DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell 137, 708–720 (2009).

    PubMed  Google Scholar 

  136. Nicholls, C. D., Shields, M. A., Lee, P. W. K., Robbins, S. M. & Beattie, T. L. UV-dependent alternative splicing uncouples p53 activity and PIG3 gene function through rapid proteolytic degradation. J. Biol. Chem. 279, 24171–24178 (2004).

    CAS  PubMed  Google Scholar 

  137. Su, C. et al. RUG3 and ATM synergistically regulate the alternative splicing of mitochondrial nad2 and the DNA damage response in Arabidopsis thaliana. Sci. Rep. 7, 43897 (2017).

    PubMed  PubMed Central  Google Scholar 

  138. Niehrs, C. & Luke, B. Regulatory R-loops as facilitators of gene expression and genome stability. Nat. Rev. Mol. Cell Biol. 21, 167–178 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Yeo, A. J. et al. R-loops in proliferating cells but not in the brain: implications for AOA2 and other autosomal recessive ataxias. PLoS ONE 9, e90219 (2014).

    PubMed  PubMed Central  Google Scholar 

  140. Hamperl, S., Bocek, M. J., Saldivar, J. C., Swigut, T. & Cimprich, K. A. Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. Cell 170, 774–786.e19 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Marabitti, V. et al. ATM pathway activation limits R-loop-associated genomic instability in Werner syndrome cells. Nucleic Acids Res. 47, 3485–3502 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Sollier, J. et al. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol. Cell 56, 777–785 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Yasuhara, T. et al. Human Rad52 promotes XPG-mediated R-loop processing to initiate transcription-associated homologous recombination repair. Cell 175, 558–570.e11 (2018).

    CAS  PubMed  Google Scholar 

  144. Cristini, A. et al. Dual processing of R-Loops and topoisomerase I induces transcription-dependent DNA double-strand breaks. Cell Rep. 28, 3167–3181.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Makharashvili, N. et al. Sae2/CtIP prevents R-loop accumulation in eukaryotic cells. eLife 7, e42733 (2018).

    PubMed  PubMed Central  Google Scholar 

  146. Yüce, Ö. & West, S. C. Senataxin, defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2, lies at the interface of transcription and the DNA damage response. Mol. Cell. Biol. 33, 406–417 (2013).

    PubMed  PubMed Central  Google Scholar 

  147. Singh, A., Kukreti, R., Saso, L. & Kukreti, S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 24, 1583 (2019).

    CAS  PubMed Central  Google Scholar 

  148. Watts, M. E., Pocock, R. & Claudianos, C. Brain energy and oxygen metabolism: emerging role in normal function and disease. Front. Mol. Neurosci. 11, 216 (2018).

    PubMed  PubMed Central  Google Scholar 

  149. Gandhi, S. & Abramov, A. Y. Mechanism of oxidative stress in neurodegeneration. Oxid. Med. Cell. Longev. 2012, 1–11 (2012).

    Google Scholar 

  150. Cenini, G., Lloret, A. & Cascella, R. Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxid. Med. Cell. Longev. 2019, 2105607 (2019).

    PubMed  PubMed Central  Google Scholar 

  151. Barzilai, A., Rotman, G. & Shiloh, Y. ATM deficiency and oxidative stress: a new dimension of defective response to DNA damage. DNA Repair. 1, 3–25 (2002).

    CAS  PubMed  Google Scholar 

  152. Quick, K. L. & Dugan, L. L. Superoxide stress identifies neurons at risk in a model of ataxia-telangiectasia. Ann. Neurol. 49, 627–635 (2001).

    CAS  PubMed  Google Scholar 

  153. Pietrucha, B. et al. Comparison of selected parameters of redox homeostasis in patients with ataxia-telangiectasia and nijmegen breakage syndrome. Oxid. Med. Cell Longev. 2017, 6745840 (2017).

    PubMed  PubMed Central  Google Scholar 

  154. Kamsler, A. et al. Increased oxidative stress in ataxia telangiectasia evidenced by alterations in redox state of brains from Atm-deficient mice. Cancer Res. 61, 1849–1854 (2001).

    CAS  PubMed  Google Scholar 

  155. Liu, N. et al. ATM deficiency induces oxidative stress and endoplasmic reticulum stress in astrocytes. Lab. Invest. 85, 1471–1480 (2005).

    CAS  PubMed  Google Scholar 

  156. Takao, N., Li, Y. & Yamamoto, K. Protective roles for ATM in cellular response to oxidative stress. FEBS Lett. 472, 133–136 (2000).

    CAS  PubMed  Google Scholar 

  157. Watters, D. J. Oxidative stress in ataxia telangiectasia. Redox Rep. 8, 23–29 (2003).

    CAS  PubMed  Google Scholar 

  158. Reichenbach, J. et al. Elevated oxidative stress in patients with ataxia telangiectasia. Antioxid. Redox Signal. 4, 465–469 (2002).

    CAS  PubMed  Google Scholar 

  159. Reichenbach, J. et al. Anti-oxidative capacity in patients with ataxia telangiectasia. Clin. Exp. Immunol. 117, 535–539 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Semlitsch, M., Shackelford, R. E., Zirkl, S., Sattler, W. & Malle, E. ATM protects against oxidative stress induced by oxidized low-density lipoprotein. DNA Repair 10, 848–860 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Yeo, A. J. et al. Loss of ATM in airway epithelial cells is associated with susceptibility to oxidative stress. Am. J. Respir. Crit. Care Med. 196, 391–393 (2017).

    CAS  PubMed  Google Scholar 

  162. Mosesso, P., Piane, M., Pepe, G., Cinelli, S. & Chessa, L. Modulation of hypersensitivity to oxidative DNA damage in ATM defective cells induced by potassium bromate by inhibition of the poly (ADP-ribose) polymerase (PARP). Mutat. Res. Genetic Toxicol. Environ. Mutagen. 836, 117–123 (2018).

    CAS  Google Scholar 

  163. Ehrenfeld, V., Heusel, J. R., Fulda, S. & van Wijk, S. J. L. ATM inhibition enhances Auranofin-induced oxidative stress and cell death in lung cell lines. PLoS ONE 15, e0244060 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Kim, J. & Wong, P. K. Oxidative stress is linked to ERK1/2-p16 signaling-mediated growth defect in ATM-deficient astrocytes. J. Biol. Chem. 284, 14396–14404 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Chessa, L. et al. Heterogeneity in ataxia-telangiectasia: classical phenotype associated with intermediate cellular radiosensitivity. Am. J. Med. Genet. 42, 741–746 (1992).

    CAS  PubMed  Google Scholar 

  166. Gilad, S. et al. Genotype-phenotype relationships in ataxia-telangiectasia and variants. Am. J. Hum. Genet. 62, 551–561 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Toyoshima, M. et al. Ataxia-telangiectasia without immunodeficiency: novel point mutations within and adjacent to the phosphatidylinositol 3-kinase-like domain. Am. J. Med. Genet. 75, 141–144 (1998).

    CAS  PubMed  Google Scholar 

  168. Barlow, C. et al. Loss of the ataxia-telangiectasia gene product causes oxidative damage in target organs. Proc. Natl Acad. Sci. USA 96, 9915–9919 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Kuljis, R. O., Xu, Y., Aguila, M. C. & Baltimore, D. Degeneration of neurons, synapses, and neuropil and glial activation in a murine Atm knockout model of ataxia-telangiectasia. Proc. Natl Acad. Sci. USA 94, 12688–12693 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996).

    CAS  PubMed  Google Scholar 

  171. Bishop, A. J., Barlow, C., Wynshaw-Boris, A. J. & Schiestl, R. H. Atm deficiency causes an increased frequency of intrachromosomal homologous recombination in mice. Cancer Res. 60, 395–399 (2000).

    CAS  PubMed  Google Scholar 

  172. Xu, Y. et al. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev. 10, 2411–2422 (1996).

    CAS  PubMed  Google Scholar 

  173. Schubert, R. et al. Cancer chemoprevention by the antioxidant tempol in Atm-deficient mice. Hum. Mol. Genet. 13, 1793–1802 (2004).

    CAS  PubMed  Google Scholar 

  174. Reliene, R. & Schiestl, R. H. Antioxidant N-acetyl cysteine reduces incidence and multiplicity of lymphoma in Atm deficient mice. DNA Repair 5, 852–859 (2006).

    CAS  PubMed  Google Scholar 

  175. Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431, 997–1002 (2004).

    CAS  PubMed  Google Scholar 

  176. Kim, J. & Wong, P. K. Y. Loss of ATM impairs proliferation of neural stem cells through oxidative stress-mediated p38 MAPK signaling. Stem Cell 27, 1987–1998 (2009).

    CAS  Google Scholar 

  177. Watters, D. et al. Localization of a portion of extranuclear ATM to peroxisomes. J. Biol. Chem. 274, 34277–34282 (1999).

    CAS  PubMed  Google Scholar 

  178. Zhang, J. et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat. Cell Biol. 17, 1259–1269 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Lim, D. S. et al. ATM binds to beta-adaptin in cytoplasmic vesicles. Proc. Natl Acad. Sci. USA 95, 10146–10151 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Valentin-Vega, Y. A. et al. Mitochondrial dysfunction in ataxia-telangiectasia. Blood 119, 1490–1500 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Watters, D. et al. Cellular localisation of the ataxia-telangiectasia (ATM) gene product and discrimination between mutated and normal forms. Oncogene 14, 1911–1921 (1997).

    CAS  PubMed  Google Scholar 

  182. Blignaut, M., Loos, B., Botchway, S. W., Parker, A. W. & Huisamen, B. Ataxia-telangiectasia mutated is located in cardiac mitochondria and impacts oxidative phosphorylation. Sci. Rep. 9, 4782 (2019).

    PubMed  PubMed Central  Google Scholar 

  183. Li, J., Han, Y. R., Plummer, M. R. & Herrup, K. Cytoplasmic ATM in neurons modulates synaptic function. Curr. Biol. 19, 2091–2096 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Barlow, C. et al. ATM is a cytoplasmic protein in mouse brain required to prevent lysosomal accumulation. Proc. Natl Acad. Sci. USA 97, 871–876 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Oka, A. & Takashima, S. Expression of the ataxia-telangiectasia gene (ATM) product in human cerebellar neurons during development. Neurosci. Lett. 252, 195–198 (1998).

    CAS  PubMed  Google Scholar 

  186. Kuljis, R. O., Chen, G., Lee, E. Y., Aguila, M. C. & Xu, Y. ATM immunolocalization in mouse neuronal endosomes: implications for ataxia-telangiectasia. Brain Res. 842, 351–358 (1999).

    CAS  PubMed  Google Scholar 

  187. Vail, G. et al. ATM protein is located on presynaptic vesicles and its deficit leads to failures in synaptic plasticity. J. Neurophysiol. 116, 201–209 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Hadian, K. & Krappmann, D. Signals from the nucleus: activation of NF-kappaB by cytosolic ATM in the DNA damage response. Sci. Signal. 4, pe2 (2011).

    PubMed  Google Scholar 

  189. Wu, Z.-H., Shi, Y., Tibbetts, R. S. & Miyamoto, S. Molecular linkage between the kinase ATM and NF-kappaB signaling in response to genotoxic stimuli. Science 311, 1141–1146 (2006).

    CAS  PubMed  Google Scholar 

  190. Hinz, M. et al. A cytoplasmic ATM-TRAF6-cIAP1 module links nuclear DNA damage signaling to ubiquitin-mediated NF-κB activation. Mol. Cell 40, 63–74 (2010).

    CAS  PubMed  Google Scholar 

  191. Miyamoto, S. Nuclear initiated NF-kappaB signaling: NEMO and ATM take center stage. Cell Res. 21, 116–130 (2011).

    CAS  PubMed  Google Scholar 

  192. Wu, G. et al. An ATM/TRIM37/NEMO axis counteracts genotoxicity by activating nuclear-to-cytoplasmic NF-κB signaling. Cancer Res. 78, 6399–6412 (2018).

    CAS  PubMed  Google Scholar 

  193. Fang, L. et al. ATM regulates NF-κB-dependent immediate-early genes via RelA Ser 276 phosphorylation coupled to CDK9 promoter recruitment. Nucleic Acids Res. 42, 8416–8432 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Nolfi-Donegan, D., Braganza, A. & Shiva, S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 37, 101674 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Zhao, R.-Z., Jiang, S., Zhang, L. & Yu, Z.-B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int. J. Mol. Med. 44, 3–15 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Smith, E. F., Shaw, P. J. & De Vos, K. J. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci. Lett. 710, 132933 (2019).

    PubMed  Google Scholar 

  197. Winklhofer, K. F. & Haass, C. Mitochondrial dysfunction in Parkinson’s disease. Biochim. Biophys. Acta 1802, 29–44 (2010).

    CAS  PubMed  Google Scholar 

  198. Carmo, C., Naia, L., Lopes, C. & Rego, A. C. Mitochondrial dysfunction in Huntington’s disease. Adv. Exp. Med. Biol. 1049, 59–83 (2018).

    CAS  PubMed  Google Scholar 

  199. Lee, J.-H. & Paull, T. T. Mitochondria at the crossroads of ATM-mediated stress signaling and regulation of reactive oxygen species. Redox Biol. 32, 101511 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Eaton, J. S., Lin, Z. P., Sartorelli, A. C., Bonawitz, N. D. & Shadel, G. S. Ataxia-telangiectasia mutated kinase regulates ribonucleotide reductase and mitochondrial homeostasis. J. Clin. Invest. 117, 2723–2734 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Ambrose, M., Goldstine, J. V. & Gatti, R. A. Intrinsic mitochondrial dysfunction in ATM-deficient lymphoblastoid cells. Hum. Mol. Genet. 16, 2154–2164 (2007).

    CAS  PubMed  Google Scholar 

  202. Fang, E. F. et al. NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab. 24, 566–581 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Weyemi, U. et al. Histone H2AX deficiency causes neurobehavioral deficits and impaired redox homeostasis. Nat. Commun. 9, 1526 (2018).

    PubMed  PubMed Central  Google Scholar 

  204. Weyemi, U. et al. Histone H2AX promotes neuronal health by controlling mitochondrial homeostasis. Proc. Natl Acad. Sci. USA 116, 7471–7476 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Zha, S., Sekiguchi, J., Brush, J. W., Bassing, C. H. & Alt, F. W. Complementary functions of ATM and H2AX in development and suppression of genomic instability. Proc. Natl Acad. Sci. USA 105, 9302–9306 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Sarkar, A. & Gandhi, V. Activation of ATM kinase by ROS generated during ionophore-induced mitophagy in human T and B cell malignancies. Mol. Cell. Biochem. 476, 417–423 (2020).

    PubMed  PubMed Central  Google Scholar 

  207. Cirotti, C. et al. Redox activation of ATM enhances GSNOR translation to sustain mitophagy and tolerance to oxidative stress. EMBO Rep. 22, e50500 (2021).

    CAS  PubMed  Google Scholar 

  208. Rizza, S. et al. S-nitrosylation drives cell senescence and aging in mammals by controlling mitochondrial dynamics and mitophagy. Proc. Natl Acad. Sci. USA 115, E3388–E3397 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Rizza, S. & Filomeni, G. Denitrosylate and live longer: how ADH5/GSNOR links mitophagy to aging. Autophagy 14, 1285–1287 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Guo, Q.-Q. et al. ATM-CHK2-Beclin 1 axis promotes autophagy to maintain ROS homeostasis under oxidative stress. EMBO J. 39, e103111 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Criddle, D. N. et al. Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells. J. Biol. Chem. 281, 40485–40492 (2006).

    CAS  PubMed  Google Scholar 

  212. Tassinari, V. et al. Atrophy, oxidative switching and ultrastructural defects in skeletal muscle of the ataxia telangiectasia mouse model. J. Cell Sci. 132, jcs223008 (2019).

    CAS  PubMed  Google Scholar 

  213. Agathanggelou, A. et al. Targeting the ataxia telangiectasia mutated-null phenotype in chronic lymphocytic leukemia with pro-oxidants. Haematologica 100, 1076–1085 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Schroeder, E. A., Raimundo, N. & Shadel, G. S. Epigenetic silencing mediates mitochondria stress-induced longevity. Cell Metab. 17, 954–964 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Pan, Y. & Shadel, G. S. Extension of chronological life span by reduced TOR signaling requires down-regulation of Sch9p and involves increased mitochondrial OXPHOS complex density. Aging 1, 131–145 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Rieusset, J. The role of endoplasmic reticulum-mitochondria contact sites in the control of glucose homeostasis: an update. Cell Death Dis. 9, 388 (2018).

    PubMed  PubMed Central  Google Scholar 

  217. Rodríguez, L. R. et al. Oxidative stress modulates rearrangement of endoplasmic reticulum-mitochondria contacts and calcium dysregulation in a Friedreich’s ataxia model. Redox Biol. 37, 101762 (2020).

    PubMed  PubMed Central  Google Scholar 

  218. Fernandez-Marcos, P. J. & Nóbrega-Pereira, S. NADPH: new oxygen for the ROS theory of aging. Oncotarget 7, 50814–50815 (2016).

    PubMed  PubMed Central  Google Scholar 

  219. Chen, J. et al. The impact of glutamine supplementation on the symptoms of ataxia-telangiectasia: a preclinical assessment. Mol. Neurodegener. 11, 60 (2016).

    PubMed  PubMed Central  Google Scholar 

  220. Peng, M. et al. Intracellular citrate accumulation by oxidized ATM-mediated metabolism reprogramming via PFKP and CS enhances hypoxic breast cancer cell invasion and metastasis. Cell Death Dis. 10, 228 (2019).

    PubMed  PubMed Central  Google Scholar 

  221. Bencokova, Z. et al. ATM activation and signaling under hypoxic conditions. Mol. Cell Biol. 29, 526–537 (2009).

    CAS  PubMed  Google Scholar 

  222. Lindahl, T. & Barnes, D. E. Repair of endogenous DNA damage. Cold Spring Harb. Symp. Quant. Biol. 65, 127–133 (2000).

    CAS  PubMed  Google Scholar 

  223. Reliene, R., Fischer, E. & Schiestl, R. H. Effect of N-acetyl cysteine on oxidative DNA damage and the frequency of DNA deletions in atm-deficient mice. Cancer Res. 64, 5148–5153 (2004).

    CAS  PubMed  Google Scholar 

  224. Weyemi, U. et al. NADPH oxidase 4 is a critical mediator in ataxia telangiectasia disease. Proc. Natl Acad. Sci. USA 112, 2121–2126 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Pommier, Y. et al. Repair of topoisomerase I-mediated DNA damage. Prog. Nucleic Acid. Res. Mol. Biol. 81, 179–229 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Ito, K. et al. Regulation of reactive oxygen species by Atm is essential for proper response to DNA double-strand breaks in lymphocytes. J. Immunol. 178, 103–110 (2007).

    CAS  PubMed  Google Scholar 

  227. Ray Chaudhuri, A. & Nussenzweig, A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 18, 610–621 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Gupte, R., Liu, Z. & Kraus, W. L. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev. 31, 101–126 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Liu, C., Vyas, A., Kassab, M. A., Singh, A. K. & Yu, X. The role of poly ADP-ribosylation in the first wave of DNA damage response. Nucleic Acids Res. 45, 8129–8141 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. El-Khamisy, S. F., Masutani, M., Suzuki, H. & Caldecott, K. W. A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res. 31, 5526–5533 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Mortusewicz, O., Amé, J.-C., Schreiber, V. & Leonhardt, H. Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells. Nucleic Acids Res. 35, 7665–7675 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Bonfiglio, J. J. et al. Serine ADP-ribosylation depends on HPF1. Mol. Cell 65, 932–940.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Gibbs-Seymour, I., Fontana, P., Rack, J. G. M. & Ahel, I. HPF1/C4orf27 is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity. Mol. Cell 62, 432–442 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Suskiewicz, M. J. et al. HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation. Nature 579, 598–602 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Larsen, S. C., Hendriks, I. A., Lyon, D., Jensen, L. J. & Nielsen, M. L. Systems-wide analysis of serine ADP-ribosylation reveals widespread occurrence and site-specific overlap with phosphorylation. Cell Rep. 24, 2493–2505.e4 (2018).

    CAS  PubMed  Google Scholar 

  236. Abplanalp, J. et al. Proteomic analyses identify ARH3 as a serine mono-ADP-ribosylhydrolase. Nat. Commun. 8, 2055 (2017).

    PubMed  PubMed Central  Google Scholar 

  237. Slade, D. et al. The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 477, 616–620 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Gassman, N. R., Stefanick, D. F., Kedar, P. S., Horton, J. K. & Wilson, S. H. Hyperactivation of PARP triggers nonhomologous end-joining in repair-deficient mouse fibroblasts. PLoS ONE 7, e49301 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Demin, A. A. et al. XRCC1 prevents toxic PARP1 trapping during DNA base excision repair. Mol. Cell 81, 3018–3030 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Koh, D. W. et al. Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. Proc. Natl Acad. Sci. USA 101, 17699–17704 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Hanai, S. et al. Loss of poly(ADP-ribose) glycohydrolase causes progressive neurodegeneration in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 101, 82–86 (2004).

    CAS  PubMed  Google Scholar 

  242. Horton, J. K., Stefanick, D. F. & Wilson, S. H. Involvement of poly(ADP-ribose) polymerase activity in regulating Chk1-dependent apoptotic cell death. DNA Repair. 4, 1111–1120 (2005).

    CAS  PubMed  Google Scholar 

  243. Alano, C. C. et al. NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J. Neurosci. 30, 2967–2978 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Wang, Y. et al. Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci. Signal. 4, ra20 (2011).

    PubMed  PubMed Central  Google Scholar 

  245. David, K. K., Andrabi, S. A., Dawson, T. M. & Dawson, V. L. Parthanatos, a messenger of death. Front. Biosci. 14, 1116–1128 (2009).

    CAS  Google Scholar 

  246. Andrabi, S. A. et al. Poly(ADP-ribose) (PAR) polymer is a death signal. Proc. Natl Acad. Sci. USA 103, 18308–18313 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Martire, S., Mosca, L. & d’Erme, M. PARP-1 involvement in neurodegeneration: a focus on Alzheimer’s and Parkinson’s diseases. Mech. Ageing Dev. 146–148, 53–64 (2015).

    PubMed  Google Scholar 

  248. Abeti, R. & Duchen, M. R. Activation of PARP by oxidative stress induced by β-amyloid: implications for Alzheimer’s disease. Neurochem. Res. 37, 2589–2596 (2012).

    CAS  PubMed  Google Scholar 

  249. Lee, Y. et al. Poly (ADP-ribose) in the pathogenesis of Parkinson’s disease. BMB Rep. 47, 424–432 (2014).

    PubMed  PubMed Central  Google Scholar 

  250. Kam, T.-I. et al. Poly(ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson’s disease. Science 362, eaat8407 (2018).

    PubMed  PubMed Central  Google Scholar 

  251. Puentes, L. N. et al. Poly (ADP-ribose) induces α-synuclein aggregation in neuronal-like cells and interacts with phosphorylated α-synuclein in post mortem PD samples. bioRxiv https://doi.org/10.1101/2020.04.08.032250 (2020).

    Article  Google Scholar 

  252. Leung, A. K. L. Poly(ADP-ribose): a dynamic trigger for biomolecular condensate formation. Trends Cell Biol. 30, 370–383 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Mastrocola, A. S., Kim, S. H., Trinh, A. T., Rodenkirch, L. A. & Tibbetts, R. S. The RNA-binding protein fused in sarcoma (FUS) functions downstream of poly(ADP-ribose) polymerase (PARP) in response to DNA damage. J. Biol. Chem. 288, 24731–24741 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Altmeyer, M. et al. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat. Commun. 6, 8088 (2015).

    CAS  PubMed  Google Scholar 

  255. Singatulina, A. S. et al. PARP-1 activation directs FUS to DNA damage sites to form PARG-reversible compartments enriched in damaged DNA. Cell Rep. 27, 1809–1821.e5 (2019).

    CAS  PubMed  Google Scholar 

  256. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    CAS  PubMed  Google Scholar 

  257. Chen, J.-K., Lin, W.-L., Chen, Z. & Liu, H.-W. PARP-1-dependent recruitment of cold-inducible RNA-binding protein promotes double-strand break repair and genome stability. Proc. Natl Acad. Sci. USA 115, E1759–E1768 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Duan, Y. et al. PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins. Cell Res. 29, 233–247 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Kim, D.-S., Challa, S., Jones, A. & Kraus, W. L. PARPs and ADP-ribosylation in RNA biology: from RNA expression and processing to protein translation and proteostasis. Genes Dev. 34, 302–320 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Aarum, J. et al. Enzymatic degradation of RNA causes widespread protein aggregation in cell and tissue lysates. EMBO Rep. 21, e4958 (2020).

    Google Scholar 

  262. Gitler, A. D. & Shorter, J. RNA-binding proteins with prion-like domains in ALS and FTLD-U. Prion 5, 179–187 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Schwartz, J. C., Cech, T. R. & Parker, R. R. Biochemical properties and biological functions of FET proteins. Annu. Rev. Biochem. 84, 355–379 (2015).

    CAS  PubMed  Google Scholar 

  264. Dutertre, M., Lambert, S., Carreira, A., Amor-Guéret, M. & Vagner, S. DNA damage: RNA-binding proteins protect from near and far. Trends Biochem. Sci. 39, 141–149 (2014).

    CAS  PubMed  Google Scholar 

  265. Caldecott, K. W. DNA single-strand break repair and spinocerebellar ataxia. Cell 112, 7–10 (2003).

    CAS  PubMed  Google Scholar 

  266. El-Khamisy, S. F. et al. Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1. Nature 434, 108–113 (2005).

    CAS  PubMed  Google Scholar 

  267. Lévy, E. et al. Causative links between protein aggregation and oxidative stress: a review. Int. J. Mol. Sci. 20, 3896 (2019).

    PubMed Central  Google Scholar 

  268. Poletto, M. et al. Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells. Nucleic Acids Res. 45, 10042–10055 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Wood, L. M. et al. A novel role for ATM in regulating proteasome-mediated protein degradation through suppression of the ISG15 conjugation pathway. PLoS ONE 6, e16422 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Gardiner, M., Toth, R., Vandermoere, F., Morrice, N. A. & Rouse, J. Identification and characterization of FUS/TLS as a new target of ATM. Biochem. J. 415, 297–307 (2008).

    CAS  PubMed  Google Scholar 

  271. Deng, Q. et al. FUS is phosphorylated by DNA-PK and accumulates in the cytoplasm after DNA damage. J. Neurosci. 34, 7802–7813 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Rhoads, S. N. et al. The prionlike domain of FUS is multiphosphorylated following DNA damage without altering nuclear localization. Mol. Biol. Cell 29, 1786–1797 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Monahan, Z. et al. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J. 36, 2951–2967 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Polo, S. E. & Jackson, S. P. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev. 25, 409–433 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Saez, I. & Vilchez, D. The mechanistic links between proteasome activity, aging and age-related diseases. Curr. Genomics 15, 38–51 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Sweeney, P. et al. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl. Neurodegener. 6, 6 (2017).

    PubMed  PubMed Central  Google Scholar 

  277. Dasuri, K., Zhang, L. & Keller, J. N. Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic. Biol. Med. 62, 170–185 (2013).

    CAS  PubMed  Google Scholar 

  278. Naumann, M. et al. Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation. Nat. Commun. 9, 335 (2018).

    PubMed  PubMed Central  Google Scholar 

  279. Wang, W.-Y. et al. Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons. Nat. Neurosci. 16, 1383–1391 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Walker, C. et al. C9orf72 expansion disrupts ATM-mediated chromosomal break repair. Nat. Neurosci. 20, 1225–1235 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Gandhi, J. et al. Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics. Rev. Neurosci. 30, 339–358 (2019).

    PubMed  Google Scholar 

  282. Olzscha, H. et al. Amyloid-like aggregates sequester numerous metastable proteins with essential. Cell. Functions. Cell 144, 67–78 (2011).

    CAS  PubMed  Google Scholar 

  283. Cardinale, A. et al. Sublethal doses of β-amyloid peptide abrogate DNA-dependent protein kinase activity. J. Biol. Chem. 287, 2618–2631 (2012).

    CAS  PubMed  Google Scholar 

  284. Ménisser-de Murcia, J., Mark, M., Wendling, O., Wynshaw-Boris, A. & de Murcia, G. Early embryonic lethality in PARP-1 Atm double-mutant mice suggests a functional synergy in cell proliferation during development. Mol. Cell Biol. 21, 1828–1832 (2001).

    PubMed  Google Scholar 

  285. Pommier, Y., O’Connor, M. J. & de Bono, J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci. Transl. Med. 8, 362ps17 (2016).

    PubMed  Google Scholar 

  286. Choy, K. R. & Watters, D. J. Neurodegeneration in ataxia-telangiectasia: multiple roles of ATM kinase in cellular homeostasis: ATM and cellular homeostasis. Dev. Dyn. 247, 33–46 (2018).

    CAS  PubMed  Google Scholar 

  287. Ambrose, M. & Gatti, R. A. Pathogenesis of ataxia-telangiectasia: the next generation of ATM functions. Blood 121, 4036–4045 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Shiloh, Y. & Lederman, H. M. Ataxia-telangiectasia (A-T): an emerging dimension of premature ageing. Ageing Res. Rev. 33, 76–88 (2017).

    CAS  PubMed  Google Scholar 

  289. Klockgether, T., Mariotti, C. & Paulson, H. L. Spinocerebellar ataxia. Nat. Rev. Dis. Prim. 5, 24 (2019).

    PubMed  Google Scholar 

  290. Paulson, H. L. et al. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19, 333–344 (1997).

    CAS  PubMed  Google Scholar 

  291. Holmberg, M. Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum. Mol. Genet. 7, 913–918 (1998).

    CAS  PubMed  Google Scholar 

  292. Orr, H. T. Cell biology of spinocerebellar ataxia. J. Cell Biol. 197, 167–177 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  293. Sullivan, R., Yau, W. Y., O’Connor, E. & Houlden, H. Spinocerebellar ataxia: an update. J. Neurol. 266, 533–544 (2019).

    PubMed  Google Scholar 

  294. Dourlen, P., Kilinc, D., Malmanche, N., Chapuis, J. & Lambert, J.-C. The new genetic landscape of Alzheimer’s disease: from amyloid cascade to genetically driven synaptic failure hypothesis? Acta Neuropathol. 138, 221–236 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  295. Tada, M., Nishizawa, M. & Onodera, O. Roles of inositol 1,4,5-trisphosphate receptors in spinocerebellar ataxias. Neurochem. Int. 94, 1–8 (2016).

    CAS  PubMed  Google Scholar 

  296. Shimobayashi, E. & Kapfhammer, J. P. Calcium signaling, PKC gamma, IP3R1 and CAR8 link spinocerebellar ataxias and purkinje cell dendritic development. Curr. Neuropharmacol. 16, 151–159 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Kasumu, A. & Bezprozvanny, I. Deranged calcium signaling in Purkinje cells and pathogenesis in spinocerebellar ataxia 2 (SCA2) and other ataxias. Cerebellum 11, 630–639 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  298. Chen, X. et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J. Neurosci. 28, 12713–12724 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  299. Chen, D.-H. et al. Missense mutations in the regulatory domain of PKC gamma: a new mechanism for dominant nonepisodic cerebellar ataxia. Am. J. Hum. Genet. 72, 839–849 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  300. Tamarit, J. et al. Mitochondrial iron and calcium homeostasis in Friedreich ataxia. IUBMB Life 73, 543–553 (2021).

    CAS  PubMed  Google Scholar 

  301. Abeti, R., Brown, A. F., Maiolino, M., Patel, S. & Giunti, P. Calcium deregulation: novel insights to understand Friedreich’s ataxia pathophysiology. Front. Cell. Neurosci.12, 264 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Kim, J., Kim, K., Mo, J.-S. & Lee, Y. Atm deficiency in the DNA polymerase β null cerebellum results in cerebellar ataxia and Itpr1 reduction associated with alteration of cytosine methylation. Nucleic Acids Res. 48, 3678–3691 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  303. Honrath, B. et al. Glucose-regulated protein 75 determines ER–mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discov. 3, 17076 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Famulski, K. S. & Paterson, M. C. Defective regulation of Ca2+/calmodulin-dependent protein kinase II in gamma-irradiated ataxia telangiectasia fibroblasts. FEBS Lett. 453, 183–186 (1999).

    CAS  PubMed  Google Scholar 

  305. Famulski, K. S. et al. Aberrant sensing of extracellular Ca2+ by cultured ataxia telangiectasia fibroblasts. Oncogene 22, 471–475 (2003).

    CAS  PubMed  Google Scholar 

  306. Khanna, K. K. et al. Defective signaling through the B cell antigen receptor in Epstein-Barr virus-transformed ataxia-telangiectasia cells. J. Biol. Chem. 272, 9489–9495 (1997).

    CAS  PubMed  Google Scholar 

  307. Yorek, M. A. et al. Abnormal myo-inositol and phospholipid metabolism in cultured fibroblasts from patients with ataxia telangiectasia. Biochim. Biophys. Acta 1437, 287–300 (1999).

    CAS  PubMed  Google Scholar 

  308. Kondo, N. et al. Defective calcium-dependent signal transduction in T lymphocytes of ataxia-telangiectasia. Scand. J. Immunol. 38, 45–48 (1993).

    CAS  PubMed  Google Scholar 

  309. Chiesa, N., Barlow, C., Wynshaw-Boris, A., Strata, P. & Tempia, F. Atm-deficient mice Purkinje cells show age-dependent defects in calcium spike bursts and calcium currents. Neuroscience 96, 575–583 (2000).

    CAS  PubMed  Google Scholar 

  310. Dugger, B. N. & Dickson, D. W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 9, a028035 (2017).

    PubMed  PubMed Central  Google Scholar 

  311. Araki, K. et al. Parkinson’s disease is a type of amyloidosis featuring accumulation of amyloid fibrils of α-synuclein. Proc. Natl Acad. Sci. USA 116, 17963–17969 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  312. Dias, V., Junn, E. & Mouradian, M. M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis. 3, 461–491 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  313. Kumar, A. & Ratan, R. R. Oxidative stress and Huntington’s disease: the good, the bad, and the ugly. J. Huntingtons Dis. 5, 217–237 (2016).

    PubMed  PubMed Central  Google Scholar 

  314. Buratti, E. & Baralle, F. E. TDP-43: gumming up neurons through protein-protein and protein-RNA interactions. Trends Biochem. Sci. 37, 237–247 (2012).

    CAS  PubMed  Google Scholar 

  315. Soto, C. & Pritzkow, S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci. 21, 1332–1340 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  316. Mulligan, V. K. & Chakrabartty, A. Protein misfolding in the late-onset neurodegenerative diseases: common themes and the unique case of amyotrophic lateral sclerosis. Proteins 81, 1285–1303 (2013).

    CAS  PubMed  Google Scholar 

  317. Gitler, A. D., Dhillon, P. & Shorter, J. Neurodegenerative disease: models, mechanisms, and a new hope. Dis. Model. Mech. 10, 499–502 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  318. Lavin, M. F. The appropriateness of the mouse model for ataxia-telangiectasia: neurological defects but no neurodegeneration. DNA Repair. 12, 612–619 (2013).

    CAS  PubMed  Google Scholar 

  319. Beraldi, R. et al. A novel porcine model of ataxia telangiectasia reproduces neurological features and motor deficits of human disease. Hum. Mol. Genet. 24, 6473–6484 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  320. Rimkus, S. A. & Wassarman, D. A. A pharmacological screen for compounds that rescue the developmental lethality of a Drosophila ATM mutant. PLoS ONE 13, e0190821 (2018).

    PubMed  PubMed Central  Google Scholar 

  321. Quek, H. et al. A rat model of ataxia-telangiectasia: evidence for a neurodegenerative phenotype. Hum. Mol. Genet. 26, 109–123 (2017).

    CAS  PubMed  Google Scholar 

  322. Quek, H. et al. Rats with a missense mutation in Atm display neuroinflammation and neurodegeneration subsequent to accumulation of cytosolic DNA following unrepaired DNA damage. J. Leukoc. Biol. 101, 927–947 (2017).

    CAS  PubMed  Google Scholar 

  323. Eilam, R. et al. Selective loss of dopaminergic nigro-striatal neurons in brains of Atm-deficient mice. Proc. Natl Acad. Sci. USA 95, 12653–12656 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  324. Levine-Small, N. et al. Reduced synchronization persistence in neural networks derived from atm-deficient mice. Front. Neurosci. 5, 46 (2011).

    PubMed  PubMed Central  Google Scholar 

  325. Kanner, S. et al. Astrocytes restore connectivity and synchronization in dysfunctional cerebellar networks. Proc. Natl Acad. Sci. USA 115, 8025–8030 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  326. Meshulam, L. et al. The role of the neuro-astro-vascular unit in the etiology of ataxia telangiectasia. Front. Pharmacol. 3, 157 (2012).

    PubMed  PubMed Central  Google Scholar 

  327. Browne, S. E. et al. Treatment with a catalytic antioxidant corrects the neurobehavioral defect in ataxia-telangiectasia mice. Free Radic. Biol. Med. 36, 938–942 (2004).

    CAS  PubMed  Google Scholar 

  328. Gueven, N. et al. Dramatic extension of tumor latency and correction of neurobehavioral phenotype in Atm-mutant mice with a nitroxide antioxidant. Free. Radic. Biol. Med. 41, 992–1000 (2006).

    CAS  PubMed  Google Scholar 

  329. Li, J. et al. EZH2-mediated H3K27 trimethylation mediates neurodegeneration in ataxia-telangiectasia. Nat. Neurosci. 16, 1745–1753 (2013).

    PubMed  PubMed Central  Google Scholar 

  330. Han, S. S. W., Williams, L. A. & Eggan, K. C. Constructing and deconstructing stem cell models of neurological disease. Neuron 70, 626–644 (2011).

    CAS  PubMed  Google Scholar 

  331. Chang, C.-Y. et al. Induced pluripotent stem Cell (iPSC)-Based neurodegenerative disease models for phenotype recapitulation and drug screening. Molecules 25, 2000 (2020).

    CAS  PubMed Central  Google Scholar 

  332. Marton, R. M. & Pas¸ca, S. P. Neural differentiation in the third dimension: generating a human midbrain. Cell Stem Cell 19, 145–146 (2016).

    CAS  PubMed  Google Scholar 

  333. Wu, Y.-Y., Chiu, F.-L., Yeh, C.-S. & Kuo, H.-C. Opportunities and challenges for the use of induced pluripotent stem cells in modelling neurodegenerative disease. Open. Biol. 9, 180177 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  334. Groh, M., Lufino, M. M. P., Wade-Martins, R. & Gromak, N. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet. 10, e1004318 (2014).

    PubMed  PubMed Central  Google Scholar 

  335. Neil, A. J., Liang, M. U., Khristich, A. N., Shah, K. A. & Mirkin, S. M. RNA–DNA hybrids promote the expansion of Friedreich’s ataxia (GAA)n repeats via break-induced replication. Nucleic Acids Res. 46, 3487–3497 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  336. Gerhardt, J. et al. Stalled DNA replication forks at the endogenous GAA repeats drive repeat expansion in Friedreich’s ataxia cells. Cell Rep. 16, 1218–1227 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank P. McKinnon and V. Costanzo for comments on the manuscript. The original figures were generated with the assistance of BioRender.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Tanya T. Paull.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks Martin Lavin, Weiguo Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Topoisomerase cleavage complexes

TOP1 or TOP2 covalent intermediates, in which the enzymes are linked to DNA through the catalytic tyrosine residue; stabilized by topoisomerase poisons, some of which are used in cancer therapy.

R-loops

Three-stranded nucleic acid structures composed of a DNA–RNA hybrid and the associated non-template single-stranded DNA.

HEAT repeats

(Huntingtin, elongation factor 3, A subunit of protein phosphatase 2A, TOR1). Antiparallel helices linked by a flexible loop; often occur in series.

RAD51 filament

Refers to RAD51 proteins assembled on and coating single-stranded DNA.

Intrinsically disordered regions

(IDRs). Protein domains that lack easily definable structure, sometimes associated with low sequence complexity. IDRs can acquire order in the presence of other proteins or nucleic acids.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JH., Paull, T.T. Cellular functions of the protein kinase ATM and their relevance to human disease. Nat Rev Mol Cell Biol 22, 796–814 (2021). https://doi.org/10.1038/s41580-021-00394-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-021-00394-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing