Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Thrombo-inflammation in acute ischaemic stroke — implications for treatment

Abstract

Ischaemic stroke elicits a strong neuroinflammatory response, but the functional relevance and therapeutic potential of neuroinflammation has only recently become apparent. In acute experimental stroke, T cells contribute to ischaemia–reperfusion injury after recanalization in an antigen-independent manner. Surprisingly, the detrimental T cell effects are platelet-dependent. Glycoprotein (GP)Ib-mediated and GPVI-mediated platelet activation, but not GPIIb–IIIa-mediated platelet aggregation, is an important checkpoint that orchestrates thrombotic and pro-inflammatory pathways, and downstream activation of coagulation factor XII is a driving force of ischaemia–reperfusion injury in acute stroke. The evidence therefore suggests that T cells interact with platelets and facilitate further infarct development through a complex process that we refer to as thrombo-inflammation. Results of clinical trials of agents that target lymphocytes support this concept. However, in the majority of patients with ischaemic stroke, recanalization cannot be achieved and the contribution of T cells in the setting of the resultant permanent ischaemia and subacute stroke is less clear and more complex. In some settings, T cells still seem to aggravate neuronal damage late after the ischaemic insult, but stroke triggers systemic immunodepression, therefore further anti-inflammatory treatments would need to be used carefully in this context. Targeting stroke-related neuroinflammation could become an effective adjunct therapy to improve outcomes after ischaemic stroke, but this approach will require caution regarding the timing and avoidance of adverse effects.

Key points

  • Ischaemic stroke elicits a strong neuroinflammatory response in the acute and chronic stage.

  • T cells contribute to ischaemia–reperfusion injury after recanalization in an antigen-independent manner.

  • During ischaemia–reperfusion injury, T cells interact with platelets and facilitate further infarct development through a complex process referred to as thrombo-inflammation.

  • In subacute and chronic stroke, detrimental T cell effects have to be balanced against lymphocyte-driven protective neuroinflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathomechanisms of thrombus and embolus formation and thrombo-inflammation.

Similar content being viewed by others

References

  1. Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386, 22–28 (2015).

    Google Scholar 

  2. Kolominsky-Rabas, P. L., Weber, M., Gefeller, O., Neundoerfer, B. & Heuschmann, P. U. Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke 32, 2735–2740 (2001).

    CAS  PubMed  Google Scholar 

  3. Hart, R. G. et al. Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol. 13, 429–438 (2014).

    PubMed  Google Scholar 

  4. Lip, G. Y. & Lane, D. A. Stroke prevention in atrial fibrillation: a systematic review. JAMA 313, 1950–1962 (2015).

    PubMed  Google Scholar 

  5. Stoll, G. & Bendszus, M. Inflammation and atherosclerosis: novel insights into plaque formation and destabilization. Stroke 37, 1923–1932 (2006).

    CAS  PubMed  Google Scholar 

  6. Bhatia, R. et al. Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: real-world experience and a call for action. Stroke 41, 2254–2258 (2010).

    CAS  PubMed  Google Scholar 

  7. Nour, M., Scalzo, F. & Liebeskind, D. S. Ischemia-reperfusion injury in stroke. Interv. Neurol. 1, 185–199 (2013).

    PubMed  PubMed Central  Google Scholar 

  8. Mizuma, A., You, J. S. & Yenari, M. A. Targeting reperfusion injury in the age of mechanical thrombectomy. Stroke 49, 1796–1802 (2018). This article presents a topical review on the consequences of restoration of cerebral blood flow by mechanical thrombectomy and emerging targets for adjunct treatments.

    PubMed  PubMed Central  Google Scholar 

  9. Stoll, G., Jander, S. & Schroeter, M. Inflammation and glial responses in ischemic brain lesions. Prog. Neurobiol. 56, 149–171 (1998).

    CAS  PubMed  Google Scholar 

  10. Schroeter, M., Jander, S., Witte, O. W. & Stoll, G. Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion. J. Neuroimmunol. 55, 195–203 (1994).

    CAS  PubMed  Google Scholar 

  11. Gelderblom, M. et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40, 1849–1857 (2009).

    PubMed  Google Scholar 

  12. Zrzavy, T. et al. Dominant role of microglial and macrophage innate immune responses in human ischemic infarcts. Brain Pathol. 28, 791–805 (2018).

    CAS  PubMed  Google Scholar 

  13. del Zoppo, G. et al. Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol. 10, 95–112 (2000).

    PubMed  Google Scholar 

  14. Stoll, G., Jander, S. & Schroeter, M. Cytokines in CNS disorders: neurotoxicity versus neuroprotection. J. Neural Transm. Suppl. 59, 81–89 (2000).

    CAS  PubMed  Google Scholar 

  15. Chamorro, A. et al. The immunology of acute stroke. Nat. Rev. Neurol. 8, 401–410 (2012).

    CAS  PubMed  Google Scholar 

  16. Fu, Y., Liu, Q., Anrather, J. & Shi, F. D. Immune interventions in stroke. Nat. Rev. Neurol. 11, 524–535 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Strecker, J. K., Schmidt, A., Schabitz, W. R. & Minnerup, J. Neutrophil granulocytes in cerebral ischemia – evolution from killers to key players. Neurochem. Int. 107, 117–126 (2017).

    CAS  PubMed  Google Scholar 

  18. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 333, 1581–1587 (1995).

    Google Scholar 

  19. Catanese, L., Tarsia, J. & Fisher, M. Acute ischemic stroke therapy overview. Circ. Res. 120, 541–558 (2017).

    CAS  PubMed  Google Scholar 

  20. Thomalla, G. et al. MRI-guided thrombolysis for stroke with unknown time of onset. N. Engl. J. Med. 379, 611–622 (2018).

    PubMed  Google Scholar 

  21. Goyal, M. et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387, 1723–1731 (2016). This paper provides a meta-analysis of outcomes in five randomized trials of endovascular thrombectomy in acute stroke.

    PubMed  Google Scholar 

  22. Albers, G. W. et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N. Engl. J. Med. 378, 708–718 (2018).

    PubMed  PubMed Central  Google Scholar 

  23. Nogueira, R. G. et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N. Engl. J. Med. 378, 11–21 (2018).

    PubMed  Google Scholar 

  24. de Los Rios la Rosa, F. et al. Eligibility for intravenous recombinant tissue-type plasminogen activator within a population: the effect of the european cooperative acute stroke study (ECASS) III trial. Stroke 43, 1591–1595 (2012).

    PubMed  Google Scholar 

  25. Leischner, H. et al. Reasons for failed endovascular recanalization attempts in stroke patients. J. Neurointerv. Surg. 11, 439–442 (2018).

    PubMed  Google Scholar 

  26. Braeuninger, S., Kleinschnitz, C., Nieswandt, B. & Stoll, G. Focal cerebral ischemia. Methods Mol. Biol. 788, 29–42 (2012).

    CAS  PubMed  Google Scholar 

  27. Schaller, B. & Graf, R. Cerebral ischemia and reperfusion: the pathophysiologic concept as a basis for clinical therapy. J. Cereb. Blood Flow Metab. 24, 351–371 (2004).

    PubMed  Google Scholar 

  28. Hausenloy, D. J. & Yellon, D. M. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J. Clin. Invest. 123, 92–100 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Eltzschig, H. K. & Eckle, T. Ischemia and reperfusion—from mechanism to translation. Nat. Med. 17, 1391–1401 (2011).

    CAS  PubMed  Google Scholar 

  30. Olah, L., Wecker, S. & Hoehn, M. Secondary deterioration of apparent diffusion coefficient after 1-hour transient focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 20, 1474–1482 (2000).

    CAS  PubMed  Google Scholar 

  31. Neumann-Haefelin, T. et al. Serial MRI after transient focal cerebral ischemia in rats: dynamics of tissue injury, blood-brain barrier damage, and edema formation. Stroke 31, 1965–1972 (2000).

    CAS  PubMed  Google Scholar 

  32. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    CAS  PubMed  Google Scholar 

  33. Haley, P. J. Species differences in the structure and function of the immune system. Toxicology 188, 49–71 (2003).

    CAS  PubMed  Google Scholar 

  34. Yilmaz, G., Arumugam, T. V., Stokes, K. Y. & Granger, D. N. Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 113, 2105–2112 (2006). This seminal paper demonstrates that T cells make an essential contribution to ischaemia–reperfusion injury after transient cerebral ischaemia in mice.

    PubMed  Google Scholar 

  35. Kleinschnitz, C. et al. Early detrimental T cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood 115, 3835–3842 (2010). This article presents a comprehensive analysis of T cell subpopulations, co-stimulatory factors and their effects on ischaemia–reperfusion injury in the tMCAO mouse model.

    CAS  PubMed  Google Scholar 

  36. Hofmann, U. & Frantz, S. Role of T cells in myocardial infarction. Eur. Heart J. 37, 873–879 (2015).

    PubMed  Google Scholar 

  37. Ysebaert, D. K. et al. T cells as mediators in renal ischemia/reperfusion injury. Kidney Int. 66, 491–496 (2004).

    CAS  PubMed  Google Scholar 

  38. Zwacka, R. M. et al. CD4+ T-lymphocytes mediate ischemia/reperfusion-induced inflammatory responses in mouse liver. J. Clin. Invest. 100, 279–289 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Romer, C. et al. Blocking stroke-induced immunodeficiency increases CNS antigen-specific autoreactivity but does not worsen functional outcome after experimental stroke. J. Neurosci. 35, 7777–7794 (2015).

    PubMed  Google Scholar 

  40. Ren, X. et al. Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J. Neurosci. 31, 8556–8563 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bodhankar, S., Chen, Y., Vandenbark, A. A., Murphy, S. J. & Offner, H. IL-10-producing B cells limit CNS inflammation and infarct volume in experimental stroke. Metab. Brain Dis. 28, 375–386 (2013).

    CAS  Google Scholar 

  42. Shichita, T. et al. Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat. Med. 15, 946–950 (2009). This study describes the role of T cells and IL-17 in the delayed phase of ischaemic brain injury in mice.

    CAS  PubMed  Google Scholar 

  43. Kleinschnitz, C. et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood 121, 679–691 (2013). This paper presents the first demonstration that the detrimental effects of T cells in cerebral ischaemia–reperfusion injury depend on the presence of platelets in mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Schuhmann, M. K. et al. CD28 superagonist-mediated boost of regulatory T cells increases thrombo-inflammation and ischemic neurodegeneration during the acute phase of experimental stroke. J. Cereb. Blood Flow Metab. 35, 6–10 (2015).

    CAS  PubMed  Google Scholar 

  45. Sandercock, P. A., Counsell, C., Tseng, M. C. & Cecconi, E. Oral antiplatelet therapy for acute ischaemic stroke. Cochrane Database Syst. Rev. 3, CD000029 (2014).

    Google Scholar 

  46. Zinkstok, S. M. et al. Early deterioration after thrombolysis plus aspirin in acute stroke: a post hoc analysis of the Antiplatelet Therapy in Combination with Recombinant t-PA Thrombolysis in Ischemic Stroke trial. Stroke 45, 3080–3082 (2014).

    CAS  PubMed  Google Scholar 

  47. Del Zoppo, G. J. et al. Experimental acute thrombotic stroke in baboons. Stroke 17, 1254–1265 (1986).

    PubMed  Google Scholar 

  48. Okada, Y., Copeland, B. R., Fitridge, R., Koziol, J. A. & del Zoppo, G. J. Fibrin contributes to microvascular obstructions and parenchymal changes during early focal cerebral ischemia and reperfusion. Stroke 25, 1847–1853 (1994).

    CAS  PubMed  Google Scholar 

  49. Obrenovitch, T. P. & Hallenbeck, J. M. Platelet accumulation in regions of low blood flow during the postischemic period. Stroke 16, 224–234 (1985).

    CAS  PubMed  Google Scholar 

  50. Berndt, M. C., Shen, Y., Dopheide, S. M., Gardiner, E. E. & Andrews, R. K. The vascular biology of the glycoprotein Ib-IX-V complex. Thromb. Haemost. 86, 178–188 (2001).

    CAS  PubMed  Google Scholar 

  51. Savage, B., Saldivar, E. & Ruggeri, Z. M. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84, 289–297 (1996).

    CAS  PubMed  Google Scholar 

  52. Kanaji, S., Fahs, S. A., Shi, Q., Haberichter, S. L. & Montgomery, R. R. Contribution of platelet versus endothelial VWF to platelet adhesion and hemostasis. J. Thromb. Haemost. 10, 1646–1652 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Massberg, S. et al. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J. Exp. Med. 197, 41–49 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kleinschnitz, C. et al. Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. Circulation 115, 2323–2330 (2007). This study demonstrates that platelet tethering and activation by GPIb and GPVI signalling, but not GPIIb/IIIa-mediated platelet aggregation, are involved in ischaemic lesion formation in experimental stroke.

    CAS  PubMed  Google Scholar 

  55. Kleinschnitz, C. et al. Deficiency of von Willebrand factor protects mice from ischemic stroke. Blood 113, 3600–3603 (2009).

    CAS  PubMed  Google Scholar 

  56. De Meyer, S. F. et al. Binding of von Willebrand factor to collagen and glycoprotein Ibalpha, but not to glycoprotein IIb/IIIa, contributes to ischemic stroke in mice—brief report. Arterioscler. Thromb. Vasc. Biol. 30, 1949–1951 (2010).

    PubMed  Google Scholar 

  57. Rayes, J., Watson, S. P. & Nieswandt, B. Functional significance of the platelet immune receptors GPVI and CLEC-2. J. Clin. Invest. 129, 12–23 (2019).

    PubMed  Google Scholar 

  58. Nieswandt, B. & Watson, S. P. Platelet-collagen interaction: is GPVI the central receptor? Blood 102, 449–461 (2003).

    CAS  PubMed  Google Scholar 

  59. Goebel, S. et al. The GPVI-Fc fusion protein Revacept improves cerebral infarct volume and functional outcome in stroke. PLOS ONE 8, e66960 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Dutting, S., Bender, M. & Nieswandt, B. Platelet GPVI: a target for antithrombotic therapy?! Trends Pharmacol. Sci. 33, 583–590 (2012).

    PubMed  Google Scholar 

  61. Muller, F. et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 139, 1143–1156 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kleinschnitz, C. et al. Targeting coagulation factor XII provides protection from pathological thrombosis in cerebral ischemia without interfering with hemostasis. J. Exp. Med. 203, 513–518 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hagedorn, I. et al. Factor XIIa inhibitor recombinant human albumin Infestin-4 abolishes occlusive arterial thrombus formation without affecting bleeding. Circulation 121, 1510–1517 (2010).

    CAS  PubMed  Google Scholar 

  64. Austinat, M. et al. Blockade of bradykinin receptor B1 but not bradykinin receptor B2 provides protection from cerebral infarction and brain edema. Stroke 40, 285–293 (2009).

    CAS  PubMed  Google Scholar 

  65. Heydenreich, N. et al. C1-inhibitor protects from brain ischemia-reperfusion injury by combined antiinflammatory and antithrombotic mechanisms. Stroke 43, 2457–2467 (2012).

    CAS  PubMed  Google Scholar 

  66. Gob, E. et al. Blocking of plasma kallikrein ameliorates stroke by reducing thromboinflammation. Ann. Neurol. 77, 784–803 (2015).

    PubMed  Google Scholar 

  67. Shattil, S. J., Kim, C. & Ginsberg, M. H. The final steps of integrin activation: the end game. Nat. Rev. Mol. Cell Biol. 11, 288–300 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bergmeier, W. et al. Flow cytometric detection of activated mouse integrin alphaIIbbeta3 with a novel monoclonal antibody. Cytometry 48, 80–86 (2002).

    CAS  PubMed  Google Scholar 

  69. Kraft, P. et al. Efficacy and safety of platelet glycoprotein receptor blockade in aged and comorbid mice with acute experimental stroke. Stroke 46, 3502–3506 (2015).

    CAS  PubMed  Google Scholar 

  70. Adams, H. P. Jr. et al. Emergency administration of abciximab for treatment of patients with acute ischemic stroke: results of an international phase III trial: Abciximab in Emergency Treatment of Stroke Trial (AbESTT-II). Stroke 39, 87–99 (2008).

    CAS  PubMed  Google Scholar 

  71. Deppermann, C. et al. Platelet secretion is crucial to prevent bleeding in the ischemic brain but not in the inflamed skin or lung in mice. Blood 129, 1702–1706 (2017).

    CAS  PubMed  Google Scholar 

  72. Stoll, G., Kleinschnitz, C. & Nieswandt, B. Combating innate inflammation: a new paradigm for acute treatment of stroke? Ann. NY Acad. Sci. 1207, 149–154 (2010).

    CAS  PubMed  Google Scholar 

  73. Nieswandt, B., Kleinschnitz, C. & Stoll, G. Ischaemic stroke: a thrombo-inflammatory disease? J. Physiol. 589, 4115–4123 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Nieswandt, B. Platelets guide lymphocytes to vascular injury sites. Thromb. Haemost. 108, 207 (2012).

    CAS  PubMed  Google Scholar 

  75. Spectre, G. et al. Platelets selectively enhance lymphocyte adhesion on subendothelial matrix under arterial flow conditions. Thromb. Haemost. 108, 328–337 (2012).

    CAS  PubMed  Google Scholar 

  76. Yilmaz, G. & Granger, D. N. Leukocyte recruitment and ischemic brain injury. Neuromolecular Med. 12, 193–204 (2010).

    CAS  PubMed  Google Scholar 

  77. Shih, A. Y. et al. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J. Cereb. Blood Flow Metab. 32, 1277–1309 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ishikawa, M. et al. Platelet-leukocyte-endothelial cell interactions after middle cerebral artery occlusion and reperfusion. J. Cereb. Blood Flow Metab. 24, 907–915 (2004).

    CAS  PubMed  Google Scholar 

  79. Sallusto, F. et al. T cell trafficking in the central nervous system. Immunol. Rev. 248, 216–227 (2012).

    PubMed  Google Scholar 

  80. Rudick, R. A. et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N. Engl. J. Med. 354, 911–923 (2006).

    CAS  PubMed  Google Scholar 

  81. Llovera, G. et al. The choroid plexus is a key cerebral invasion route for T cells after stroke. Acta Neuropathol. 134, 851–868 (2017).

    CAS  PubMed  Google Scholar 

  82. Becker, K., Kindrick, D., Relton, J., Harlan, J. & Winn, R. Antibody to the alpha4 integrin decreases infarct size in transient focal cerebral ischemia in rats. Stroke 32, 206–211 (2001).

    CAS  PubMed  Google Scholar 

  83. Relton, J. K. et al. Inhibition of alpha4 integrin protects against transient focal cerebral ischemia in normotensive and hypertensive rats. Stroke 32, 199–205 (2001).

    CAS  PubMed  Google Scholar 

  84. Llovera, G. et al. Results of a preclinical randomized controlled multicenter trial (pRCT): anti-CD49d treatment for acute brain ischemia. Sci. Transl Med. 7, 299ra121 (2015). This article presents results from the first preclinical randomized controlled multicentre trial to assess the contribution of α4-integrin-mediated T cell responses in different experimental models of brain ischaemia.

    PubMed  Google Scholar 

  85. Langhauser, F. et al. Blocking of alpha4 integrin does not protect from acute ischemic stroke in mice. Stroke 45, 1799–1806 (2014).

    CAS  PubMed  Google Scholar 

  86. Elkins, J. et al. Safety and efficacy of natalizumab in patients with acute ischaemic stroke (ACTION): a randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol. 16, 217–226 (2017).

    CAS  PubMed  Google Scholar 

  87. Kappos, L. et al. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N. Engl. J. Med. 355, 1124–1140 (2006).

    CAS  PubMed  Google Scholar 

  88. Kraft, P. et al. FTY720 ameliorates acute ischemic stroke in mice by reducing thrombo-inflammation but not by direct neuroprotection. Stroke 44, 3202–3210 (2013).

    CAS  PubMed  Google Scholar 

  89. Fu, Y. et al. Impact of an immune modulator fingolimod on acute ischemic stroke. Proc. Natl Acad. Sci. USA 111, 18315–18320 (2014).

    CAS  PubMed  Google Scholar 

  90. Zhu, Z. et al. Combination of the immune modulator fingolimod with alteplase in acute ischemic stroke: a pilot trial. Circulation 132, 1104–1112 (2015). This paper presents results from a pilot clinical trial in which the immune modulator fingolimod was combined with alteplase to treat acute ischaemic stroke.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Tian, D. C. et al. Fingolimod enhances the efficacy of delayed alteplase administration in acute ischemic stroke by promoting anterograde reperfusion and retrograde collateral flow. Ann. Neurol. 84, 717–728 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang, S. et al. Rationale and design of combination of an immune modulator fingolimod with alteplase bridging with mechanical thrombectomy in acute ischemic stroke (FAMTAIS) trial. Int. J. Stroke 12, 906–909 (2017).

    PubMed  Google Scholar 

  93. Jin, W. N. et al. Brain ischemia induces diversified neuroantigen-specific T cell responses that exacerbate brain injury. Stroke 49, 1471–1478 (2018).

    PubMed  PubMed Central  Google Scholar 

  94. Na, S. Y., Mracsko, E., Liesz, A., Hunig, T. & Veltkamp, R. Amplification of regulatory T cells using a CD28 superagonist reduces brain damage after ischemic stroke in mice. Stroke 46, 212–220 (2015).

    CAS  PubMed  Google Scholar 

  95. Liesz, A. et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 15, 192–199 (2009).

    CAS  PubMed  Google Scholar 

  96. Li, P. et al. Adoptive regulatory T cell therapy protects against cerebral ischemia. Ann. Neurol. 74, 458–471 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Liesz, A., Hu, X., Kleinschnitz, C. & Offner, H. Functional role of regulatory lymphocytes in stroke: facts and controversies. Stroke 46, 1422–1430 (2015).

    PubMed  PubMed Central  Google Scholar 

  98. Liesz, A. et al. FTY720 reduces post-ischemic brain lymphocyte influx but does not improve outcome in permanent murine cerebral ischemia. PLOS ONE 6, e21312 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Gelderblom, M. et al. IL-23 (Interleukin-23)-producing conventional dendritic cells control the detrimental IL-17 (Interleukin-17) response in stroke. Stroke 49, 155–164 (2018).

    CAS  PubMed  Google Scholar 

  100. Gelderblom, M. et al. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood 120, 3793–3802 (2012).

    CAS  PubMed  Google Scholar 

  101. Benakis, C. et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat. Med. 22, 516–523 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Singh, V. et al. The gut microbiome primes a cerebroprotective immune response after stroke. J. Cereb. Blood Flow Metab. 38, 1293–1298 (2018).

    CAS  PubMed  Google Scholar 

  103. Vermeij, J. D., Westendorp, W. F., Dippel, D. W., van de Beek, D. & Nederkoorn, P. J. Antibiotic therapy for preventing infections in people with acute stroke. Cochrane Database Syst. Rev. 1, CD008530 (2018).

    PubMed  Google Scholar 

  104. Prass, K. et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J. Exp. Med. 198, 725–736 (2003). This article provides the first description of stroke-induced immunodepression in mice and the underlying activation of the sympathetic nervous system.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Salas-Perdomo, A. et al. T cells prevent hemorrhagic transformation in ischemic stroke by P-selectin binding. Arterioscler. Thromb. Vasc. Biol. 38, 1761–1771 (2018).

    CAS  PubMed  Google Scholar 

  106. Mao, L. et al. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke. Brain 140, 1914–1931 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. Schuhmann, M. K. et al. Influence of thrombolysis on the safety and efficacy of blocking platelet adhesion or secretory activity in acute ischemic stroke in mice. Transl Stroke Res. 9, 493–498 (2018).

    PubMed  Google Scholar 

  108. Schuhmann, M. K. et al. Targeting platelet GPVI plus rt-PA administration but not alpha2beta1-mediated collagen binding protects against ischemic brain damage in mice. Int. J. Mol. Sci. 20, E2019 (2019).

    PubMed  Google Scholar 

  109. Ames, A. 3rd, Wright, R. L., Kowada, M., Thurston, J. M. & Majno, G. Cerebral ischemia. II. The no-reflow phenomenon. Am. J. Pathol. 52, 437–453 (1968).

    PubMed  PubMed Central  Google Scholar 

  110. Hallenbeck, J. M. & Dutka, A. J. Background review and current concepts of reperfusion injury. Arch. Neurol. 47, 1245–1254 (1990).

    CAS  PubMed  Google Scholar 

  111. Hallenbeck, J. M. et al. Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during the early postischemic period. Stroke 17, 246–253 (1986).

    CAS  PubMed  Google Scholar 

  112. del Zoppo, G. J. & Mabuchi, T. Cerebral microvessel responses to focal ischemia. J. Cereb. Blood Flow Metab. 23, 879–894 (2003).

    PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratories was funded by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) – project number 374031971 – TRR 240 (CRC/TR 240 A1, A7 and B2). The authors thank I. Pleines for preparing the figure, M. Schuhmann for critical reading of the manuscript and numerous colleagues who contributed to the research cited in this article.

Peer review information

Nature Reviews Neurology thanks J. Anrather, A. Planas and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

G.S. provided a first draft of the Review, which was jointly completed by G.S. and B.N.

Corresponding author

Correspondence to Guido Stoll.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Apparent diffusion coefficient

A measure that reflects the diffusion speed of water molecules. This measure is determined by brain MRI to identify areas of impending or manifest ischaemic cell death and the extent of these areas in patients with acute stroke; in these areas, the apparent diffusion coefficient is reduced.

Kallikrein–kinin system

A plasma and tissue proteolytic system that leads to liberation of the vasoactive pro-inflammatory mediator bradykinin. Coagulation factor XIIa cleaves prekallikrein into its proteolytically active form kallikrein, which in turn activates high-molecular-mass kininogen to generate bradykinin. Activated factor XII thereby links thrombotic and inflammatory pathways.

Haemostasis

A complex process that involves activation and interaction of platelets with soluble coagulation factors to rapidly stop bleeding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoll, G., Nieswandt, B. Thrombo-inflammation in acute ischaemic stroke — implications for treatment. Nat Rev Neurol 15, 473–481 (2019). https://doi.org/10.1038/s41582-019-0221-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-019-0221-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing