Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The mechanisms of integral membrane protein biogenesis

Abstract

Roughly one quarter of all genes code for integral membrane proteins that are inserted into the plasma membrane of prokaryotes or the endoplasmic reticulum membrane of eukaryotes. Multiple pathways are used for the targeting and insertion of membrane proteins on the basis of their topological and biophysical characteristics. Multipass membrane proteins span the membrane multiple times and face the additional challenges of intramembrane folding. In many cases, integral membrane proteins require assembly with other proteins to form multi-subunit membrane protein complexes. Recent biochemical and structural analyses have provided considerable clarity regarding the molecular basis of membrane protein targeting and insertion, with tantalizing new insights into the poorly understood processes of multipass membrane protein biogenesis and multi-subunit protein complex assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of integral membrane protein biogenesis.
Fig. 2: Membrane protein targeting to the endoplasmic reticulum.
Fig. 3: Membrane protein insertion at the endoplasmic reticulum.
Fig. 4: Structure and function of the Oxa1 superfamily insertases.
Fig. 5: Biogenesis of multipass membrane proteins.

Similar content being viewed by others

References

  1. von Heijne, G. The membrane protein universe: what’s out there and why bother? J. Intern. Med. 261, 543–557 (2007).

    Google Scholar 

  2. Xie, K. & Dalbey, R. E. Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases. Nat. Rev. Microbiol. 6, 234–244 (2008).

    CAS  PubMed  Google Scholar 

  3. Shao, S. & Hegde, R. S. Membrane protein insertion at the endoplasmic reticulum. Annu. Rev. Cell Dev. Biol. 27, 25–56 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Baum, D. A. & Baum, B. An inside-out origin for the eukaryotic cell. BMC Biol. 12, 76 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. Wiedemann, N. & Pfanner, N. Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 86, 685–714 (2017).

    CAS  PubMed  Google Scholar 

  6. Gupta, A. & Becker, T. Mechanisms and pathways of mitochondrial outer membrane protein biogenesis. Biochim. Biophys. Acta Bioenerg. 1862, 148323 (2021).

    CAS  PubMed  Google Scholar 

  7. Kim, J., Na, Y. J., Park, S. J., Baek, S. H. & Kim, D. H. Biogenesis of chloroplast outer envelope membrane proteins. Plant. Cell Rep. 38, 783–792 (2019).

    CAS  PubMed  Google Scholar 

  8. Xu, X., Ouyang, M., Lu, D., Zheng, C. & Zhang, L. Protein sorting within chloroplasts. Trends Cell Biol. 31, 9–16 (2021).

    CAS  PubMed  Google Scholar 

  9. Mayerhofer, P. U. Targeting and insertion of peroxisomal membrane proteins: ER trafficking versus direct delivery to peroxisomes. Biochim. Biophys. Acta 1863, 870–880 (2016).

    CAS  PubMed  Google Scholar 

  10. White, S. H. & von Heijne, G. Transmembrane helices before, during, and after insertion. Curr. Opin. Struct. Biol. 15, 378–386 (2005).

    CAS  PubMed  Google Scholar 

  11. Walther, D. M., Rapaport, D. & Tommassen, J. Biogenesis of beta-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence. Cell Mol. Life Sci. 66, 2789–2804 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Noinaj, N., Gumbart, J. C. & Buchanan, S. K. The beta-barrel assembly machinery in motion. Nat. Rev. Microbiol. 15, 197–204 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).

    CAS  PubMed  Google Scholar 

  14. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    CAS  PubMed  Google Scholar 

  15. Nyathi, Y., Wilkinson, B. M. & Pool, M. R. Co-translational targeting and translocation of proteins to the endoplasmic reticulum. Biochim. Biophys. Acta 1833, 2392–2402 (2013).

    CAS  PubMed  Google Scholar 

  16. Keenan, R. J., Freymann, D. M., Stroud, R. M. & Walter, P. The signal recognition particle. Annu. Rev. Biochem. 70, 755–775 (2001).

    CAS  PubMed  Google Scholar 

  17. Zhang, X. & Shan, S. O. Fidelity of cotranslational protein targeting by the signal recognition particle. Annu. Rev. Biophys. 43, 381–408 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Halic, M. et al. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427, 808–814 (2004).

    CAS  PubMed  Google Scholar 

  19. Schaffitzel, C. et al. Structure of the E. coli signal recognition particle bound to a translating ribosome. Nature 444, 503–506 (2006).

    CAS  PubMed  Google Scholar 

  20. Voorhees, R. M. & Hegde, R. S. Structures of the scanning and engaged states of the mammalian SRP-ribosome complex. eLife https://doi.org/10.7554/eLife.07975 (2015). Cryo-EM structures of biochemically defined states of the mammalian SRP–ribosome complex are presented.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Goder, V., Crottet, P. & Spiess, M. In vivo kinetics of protein targeting to the endoplasmic reticulum determined by site-specific phosphorylation. EMBO J. 19, 6704–6712 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Guna, A. & Hegde, R. S. Transmembrane domain recognition during membrane protein biogenesis and quality control. Curr. Biol. 28, R498–R511 (2018).

    CAS  PubMed  Google Scholar 

  23. Guna, A., Volkmar, N., Christianson, J. C. & Hegde, R. S. The ER membrane protein complex is a transmembrane domain insertase. Science 359, 470–473 (2018). Cell-based assays and biochemical reconstitution reveal EMC as a bona fide insertase for TA membrane proteins with moderately hydrophobic TMDs.

    CAS  PubMed  Google Scholar 

  24. Keenan, R. J., Freymann, D. M., Walter, P. & Stroud, R. M. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94, 181–191 (1998).

    CAS  PubMed  Google Scholar 

  25. Hainzl, T., Huang, S., Merilainen, G., Brannstrom, K. & Sauer-Eriksson, A. E. Structural basis of signal-sequence recognition by the signal recognition particle. Nat. Struct. Mol. Biol. 18, 389–391 (2011).

    CAS  PubMed  Google Scholar 

  26. Janda, C. Y. et al. Recognition of a signal peptide by the signal recognition particle. Nature 465, 507–510 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wiedmann, B., Sakai, H., Davis, T. A. & Wiedmann, M. A protein complex required for signal-sequence-specific sorting and translocation. Nature 370, 434–440 (1994).

    CAS  PubMed  Google Scholar 

  28. Gamerdinger, M., Hanebuth, M. A., Frickey, T. & Deuerling, E. The principle of antagonism ensures protein targeting specificity at the endoplasmic reticulum. Science 348, 201–207 (2015).

    CAS  PubMed  Google Scholar 

  29. Hsieh, H. H., Lee, J. H., Chandrasekar, S. & Shan, S. O. A ribosome-associated chaperone enables substrate triage in a cotranslational protein targeting complex. Nat. Commun. 11, 5840 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gamerdinger, M. et al. Early scanning of nascent polypeptides inside the ribosomal tunnel by NAC. Mol. Cell 75, 996–1006 e1008 (2019).

    CAS  PubMed  Google Scholar 

  31. Moller, I. et al. Unregulated exposure of the ribosomal M-site caused by NAC depletion results in delivery of non-secretory polypeptides to the Sec61 complex. FEBS Lett. 441, 1–5 (1998).

    CAS  PubMed  Google Scholar 

  32. Beatrix, B., Sakai, H. & Wiedmann, M. The alpha and beta subunit of the nascent polypeptide-associated complex have distinct functions. J. Biol. Chem. 275, 37838–37845 (2000).

    CAS  PubMed  Google Scholar 

  33. Powers, T. & Walter, P. The nascent polypeptide-associated complex modulates interactions between the signal recognition particle and the ribosome. Curr. Biol. 6, 331–338 (1996).

    CAS  PubMed  Google Scholar 

  34. Lauring, B., Sakai, H., Kreibich, G. & Wiedmann, M. Nascent polypeptide-associated complex protein prevents mistargeting of nascent chains to the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 92, 5411–5415 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Schibich, D. et al. Global profiling of SRP interaction with nascent polypeptides. Nature 536, 219–223 (2016). Selective ribosome profiling in Escherichia coli shows that SRP targets inner membrane proteins but not periplasmic or outer membrane proteins.

    CAS  PubMed  Google Scholar 

  36. Chartron, J. W., Hunt, K. C. & Frydman, J. Cotranslational signal-independent SRP preloading during membrane targeting. Nature 536, 224–228 (2016). Selective ribosome profiling in yeast cells demonstrates SRP binding to nascent secretory proteins containing signal peptides or TMDs.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Costa, E. A., Subramanian, K., Nunnari, J. & Weissman, J. S. Defining the physiological role of SRP in protein-targeting efficiency and specificity. Science 359, 689–692 (2018). Acute SRP depletion and proximity-specific ribosome profiling in yeast reveal SRP-dependent targeting of nascent secretory proteins with signal peptides or TMDs.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, H. C. & Bernstein, H. D. The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal. Proc. Natl Acad. Sci. USA 98, 3471–3476 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hegde, R. S. & Keenan, R. J. Tail-anchored membrane protein insertion into the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 12, 787–798 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Shan, S. O. Guiding tail-anchored membrane proteins to the endoplasmic reticulum in a chaperone cascade. J. Biol. Chem. 294, 16577–16586 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Borgese, N., Coy-Vergara, J., Colombo, S. F. & Schwappach, B. The ways of tails: the GET pathway and more. Protein J. 38, 289–305 (2019).

    CAS  PubMed  Google Scholar 

  42. Stefanovic, S. & Hegde, R. S. Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128, 1147–1159 (2007).

    CAS  PubMed  Google Scholar 

  43. Wang, F., Brown, E. C., Mak, G., Zhuang, J. & Denic, V. A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum. Mol. Cell 40, 159–171 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mariappan, M. et al. A ribosome-associating factor chaperones tail-anchored membrane proteins. Nature 466, 1120–1124 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mateja, A. et al. Protein targeting. Structure of the Get3 targeting factor in complex with its membrane protein cargo. Science 347, 1152–1155 (2015). Biochemical reconstitution and crystallographic analysis reveal how the TMD of a TA membrane protein binds to a large and dynamic hydrophobic groove in Get3.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mateja, A. et al. The structural basis of tail-anchored membrane protein recognition by Get3. Nature 461, 361–366 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gristick, H. B. et al. Crystal structure of ATP-bound Get3-Get4-Get5 complex reveals regulation of Get3 by Get4. Nat. Struct. Mol. Biol. 21, 437–442 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schuldiner, M. et al. The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134, 634–645 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yamamoto, Y. & Sakisaka, T. Molecular machinery for insertion of tail-anchored membrane proteins into the endoplasmic reticulum membrane in mammalian cells. Mol. Cell 48, 387–397 (2012).

    CAS  PubMed  Google Scholar 

  50. Mock, J. Y. et al. Bag6 complex contains a minimal tail-anchor-targeting module and a mock BAG domain. Proc. Natl Acad. Sci. USA 112, 106–111 (2015).

    CAS  PubMed  Google Scholar 

  51. Shao, S., Rodrigo-Brenni, M. C., Kivlen, M. H. & Hegde, R. S. Mechanistic basis for a molecular triage reaction. Science 355, 298–302 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, Y. et al. Ribosome-bound Get4/5 facilitates the capture of tail-anchored proteins by Sgt2 in yeast. Nat. Commun. 12, 782 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chartron, J. W., VanderVelde, D. G. & Clemons, W. M. Jr Structures of the Sgt2/SGTA dimerization domain with the Get5/UBL4A UBL domain reveal an interaction that forms a conserved dynamic interface. Cell Rep. 2, 1620–1632 (2012).

    CAS  PubMed  Google Scholar 

  54. Cho, H. & Shan, S. O. Substrate relay in an Hsp70-cochaperone cascade safeguards tail-anchored membrane protein targeting. EMBO J. https://doi.org/10.15252/embj.201899264 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rao, M. et al. Multiple selection filters ensure accurate tail-anchored membrane protein targeting. eLife https://doi.org/10.7554/eLife.21301 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lin, K. F., Fry, M. Y., Saladi, S. M. & Clemons, W. M. Jr Molecular basis of tail-anchored integral membrane protein recognition by the cochaperone Sgt2. J. Biol. Chem. https://doi.org/10.1016/j.jbc.2021.100441 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chio, U. S., Chung, S., Weiss, S. & Shan, S. O. A chaperone lid ensures efficient and privileged client transfer during tail-anchored protein targeting. Cell Rep. 26, 37–44 e37 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. O’Donnell, J. P. et al. The architecture of EMC reveals a path for membrane protein insertion. eLife https://doi.org/10.7554/eLife.57887 (2020). Structural and biochemical analysis of human EMC identifies a TMD-binding site in the cytosolic domain of EMC, and potential routes into the bilayer.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pleiner, T. et al. Structural basis for membrane insertion by the human ER membrane protein complex. Science 369, 433–436 (2020). Cryo-EM structure and functional analysis of human EMC demonstrate the importance of the membrane-embedded hydrophilic vestibule of EMC3 for TA protein insertion.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Itakura, E. et al. Ubiquilins chaperone and triage mitochondrial membrane proteins for degradation. Mol. Cell 63, 21–33 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Abell, B. M., Rabu, C., Leznicki, P., Young, J. C. & High, S. Post-translational integration of tail-anchored proteins is facilitated by defined molecular chaperones. J. Cell Sci. 120, 1743–1751 (2007).

    CAS  PubMed  Google Scholar 

  62. Rabu, C., Wipf, P., Brodsky, J. L. & High, S. A precursor-specific role for Hsp40/Hsc70 during tail-anchored protein integration at the endoplasmic reticulum. J. Biol. Chem. 283, 27504–27513 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Aschtgen, M. S., Zoued, A., Lloubes, R., Journet, L. & Cascales, E. The C-tail anchored TssL subunit, an essential protein of the enteroaggregative Escherichia coli Sci-1 type VI secretion system, is inserted by YidC. Microbiologyopen 1, 71–82 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Peschke, M. et al. SRP, FtsY, DnaK and YidC are required for the biogenesis of the E. coli tail-anchored membrane proteins DjlC and Flk. J. Mol. Biol. 430, 389–403 (2018).

    CAS  PubMed  Google Scholar 

  65. Lee, J., Kim, D. H. & Hwang, I. Specific targeting of proteins to outer envelope membranes of endosymbiotic organelles, chloroplasts, and mitochondria. Front. Plant. Sci. 5, 173 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. Becker, T., Song, J. & Pfanner, N. Versatility of preprotein transfer from the cytosol to mitochondria. Trends Cell Biol. 29, 534–548 (2019).

    CAS  PubMed  Google Scholar 

  67. Bykov, Y. S., Rapaport, D., Herrmann, J. M. & Schuldiner, M. Cytosolic events in the biogenesis of mitochondrial proteins. Trends Biochem. Sci. 45, 650–667 (2020).

    CAS  PubMed  Google Scholar 

  68. White, S. H. & Wimley, W. C. Membrane protein folding and stability: physical principles. Annu. Rev. Biophys. Biomol. Struct. 28, 319–365 (1999).

    CAS  PubMed  Google Scholar 

  69. Wimley, W. C. & White, S. H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol. 3, 842–848 (1996).

    CAS  PubMed  Google Scholar 

  70. Engelman, D. M., Steitz, T. A. & Goldman, A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu. Rev. Biophys. Biophys Chem. 15, 321–353 (1986).

    CAS  PubMed  Google Scholar 

  71. Anghel, S. A., McGilvray, P. T., Hegde, R. S. & Keenan, R. J. Identification of Oxa1 homologs operating in the eukaryotic endoplasmic reticulum. Cell Rep. 21, 3708–3716 (2017). Reports the discovery of Get1, EMC3 and TMCO1 as remote Oxa1 homologues in the ER, defining the evolutionarily ancient Oxa1 superfamily.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lewis, A. J. O. & Hegde, R. S. A unified evolutionary origin for SecY and YidC. Preprint at bioRxiv https://doi.org/10.1101/2020.12.20.422553 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wu, X. & Rapoport, T. A. Translocation of proteins through a distorted lipid bilayer. Trends Cell Biol. https://doi.org/10.1016/j.tcb.2021.01.002 (2021).

    Article  PubMed  Google Scholar 

  74. Rapoport, T. A., Li, L. & Park, E. Structural and mechanistic insights into protein translocation. Annu. Rev. Cell Dev. Biol. 33, 369–390 (2017).

    CAS  PubMed  Google Scholar 

  75. Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004).

    PubMed  Google Scholar 

  76. Voorhees, R. M., Fernandez, I. S., Scheres, S. H. & Hegde, R. S. Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution. Cell 157, 1632–1643 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Li, L. et al. Crystal structure of a substrate-engaged SecY protein-translocation channel. Nature 531, 395–399 (2016). Crystal structure of SecY engaged with SecA and an engineered secretory protein segment suggests how hydrophobic signals exit the lateral gate.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Voorhees, R. M. & Hegde, R. S. Structure of the Sec61 channel opened by a signal sequence. Science 351, 88–91 (2016). Cryo-EM structure of ribosome-bound mammalian Sec61 engaged with a signal peptide suggests how hydrophobic signals access the membrane.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Liaci, A. M. et al. Structure of the human signal peptidase complex reveals the determinants for signal peptide cleavage. bioRxiv https://doi.org/10.1101/2020.11.11.378711 (2020).

    Article  Google Scholar 

  80. Hessa, T., White, S. H. & von Heijne, G. Membrane insertion of a potassium-channel voltage sensor. Science 307, 1427 (2005).

    CAS  PubMed  Google Scholar 

  81. Spiess, M. & Lodish, H. F. An internal signal sequence: the asialoglycoprotein receptor membrane anchor. Cell 44, 177–185 (1986).

    CAS  PubMed  Google Scholar 

  82. High, S. et al. Sec61p is adjacent to nascent type I and type II signal-anchor proteins during their membrane insertion. J. Cell Biol. 121, 743–750 (1993).

    CAS  PubMed  Google Scholar 

  83. McKenna, M., Simmonds, R. E. & High, S. Mycolactone reveals the substrate-driven complexity of Sec61-dependent transmembrane protein biogenesis. J. Cell Sci. 130, 1307–1320 (2017). Biochemical analysis shows that the effect on membrane protein biogenesis of mycolactone, a small-molecule Sec61 inhibitor, depends on how the nascent chain initially engages with Sec61.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zong, G. et al. Ipomoeassin F binds sec61alpha to inhibit protein translocation. J. Am. Chem. Soc. 141, 8450–8461 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Tranter, D. et al. Coibamide A targets Sec61 to prevent biogenesis of secretory and membrane proteins. ACS Chem. Biol. 15, 2125–2136 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chitwood, P. J., Juszkiewicz, S., Guna, A., Shao, S. & Hegde, R. S. EMC is required to initiate accurate membrane protein topogenesis. Cell 175, 1507–1519 e1516 (2018). Cell-based assays and biochemical reconstitution define the role of EMC as a co-translational insertase for the first TMD of many multipass membrane proteins, including G-protein-coupled receptorss.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Fons, R. D., Bogert, B. A. & Hegde, R. S. Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J. Cell Biol. 160, 529–539 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Voigt, S., Jungnickel, B., Hartmann, E. & Rapoport, T. A. Signal sequence-dependent function of the TRAM protein during early phases of protein transport across the endoplasmic reticulum membrane. J. Cell Biol. 134, 25–35 (1996).

    CAS  PubMed  Google Scholar 

  89. Itskanov, S., Kuo, K. M., Gumbart, J. C. & Park, E. Stepwise gating of the Sec61 protein-conducting channel by Sec63 and Sec62. Nat. Struct. Mol. Biol. 28, 162–172 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Weng, T. H. et al. Architecture of the active post-translational Sec translocon. EMBO J. 40, e105643 (2021).

    CAS  PubMed  Google Scholar 

  91. Schorr, S. et al. Identification of signal peptide features for substrate specificity in human Sec62/Sec63-dependent ER protein import. FEBS J. 287, 4612–4640 (2020).

    CAS  PubMed  Google Scholar 

  92. Do, H., Falcone, D., Lin, J., Andrews, D. W. & Johnson, A. E. The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell 85, 369–378 (1996).

    CAS  PubMed  Google Scholar 

  93. Heinrich, S. U., Mothes, W., Brunner, J. & Rapoport, T. A. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233–244 (2000).

    CAS  PubMed  Google Scholar 

  94. Mariappan, M. et al. The mechanism of membrane-associated steps in tail-anchored protein insertion. Nature 477, 61–66 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang, F., Chan, C., Weir, N. R. & Denic, V. The Get1/2 transmembrane complex is an endoplasmic-reticulum membrane protein insertase. Nature 512, 441–444 (2014). Cell-based assays and biochemical reconstitution establish the Get1–Get2 complex as a bona fide insertase that guides the TMDs of TA proteins into the lipid bilayer.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, F., Whynot, A., Tung, M. & Denic, V. The mechanism of tail-anchored protein insertion into the ER membrane. Mol. Cell 43, 738–750 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Stefer, S. et al. Structural basis for tail-anchored membrane protein biogenesis by the Get3-receptor complex. Science 333, 758–762 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Rome, M. E., Chio, U. S., Rao, M., Gristick, H. & Shan, S. O. Differential gradients of interaction affinities drive efficient targeting and recycling in the GET pathway. Proc. Natl Acad. Sci. USA 111, E4929–4935 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. McDowell, M. A. et al. Structural basis of tail-anchored membrane protein biogenesis by the GET insertase complex. Mol. Cell 80, 72–86 e77 (2020). Cryo-EM structures of the yeast and human GET1–GET2–GET3 complexes reveal a heterotetrameric membrane assembly with hydrophilic vestibules into the bilayer.

    CAS  PubMed  Google Scholar 

  100. Zalisko, B. E., Chan, C., Denic, V., Rock, R. S. & Keenan, R. J. Tail-anchored protein insertion by a single Get1/2 heterodimer. Cell Rep. 20, 2287–2293 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kedrov, A. et al. Elucidating the native architecture of the YidC: ribosome complex. J. Mol. Biol. 425, 4112–4124 (2013).

    CAS  PubMed  Google Scholar 

  102. Wickles, S. et al. A structural model of the active ribosome-bound membrane protein insertase YidC. eLife 3, e03035 (2014).

    PubMed  PubMed Central  Google Scholar 

  103. Itoh, Y. et al. Mechanism of membrane-tethered mitochondrial protein synthesis. Science 371, 846–849 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. McGilvray, P. T. et al. An ER translocon for multi-pass membrane protein biogenesis. eLife https://doi.org/10.7554/eLife.56889 (2020). Discovery that TMCO1 operates as part of a large, multi-subunit translocon involved in the biogenesis of most mammalian multipass membrane proteins.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Miller-Vedam, L. E. et al. Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients. eLife https://doi.org/10.7554/eLife.62611 (2020). Cryo-EM structures of yeast and human EMC coupled with mutational analysis suggest how different regions of the multifuctional complex function during biogenesis of its membrane protein clients.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bai, L., You, Q., Feng, X., Kovach, A. & Li, H. Structure of the ER membrane complex, a transmembrane-domain insertase. Nature 584, 475–478 (2020). Cryo-EM structure and functional analysis of yeast EMC implicate the hydrophilic vestibule of EMC3 in TMD insertion and highlight a potential gating role for the EMC4 subunit.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Rivera-Monroy, J. et al. Mice lacking WRB reveal differential biogenesis requirements of tail-anchored proteins in vivo. Sci. Rep. 6, 39464 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Jonikas, M. C. et al. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323, 1693–1697 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Volkmar, N. & Christianson, J. C. Squaring the EMC - how promoting membrane protein biogenesis impacts cellular functions and organismal homeostasis. J. Cell Sci. https://doi.org/10.1242/jcs.243519 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chitwood, P. J. & Hegde, R. S. The role of EMC during membrane protein biogenesis. Trends Cell Biol. 29, 371–384 (2019).

    CAS  PubMed  Google Scholar 

  111. Bai, L. & Li, H. Cryo-EM structures of the endoplasmic reticulum membrane complex. FEBS J. https://doi.org/10.1111/febs.15786 (2021).

    Article  PubMed  Google Scholar 

  112. Kobayashi, K. et al. Structure of a prehandover mammalian ribosomal SRP.SRP receptor targeting complex. Science 360, 323–327 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Prinz, A., Behrens, C., Rapoport, T. A., Hartmann, E. & Kalies, K. U. Evolutionarily conserved binding of ribosomes to the translocation channel via the large ribosomal RNA. EMBO J. 19, 1900–1906 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Bonnefoy, N., Chalvet, F., Hamel, P., Slonimski, P. P. & Dujardin, G. OXA1, a Saccharomyces cerevisiae nuclear gene whose sequence is conserved from prokaryotes to eukaryotes controls cytochrome oxidase biogenesis. J. Mol. Biol. 239, 201–212 (1994).

    CAS  PubMed  Google Scholar 

  115. Sundberg, E. et al. ALBINO3, an Arabidopsis nuclear gene essential for chloroplast differentiation, encodes a chloroplast protein that shows homology to proteins present in bacterial membranes and yeast mitochondria. Plant. Cell 9, 717–730 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Samuelson, J. C. et al. YidC mediates membrane protein insertion in bacteria. Nature 406, 637–641 (2000).

    CAS  PubMed  Google Scholar 

  117. Hell, K., Neupert, W. & Stuart, R. A. Oxa1p acts as a general membrane insertion machinery for proteins encoded by mitochondrial DNA. EMBO J. 20, 1281–1288 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Moore, M., Harrison, M. S., Peterson, E. C. & Henry, R. Chloroplast Oxa1p homolog albino3 is required for post-translational integration of the light harvesting chlorophyll-binding protein into thylakoid membranes. J. Biol. Chem. 275, 1529–1532 (2000).

    CAS  PubMed  Google Scholar 

  119. Kumazaki, K. et al. Crystal structure of Escherichia coli YidC, a membrane protein chaperone and insertase. Sci. Rep. 4, 7299 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kumazaki, K. et al. Structural basis of Sec-independent membrane protein insertion by YidC. Nature 509, 516–520 (2014). The high-resolution crystal structure of bacterial YidC reveals a membrane-embedded hydrophilic vestibule proposed to function during TMD insertion.

    CAS  PubMed  Google Scholar 

  121. Borowska, M. T., Dominik, P. K., Anghel, S. A., Kossiakoff, A. A. & Keenan, R. J. A YidC-like protein in the archaeal plasma membrane. Structure 23, 1715–1724 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. McDowell, M. A., Heimes, M. & Sinning, I. Structural and molecular mechanisms for membrane protein biogenesis by the Oxa1 superfamily. Nat. Struct. Mol. Biol. 28, 234–239 (2021).

    CAS  PubMed  Google Scholar 

  123. Shanmugam, S. K. et al. New insights into amino-terminal translocation as revealed by the use of YidC and Sec depletion strains. J. Mol. Biol. 431, 1025–1037 (2019).

    CAS  PubMed  Google Scholar 

  124. Welte, T. et al. Promiscuous targeting of polytopic membrane proteins to SecYEG or YidC by the Escherichia coli signal recognition particle. Mol. Biol. Cell 23, 464–479 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Facey, S. J., Neugebauer, S. A., Krauss, S. & Kuhn, A. The mechanosensitive channel protein MscL is targeted by the SRP to the novel YidC membrane insertion pathway of Escherichia coli. J. Mol. Biol. 365, 995–1004 (2007).

    CAS  PubMed  Google Scholar 

  126. Samuelson, J. C. et al. Function of YidC for the insertion of M13 procoat protein in Escherichia coli: translocation of mutants that show differences in their membrane potential dependence and Sec requirement. J. Biol. Chem. 276, 34847–34852 (2001).

    CAS  PubMed  Google Scholar 

  127. von Heijne, G. & Gavel, Y. Topogenic signals in integral membrane proteins. Eur. J. Biochem. 174, 671–678 (1988).

    Google Scholar 

  128. Petriman, N. A. et al. The interaction network of the YidC insertase with the SecYEG translocon, SRP and the SRP receptor FtsY. Sci. Rep. 8, 578 (2018).

    PubMed  PubMed Central  Google Scholar 

  129. Kedrov, A. et al. Structural dynamics of the YidC:ribosome complex during membrane protein biogenesis. Cell Rep. 17, 2943–2954 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Hessa, T. et al. Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450, 1026–1030 (2007).

    CAS  PubMed  Google Scholar 

  131. Meacock, S. L., Lecomte, F. J., Crawshaw, S. G. & High, S. Different transmembrane domains associate with distinct endoplasmic reticulum components during membrane integration of a polytopic protein. Mol. Biol. Cell 13, 4114–4129 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ismail, N., Crawshaw, S. G., Cross, B. C., Haagsma, A. C. & High, S. Specific transmembrane segments are selectively delayed at the ER translocon during opsin biogenesis. Biochem. J. 411, 495–506 (2008).

    CAS  PubMed  Google Scholar 

  133. Chitwood, P. J. & Hegde, R. S. An intramembrane chaperone complex facilitates membrane protein biogenesis. Nature 584, 630–634 (2020). Discovery of the PAT complex as an intramembrane chaperone that shields hydrophilic TMDs during multipass membrane protein biogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Sato, B. K., Schulz, D., Do, P. H. & Hampton, R. Y. Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. Mol. Cell 34, 212–222 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Inglis, A. J., Page, K. R., Guna, A. & Voorhees, R. M. Differential modes of orphan subunit recognition for the WRB/CAML complex. Cell Rep. 30, 3691–3698 e3695 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Sun, S. & Mariappan, M. C-terminal tail length guides insertion and assembly of membrane proteins. J. Biol. Chem. 295, 15498–15510 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Feige, M. J. & Hendershot, L. M. Quality control of integral membrane proteins by assembly-dependent membrane integration. Mol. Cell 51, 297–309 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Yamamoto, S. et al. Contribution of calumin to embryogenesis through participation in the endoplasmic reticulum-associated degradation activity. Dev. Biol. 393, 33–43 (2014).

    CAS  PubMed  Google Scholar 

  139. Morimoto, M. et al. Bi-allelic CCDC47 variants cause a disorder characterized by woolly hair, liver dysfunction, dysmorphic features, and global developmental delay. Am. J. Hum. Genet. 103, 794–807 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Botte, M. et al. A central cavity within the holo-translocon suggests a mechanism for membrane protein insertion. Sci. Rep. 6, 38399 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Hayer-Hartl, M., Bracher, A. & Hartl, F. U. The GroEL-GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem. Sci. 41, 62–76 (2016).

    CAS  PubMed  Google Scholar 

  142. Martin, R. et al. Structure and dynamics of the central lipid pool and proteins of the bacterial holo-translocon. Biophys. J. 116, 1931–1940 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Sadlish, H., Pitonzo, D., Johnson, A. E. & Skach, W. R. Sequential triage of transmembrane segments by Sec61alpha during biogenesis of a native multispanning membrane protein. Nat. Struct. Mol. Biol. 12, 870–878 (2005).

    CAS  PubMed  Google Scholar 

  144. Borel, A. C. & Simon, S. M. Biogenesis of polytopic membrane proteins: membrane segments assemble within translocation channels prior to membrane integration. Cell 85, 379–389 (1996).

    CAS  PubMed  Google Scholar 

  145. Krogan, N. J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006).

    CAS  PubMed  Google Scholar 

  146. Gavin, A. C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).

    CAS  PubMed  Google Scholar 

  147. Babu, M. et al. Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature 489, 585–589 (2012).

    CAS  PubMed  Google Scholar 

  148. Lippincott-Schwartz, J., Bonifacino, J. S., Yuan, L. C. & Klausner, R. D. Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell 54, 209–220 (1988).

    CAS  PubMed  Google Scholar 

  149. Juszkiewicz, S. & Hegde, R. S. Quality control of orphaned proteins. Mol. Cell 71, 443–457 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. McShane, E. et al. Kinetic analysis of protein stability reveals age-dependent degradation. Cell 167, 803–815 e821 (2016).

    CAS  PubMed  Google Scholar 

  151. Feng, L. et al. Molecular mechanism of AHSP-mediated stabilization of alpha-hemoglobin. Cell 119, 629–640 (2004).

    CAS  PubMed  Google Scholar 

  152. Kihm, A. J. et al. An abundant erythroid protein that stabilizes free alpha-haemoglobin. Nature 417, 758–763 (2002).

    CAS  PubMed  Google Scholar 

  153. Pleiner, T. et al. WNK1 is an assembly factor for the human ER membrane protein complex. Mol. Cell https://doi.org/10.1016/j.molcel.2021.04.013 (2021).

    Article  PubMed  Google Scholar 

  154. Rousseau, A. & Bertolotti, A. Regulation of proteasome assembly and activity in health and disease. Nat. Rev. Mol. Cell Biol. 19, 697–712 (2018).

    CAS  PubMed  Google Scholar 

  155. Richard, M., Boulin, T., Robert, V. J., Richmond, J. E. & Bessereau, J. L. Biosynthesis of ionotropic acetylcholine receptors requires the evolutionarily conserved ER membrane complex. Proc. Natl Acad. Sci. USA 110, E1055–1063 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Pop, O. I. et al. YidC is required for the assembly of the MscL homopentameric pore. FEBS J. 276, 4891–4899 (2009).

    CAS  PubMed  Google Scholar 

  157. Nishikawa, H., Kanno, K., Endo, Y. & Nishiyama, K. I. Ring assembly of c subunits of F0 F1 -ATP synthase in Propionigenium modestum requires YidC and UncI following MPIase-dependent membrane insertion. FEBS Lett. 595, 647–654 (2021).

    CAS  PubMed  Google Scholar 

  158. Coelho, J. P. L. et al. A network of chaperones prevents and detects failures in membrane protein lipid bilayer integration. Nat. Commun. 10, 672 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Bonifacino, J. S. et al. Association and dissociation of the murine T cell receptor associated protein (TRAP). Early events in the biosynthesis of a multisubunit receptor. J. Biol. Chem. 263, 8965–8971 (1988).

    CAS  PubMed  Google Scholar 

  160. Schwenk, J. et al. An ER assembly line of AMPA-receptors controls excitatory neurotransmission and its plasticity. Neuron 104, 680–692 e689 (2019).

    CAS  PubMed  Google Scholar 

  161. Schwenk, J. et al. High-resolution proteomics unravel architecture and molecular diversity of native AMPA receptor complexes. Neuron 74, 621–633 (2012).

    CAS  PubMed  Google Scholar 

  162. Gu, S. et al. Brain alpha7 nicotinic acetylcholine receptor assembly requires NACHO. Neuron 89, 948–955 (2016).

    CAS  PubMed  Google Scholar 

  163. Halevi, S. et al. The C. elegans ric-3 gene is required for maturation of nicotinic acetylcholine receptors. EMBO J. 21, 1012–1020 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Eimer, S. et al. Regulation of nicotinic receptor trafficking by the transmembrane Golgi protein UNC-50. EMBO J. 26, 4313–4323 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Satoh, T., Ohba, A., Liu, Z., Inagaki, T. & Satoh, A. K. dPob/EMC is essential for biosynthesis of rhodopsin and other multi-pass membrane proteins in Drosophila photoreceptors. eLife https://doi.org/10.7554/eLife.06306 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Gottschalk, A. et al. Identification and characterization of novel nicotinic receptor-associated proteins in Caenorhabditis elegans. EMBO J. 24, 2566–2578 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Talbot, B. E., Vandorpe, D. H., Stotter, B. R., Alper, S. L. & Schlondorff, J. S. Transmembrane insertases and N-glycosylation critically determine synthesis, trafficking, and activity of the nonselective cation channel TRPC6. J. Biol. Chem. 294, 12655–12669 (2019). Genome-wide screen for factors that impair surface expression of a multipass transient receptor potential channel mutant yields components of the EMC, the SND pathway, the PAT complex and the multipass translocon.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kamat, S., Yeola, S., Zhang, W., Bianchi, L. & Driscoll, M. NRA-2, a nicalin homolog, regulates neuronal death by controlling surface localization of toxic Caenorhabditis elegans DEG/ENaC channels. J. Biol. Chem. 289, 11916–11926 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Savidis, G. et al. Identification of zika virus and dengue virus dependency factors using functional genomics. Cell Rep. 16, 232–246 (2016).

    CAS  PubMed  Google Scholar 

  170. Marceau, C. D. et al. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535, 159–163 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Labeau, A. et al. A genome-wide CRISPR-Cas9 screen identifies the dolichol-phosphate mannose synthase complex as a host dependency factor for dengue virus infection. J. Virol. https://doi.org/10.1128/JVI.01751-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Schneider, W. M. et al. Genome-scale identification of SARS-CoV-2 and pan-coronavirus host factor networks. Cell 184, 120–132 e114 (2021).

    CAS  PubMed  Google Scholar 

  173. Doms, R. W., Lamb, R. A., Rose, J. K. & Helenius, A. Folding and assembly of viral membrane proteins. Virology 193, 545–562 (1993).

    CAS  PubMed  Google Scholar 

  174. Daniels, R., Kurowski, B., Johnson, A. E. & Hebert, D. N. N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol. Cell 11, 79–90 (2003).

    CAS  PubMed  Google Scholar 

  175. Maggioni, M. C., Liscaljet, I. M. & Braakman, I. A critical step in the folding of influenza virus HA determined with a novel folding assay. Nat. Struct. Mol. Biol. 12, 258–263 (2005).

    CAS  PubMed  Google Scholar 

  176. Blobel, G. Intracellular protein topogenesis. Proc. Natl Acad. Sci. USA 77, 1496–1500 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Kemp, G. & Cymer, F. Small membrane proteins - elucidating the function of the needle in the haystack. Biol. Chem. 395, 1365–1377 (2014).

    CAS  PubMed  Google Scholar 

  178. Chen, J. et al. Pervasive functional translation of noncanonical human open reading frames. Science 367, 1140–1146 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).

    CAS  PubMed  Google Scholar 

  180. Huber, D. et al. SecA cotranslationally interacts with nascent substrate proteins in vivo. J. Bacteriol. https://doi.org/10.1128/JB.00622-16 (2017).

    Article  PubMed  Google Scholar 

  181. Wang, S., Yang, C. I. & Shan, S. O. SecA mediates cotranslational targeting and translocation of an inner membrane protein. J. Cell Biol. 216, 3639–3653 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Wang, S. et al. The molecular mechanism of cotranslational membrane protein recognition and targeting by SecA. Nat. Struct. Mol. Biol. 26, 919–929 (2019). Cryo-EM structure and biochemical analysis provide mechanistic insight into how SecA mediates co-translational targeting of certain membrane proteins in E. coli.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Gelis, I. et al. Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131, 756–769 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Chatzi, K. E., Sardis, M. F., Economou, A. & Karamanou, S. SecA-mediated targeting and translocation of secretory proteins. Biochim. Biophys. Acta 1843, 1466–1474 (2014).

    CAS  PubMed  Google Scholar 

  185. Ast, T., Cohen, G. & Schuldiner, M. A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum. Cell 152, 1134–1145 (2013).

    CAS  PubMed  Google Scholar 

  186. Aviram, N. et al. The SND proteins constitute an alternative targeting route to the endoplasmic reticulum. Nature 540, 134–138 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Hassdenteufel, S. et al. hSnd2 protein represents an alternative targeting factor to the endoplasmic reticulum in human cells. FEBS Lett. 591, 3211–3224 (2017).

    CAS  PubMed  Google Scholar 

  188. Phillips, B. P. & Miller, E. A. Ribosome-associated quality control of membrane proteins at the endoplasmic reticulum. J. Cell Sci. https://doi.org/10.1242/jcs.251983 (2020).

    Article  PubMed  Google Scholar 

  189. Brandman, O. & Hegde, R. S. Ribosome-associated protein quality control. Nat. Struct. Mol. Biol. 23, 7–15 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Yip, M. C. J. & Shao, S. Detecting and rescuing stalled ribosomes. Trends Biochem. Sci. https://doi.org/10.1016/j.tibs.2021.03.008 (2021).

    Article  PubMed  Google Scholar 

  191. Joazeiro, C. A. P. Mechanisms and functions of ribosome-associated protein quality control. Nat. Rev. Mol. Cell Biol. 20, 368–383 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Hessa, T. et al. Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 475, 394–397 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Rodrigo-Brenni, M. C., Gutierrez, E. & Hegde, R. S. Cytosolic quality control of mislocalized proteins requires RNF126 recruitment to Bag6. Mol. Cell 55, 227–237 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Dederer, V. et al. Cooperation of mitochondrial and ER factors in quality control of tail-anchored proteins. Elife 8, https://doi.org/10.7554/eLife.45506 (2019).

  195. Matsumoto, S. et al. Msp1 clears mistargeted proteins by facilitating their transfer from mitochondria to the ER. Mol. Cell 76, 191–205 e110 (2019).

    CAS  PubMed  Google Scholar 

  196. Stefanovic-Barrett, S. et al. MARCH6 and TRC8 facilitate the quality control of cytosolic and tail-anchored proteins. EMBO Rep. https://doi.org/10.15252/embr.201745603 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Leto, D. E. et al. Genome-wide CRISPR analysis identifies substrate-specific conjugation modules in ER-associated degradation. Mol. Cell 73, 377–389 e311 (2019).

    CAS  PubMed  Google Scholar 

  198. McKenna, M. J. et al. The endoplasmic reticulum P5A-ATPase is a transmembrane helix dislocase. Science https://doi.org/10.1126/science.abc5809 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Chen, Y. C. et al. Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins. EMBO J. 33, 1548–1564 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Okreglak, V. & Walter, P. The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins. Proc. Natl Acad. Sci. USA 111, 8019–8024 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Wohlever, M. L., Mateja, A., McGilvray, P. T., Day, K. J. & Keenan, R. J. Msp1 is a membrane protein dislocase for tail-anchored proteins. Mol. Cell 67, 194–202 e196 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Wu, X. & Rapoport, T. A. Mechanistic insights into ER-associated protein degradation. Curr. Opin. Cell Biol. 53, 22–28 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Christianson, J. C. & Ye, Y. Cleaning up in the endoplasmic reticulum: ubiquitin in charge. Nat. Struct. Mol. Biol. 21, 325–335 (2014).

    CAS  PubMed  Google Scholar 

  204. Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    CAS  PubMed  Google Scholar 

  205. Beck, K. et al. YidC, an assembly site for polytopic Escherichia coli membrane proteins located in immediate proximity to the SecYE translocon and lipids. EMBO Rep. 2, 709–714 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Yi, L. et al. YidC is strictly required for membrane insertion of subunits a and c of the F1F0 ATP synthase and SecE of the SecYEG translocase. Biochemistry 42, 10537–10544 (2003).

    CAS  PubMed  Google Scholar 

  207. van Bloois, E., Jan Haan, G., de Gier, J. W., Oudega, B. & Luirink, J. F1F0 ATP synthase subunit c is targeted by the SRP to YidC in the E. coli inner membrane. FEBS Lett. 576, 97–100 (2004).

    PubMed  Google Scholar 

  208. Celebi, N., Yi, L., Facey, S. J., Kuhn, A. & Dalbey, R. E. Membrane biogenesis of subunit II of cytochrome bo oxidase: contrasting requirements for insertion of N-terminal and C-terminal domains. J. Mol. Biol. 357, 1428–1436 (2006).

    CAS  PubMed  Google Scholar 

  209. van Bloois, E., Haan, G. J., de Gier, J. W., Oudega, B. & Luirink, J. Distinct requirements for translocation of the N-tail and C-tail of the Escherichia coli inner membrane protein CyoA. J. Biol. Chem. 281, 10002–10009 (2006).

    PubMed  Google Scholar 

  210. Wagner, S. et al. Biogenesis of MalF and the MalFGK2 maltose transport complex in Escherichia coli requires YidC. J. Biol. Chem. 283, 17881–17890 (2008).

    CAS  PubMed  Google Scholar 

  211. Zhu, L., Kaback, H. R. & Dalbey, R. E. YidC protein, a molecular chaperone for LacY protein folding via the SecYEG protein machinery. J. Biol. Chem. 288, 28180–28194 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Nagamori, S., Smirnova, I. N. & Kaback, H. R. Role of YidC in folding of polytopic membrane proteins. J. Cell Biol. 165, 53–62 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. du Plessis, D. J., Nouwen, N. & Driessen, A. J. Subunit a of cytochrome o oxidase requires both YidC and SecYEG for membrane insertion. J. Biol. Chem. 281, 12248–12252 (2006).

    PubMed  Google Scholar 

  214. van der Laan, M., Bechtluft, P., Kol, S., Nouwen, N. & Driessen, A. J. F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. J. Cell Biol. 165, 213–222 (2004).

    PubMed  PubMed Central  Google Scholar 

  215. Serek, J. et al. Escherichia coli YidC is a membrane insertase for Sec-independent proteins. EMBO J. 23, 294–301 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Stiegler, N., Dalbey, R. E. & Kuhn, A. M13 procoat protein insertion into YidC and SecYEG proteoliposomes and liposomes. J. Mol. Biol. 406, 362–370 (2011).

    CAS  PubMed  Google Scholar 

  217. Robinson, P. J. & Woolhead, C. A. Post-translational membrane insertion of an endogenous YidC substrate. Biochim. Biophys. Acta 1833, 2781–2788 (2013).

    CAS  PubMed  Google Scholar 

  218. Price, C. E., Kocer, A., Kol, S., van der Berg, J. P. & Driessen, A. J. In vitro synthesis and oligomerization of the mechanosensitive channel of large conductance, MscL, into a functional ion channel. FEBS Lett. 585, 249–254 (2011).

    CAS  PubMed  Google Scholar 

  219. Ernst, S., Schonbauer, A. K., Bar, G., Borsch, M. & Kuhn, A. YidC-driven membrane insertion of single fluorescent Pf3 coat proteins. J. Mol. Biol. 412, 165–175 (2011).

    CAS  PubMed  Google Scholar 

  220. Serdiuk, T. et al. Insertion and folding pathways of single membrane proteins guided by translocases and insertases. Sci. Adv. 5, eaau6824 (2019).

    PubMed  PubMed Central  Google Scholar 

  221. Tian, S. et al. Proteomic analysis identifies membrane proteins dependent on the ER membrane protein complex. Cell Rep. 28, 2517–2526 e2515 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Shurtleff, M. J. et al. The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins. eLife https://doi.org/10.7554/eLife.37018 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Houben, E. N., ten Hagen-Jongman, C. M., Brunner, J., Oudega, B. & Luirink, J. The two membrane segments of leader peptidase partition one by one into the lipid bilayer via a Sec/YidC interface. EMBO Rep. 5, 970–975 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Sachelaru, I. et al. YidC occupies the lateral gate of the SecYEG translocon and is sequentially displaced by a nascent membrane protein. J. Biol. Chem. 288, 16295–16307 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Hegde and Keenan laboratories for productive discussions that influenced this Review. R.S.H. is funded by the UK Medical Research Council (MC_UP_A022_1007). R.J.K. is funded by grants from the US National Institutes of Health (R01 GM086487 and R01 GM130051).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Ramanujan S. Hegde or Robert J. Keenan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Targeting sequence

The sequence element in a protein that directs its delivery to a specific membrane in the cell. For membrane proteins, the targeting sequence is typically a cleavable amino-terminal signal peptide or the first transmembrane domain.

Signal peptide

A targeting sequence that is found at the amino terminus of secretory proteins and some membrane proteins. After they have served their targeting function, signal peptides are cleaved off by an enzyme called ‘signal peptidase’.

Tail-anchored (TA) membrane proteins

Membrane proteins whose only transmembrane domain lies within ~65 amino acids of the carboxy terminus and are oriented with the amino terminus facing the cytosol. These are sometimes called ‘type IV membrane proteins’.

Sec61 complex

A heterotrimeric protein complex that translocates hydrophilic polypeptide segments across the membrane through an aqueous channel and inserts hydrophobic domains into the membrane through a lateral gate. It is called the ‘SecY complex’ in prokaryotes.

Insertases

Transmembrane proteins containing a hydrophilic vestibule that facilitates translocation of short polypeptide segments across the membrane concomitant with transmembrane domain insertion.

Oxa1 superfamily

An evolutionarily related group of membrane protein insertases that includes Oxa1 in the inner mitochondrial membrane, YidC in the bacterial inner membrane, Ylp1 in the archaeal plasma membrane, Alb3 in the chloroplast inner membrane, and GET1, EMC3 and TMCO1 in the eukaryotic endoplasmic reticulum.

Type I membrane proteins

Signal peptide-containing membrane proteins oriented with their mature amino terminus facing the lumen (a topology that is also termed ‘Nexo’) following signal peptide cleavage.

Type II membrane proteins

Membrane proteins oriented with their amino terminus facing the cytosol (a topology that is also termed ‘Ncyt’).

Type III membrane proteins

Membrane proteins oriented with their amino terminus facing the lumen (a topology that is also termed ‘Nexo’); these proteins typically possess a short (fewer than 50 amino acids) amino-terminal flanking region.

Multipass membrane proteins

Proteins spanning the membrane more than once.

Single-pass membrane proteins

Proteins spanning the membrane once.

Intramembrane chaperone

A factor that promotes folding in the membrane by temporarily shielding partially hydrophilic transmembrane domains of nascent polypeptides until their successful assembly with other transmembrane domains.

Chaperonin

A family of ATP-driven multimeric chaperone complexes characterized by a cylindrical structure with an internal chamber. The interior of the chaperonin cylinder provides a protected environment within which nascent proteins can fold.

Assembly factor

A factor that promotes the assembly of two or more proteins, possibly by temporarily shielding their inter-subunit interfaces.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegde, R.S., Keenan, R.J. The mechanisms of integral membrane protein biogenesis. Nat Rev Mol Cell Biol 23, 107–124 (2022). https://doi.org/10.1038/s41580-021-00413-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-021-00413-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing