Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Monitoring and long-term management of giant cell arteritis and polymyalgia rheumatica

An Author Correction to this article was published on 10 September 2020

This article has been updated

Abstract

Giant cell arteritis (GCA) is the most common type of primary vasculitis in Western countries. Polymyalgia rheumatica (PMR) is the second most common inflammatory rheumatic disease of the elderly after rheumatoid arthritis. Glucocorticoids are the cornerstone of treatment for GCA and PMR, which are interrelated diseases. Glucocorticoids are effective, but adverse effects occur in a high proportion of patients. Careful use of glucocorticoids and the application of preventive strategies can minimize these adverse effects. Possible long-term complications of GCA include aneurysm and stenosis of vessels, even in patients with apparently clinically inactive disease; acute blindness is rare during glucocorticoid treatment. In PMR, whether subclinical chronic inflammation can lead to long-term damage is less clear. Management of both GCA and PMR is hampered by the lack of universally accepted definitions of remission and other disease states, such as low disease activity or vessel damage without active disease. In this Review, we outline current evidence on the monitoring and long-term management of patients with GCA and PMR, including the tapering of treatment.

Key points

  • Management of both giant cell arteritis (GCA) and polymyalgia rheumatica a (PMR) is hampered by the lack of universally accepted definitions of remission and other disease states, such as low disease activity or vessel damage without active disease.

  • Long-term management of GCA and PMR should be tailored to individual patient characteristics, including disease manifestations, as well as risk factors for treatment and disease-related complications.

  • Imaging might help clinicians to monitor disease activity and damage; however, which imaging techniques to use and when to use them remains unclear.

  • Although novel therapies such as anti-IL-6 agents help to reduce glucocorticoid exposure and achieve drug-free remission, questions remain about the best treatment regimens and biomarkers to monitor disease activity and predict flare after discontinuation of treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Imaging of chronic large-vessel vasculitis during glucocorticoid treatment.
Fig. 2: Common clinical scenarios, and their management, in the long-term follow-up of patients with GCA and PMR.

Similar content being viewed by others

Change history

  • 10 September 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Lawrence, R. C. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 58, 26–35 (2008).

    PubMed  PubMed Central  Google Scholar 

  2. Crowson, C. S. & Matteson, E. L. Contemporary prevalence estimates for giant cell arteritis and polymyalgia rheumatica, 2015. Semin. Arthritis Rheum. 47, 253–256 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. Buttgereit, F., Dejaco, C., Matteson, E. L. & Dasgupta, B. Polymyalgia rheumatica and giant cell arteritis: a systematic review. JAMA 315, 2442–2458 (2016).

    CAS  PubMed  Google Scholar 

  4. Cid, M. C. et al. Association between strong inflammatory response and low risk of developing visual loss and other cranial ischemic complications in giant cell (temporal) arteritis. Arthritis Rheum. 41, 26–32 (1998).

    CAS  PubMed  Google Scholar 

  5. Liozon, E. et al. Risk factors for visual loss in giant cell (temporal) arteritis: a prospective study of 174 patients. Am. J. Med. 111, 211–217 (2001).

    CAS  PubMed  Google Scholar 

  6. Salvarani, C. et al. Risk factors for severe cranial ischaemic events in an Italian population-based cohort of patients with giant cell arteritis. Rheumatology 48, 250–253 (2008).

    PubMed  Google Scholar 

  7. Hayreh, S. S., Podhajsky, P. A. & Zimmerman, B. Occult giant cell arteritis: ocular manifestations. Am. J. Ophthalmol. 125, 521–526 (1998).

    CAS  PubMed  Google Scholar 

  8. Klein, R. G., Hunder, G. G., Stanson, A. W. & Sheps, S. G. Large artery involvement in giant cell (temporal) arteritis. Ann. Intern. Med. 83, 806–812 (1975).

    CAS  PubMed  Google Scholar 

  9. Brack, A., Martinez-Taboada, V., Stanson, A., Goronzy, J. J. & Weyand, C. M. Disease pattern in cranial and large-vessel giant cell arteritis. Arthritis Rheum. 42, 311–317 (1999).

    CAS  PubMed  Google Scholar 

  10. Dejaco, C., Duftner, C., Buttgereit, F., Matteson, E. L. & Dasgupta, B. The spectrum of giant cell arteritis and polymyalgia rheumatica: revisiting the concept of the disease. Rheumatology 56, 506–515 (2017).

    CAS  PubMed  Google Scholar 

  11. Muratore, F. et al. Large-vessel dilatation in giant cell arteritis: a different subset of disease? Arthritis Care Res. 70, 1406–1411 (2018).

    Google Scholar 

  12. Helfgott, S. M. & Kieval, R. I. Polymyalgia rheumatica in patients with a normal erythrocyte sedimentation rate. Arthritis Rheum. 39, 304–307 (1996).

    CAS  PubMed  Google Scholar 

  13. Myklebust, G. & Gran, J. T. A prospective study of 287 patients with polymyalgia rheumatica and temporal arteritis: clinical and laboratory manifestations at onset of disease and at the time of diagnosis. Br. J. Rheumatol. 35, 1161–1168 (1996).

    CAS  PubMed  Google Scholar 

  14. Cantini, F. et al. Erythrocyte sedimentation rate and C-reactive protein in the evaluation of disease activity and severity in polymyalgia rheumatica: a prospective follow-up study. Semin. Arthritis Rheum. 30, 17–24 (2000).

    CAS  PubMed  Google Scholar 

  15. Manzo, C., Milchert, M., Natale, M. & Brzosko, M. Polymyalgia rheumatica with normal values of both erythrocyte sedimentation rate and C-reactive protein concentration at the time of diagnosis. Rheumatology 58, 921–923 (2019).

    CAS  PubMed  Google Scholar 

  16. Proven, A., Gabriel, S. E., Orces, C., O’Fallon, W. M. & Hunder, G. G. Glucocorticoid therapy in giant cell arteritis: duration and adverse outcomes. Arthritis Care Res. 49, 703–708 (2003).

    CAS  Google Scholar 

  17. Curtis, J. R. et al. Population-based assessment of adverse events associated with long-term glucocorticoid use. Arthritis Rheum. 55, 420–426 (2006).

    PubMed  Google Scholar 

  18. Hoes, J. N., Jacobs, J. W. G., Verstappen, S. M. M., Bijlsma, J. W. J. & Van der Heijden, G. J. M. G. Adverse events of low- to medium-dose oral glucocorticoids in inflammatory diseases: a meta-analysis. Ann. Rheum. Dis. 68, 1833–1838 (2009).

    CAS  PubMed  Google Scholar 

  19. Broder, M. S. et al. Corticosteroid-related adverse events in patients with giant cell arteritis: a claims-based analysis. Semin. Arthritis Rheum. 46, 246–252 (2016).

    PubMed  Google Scholar 

  20. Buttgereit, F., Matteson, E. L., Dejaco, C. & Dasgupta, B. Prevention of glucocorticoid morbidity in giant cell arteritis. Rheumatology 57, ii11–ii21 (2018).

    CAS  PubMed  Google Scholar 

  21. Gabriel, S. E., Sunku, J., Salvarani, C., O’Fallon, W. M. & Hunder, G. G. Adverse outcomes of antiinflammatory therapy among patients with polymyalgia rheumatica. Arthritis Rheum. 40, 1873–1878 (1997).

    CAS  PubMed  Google Scholar 

  22. Mazzantini, M. et al. Adverse events during longterm low-dose glucocorticoid treatment of polymyalgia rheumatica: a retrospective study. J. Rheumatol. 39, 552–557 (2012).

    CAS  PubMed  Google Scholar 

  23. Stone, J. H. et al. Trial of tocilizumab in giant-cell arteritis. N. Engl. J. Med. 377, 317–328 (2017).

    CAS  PubMed  Google Scholar 

  24. Stone, J. H. et al. Long-term outcome of tocilizumab for patients with giant cell arteritis: results from part 2 of a randomized controlled phase 3 trial [abstract 0808]. Arthritis Rheumatol. 71 (Suppl 10), 1389–1390 (2019).

    Google Scholar 

  25. Lally, L., Forbess, L., Hatzis, C. & Spiera, R. Brief report: a prospective open-label phase iia trial of tocilizumab in the treatment of polymyalgia rheumatica. Arthritis Rheumatol. 68, 2550–2554 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Devauchelle-Pensec, V. et al. Efficacy of first-line tocilizumab therapy in early polymyalgia rheumatica: a prospective longitudinal study. Ann. Rheum. Dis. 75, 1506–1510 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Patil, P. et al. Fast track pathway reduces sight loss in giant cell arteritis: results of a longitudinal observational cohort study. Clin. Exp. Rheumatol. 33, S103–S106 (2015).

    Google Scholar 

  28. Diamantopoulos, A. P., Haugeberg, G., Lindland, A. & Myklebust, G. The fast-track ultrasound clinic for early diagnosis of giant cell arteritis significantly reduces permanent visual impairment: towards a more effective strategy to improve clinical outcome in giant cell arteritis? Rheumatology 55, 66–70 (2016).

    PubMed  Google Scholar 

  29. González-Gay, M. A. et al. Permanent visual loss and cerebrovascular accidents in giant cell arteritis: predictors and response to treatment. Arthritis Rheum. 41, 1497–1504 (1998).

    PubMed  Google Scholar 

  30. García-Martínez, A. et al. Development of aortic aneurysm/dilatation during the followup of patients with giant cell arteritis: a cross-sectional screening of fifty-four prospectively followed patients. Arthritis Care Res. 59, 422–430 (2008).

    Google Scholar 

  31. García-Martínez, A. et al. Prospective long term follow-up of a cohort of patients with giant cell arteritis screened for aortic structural damage (aneurysm or dilatation). Ann. Rheum. Dis. 73, 1826–1832 (2014).

    PubMed  Google Scholar 

  32. Yamashita, H. et al. Whole-body fluorodeoxyglucose positron emission tomography/computed tomography in patients with active polymyalgia rheumatica: evidence for distinctive bursitis and large-vessel vasculitis. Mod. Rheumatol. 22, 705–711 (2012).

    PubMed  Google Scholar 

  33. Salvarani, C. et al. Distal musculoskeletal manifestations in polymyalgia rheumatica: a prospective followup study. Arthritis Rheum. 41, 1221–1226 (1998).

    CAS  PubMed  Google Scholar 

  34. Ceccato, F. et al. Peripheral musculoskeletal manifestations in polymyalgia rheumatica. J. Clin. Rheumatol. 12, 167–171 (2006).

    PubMed  Google Scholar 

  35. Hernández-Rodríguez, J. et al. Development of ischemic complications in patients with giant cell arteritis presenting with apparently isolated polymyalgia rheumatica: study of a series of 100 patients. Medicine 86, 233–241 (2007).

    PubMed  Google Scholar 

  36. Liozon, E. et al. Development of giant cell arteritis after treating polymyalgia or peripheral arthritis: a retrospective case-control study. J. Rheumatol. 45, 678–685 (2018).

    CAS  PubMed  Google Scholar 

  37. Kermani, T. A. et al. The Birmingham vasculitis activity score as a measure of disease activity in patients with giant cell arteritis. J. Rheumatol. 43, 1078–1084 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Kermani, T. A. et al. Evaluation of damage in giant cell arteritis. Rheumatology 57, 322–328 (2018).

    PubMed  Google Scholar 

  39. Aydin, S. Z. et al. Update on outcome measure development in large-vessel vasculitis: report from OMERACT 2018. J. Rheumatol. 46, 1198–1201 (2019).

    PubMed  PubMed Central  Google Scholar 

  40. Sreih, A. G. et al. Development of a core set of outcome measures for large-vessel vasculitis: report from OMERACT 2016. J. Rheumatol. 44, 1933–1937 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. Ehlers, L. et al. 2018 EULAR recommendations for a core data set to support observational research and clinical care in giant cell arteritis. Ann. Rheum. Dis. 78, 1160–1166 (2019).

    PubMed  Google Scholar 

  42. Leeb, B. F. & Bird, H. A. A disease activity score for polymyalgia rheumatica. Ann. Rheum. Dis. 63, 1279–1283 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Binard, A., Lefebvre, B., De Bandt, M., Berthelot, J.-M. & Saraux, A. Validity of the polymyalgia rheumatica activity score in primary care practice. Ann. Rheum. Dis. 68, 541–545 (2009).

    CAS  PubMed  Google Scholar 

  44. Mackie, S. L. et al. The OMERACT core domain set for outcome measures for clinical trials in polymyalgia rheumatica. J. Rheumatol. 44, 1515–1521 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. Kermani, T. A. et al. Disease relapses among patients with giant cell arteritis: a prospective, longitudinal cohort study. J. Rheumatol. 42, 1213–1217 (2015).

    PubMed  PubMed Central  Google Scholar 

  46. Stone, J. H. et al. Glucocorticoid dosages and acute‐phase reactant levels at giant cell arteritis flare in a randomized trial of tocilizumab. Arthritis Rheumatol. 71, 1329–1338 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Salvarani, C. et al. Acute-phase reactants and the risk of relapse/recurrence in polymyalgia rheumatica: a prospective followup study. Arthritis Rheum. 53, 33–38 (2005).

    PubMed  Google Scholar 

  48. McCarthy, E. M. et al. Plasma fibrinogen along with patient-reported outcome measures enhances management of polymyalgia rheumatica: a prospective study. J. Rheumatol. 41, 931–937 (2014).

    CAS  PubMed  Google Scholar 

  49. Prieto-González, S. et al. Serum osteopontin: a biomarker of disease activity and predictor of relapsing course in patients with giant cell arteritis. Potential clinical usefulness in tocilizumab-treated patients. RMD Open 3, e000570 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. Foell, D. et al. Early recruitment of phagocytes contributes to the vascular inflammation of giant cell arteritis. J. Pathol. 204, 311–316 (2004).

    CAS  PubMed  Google Scholar 

  51. Cid, M. C. et al. Association between increased CCL2 (MCP-1) expression in lesions and persistence of disease activity in giant-cell arteritis. Rheumatology 45, 1356–1363 (2006).

    CAS  PubMed  Google Scholar 

  52. van Sleen, Y. et al. Markers of angiogenesis and macrophage products for predicting disease course and monitoring vascular inflammation in giant cell arteritis. Rheumatology 58, 1383–1392 (2019).

    Google Scholar 

  53. Inciarte-Mundo, J. et al. Calprotectin more accurately discriminates the disease status of rheumatoid arthritis patients receiving tocilizumab than acute phase reactants. Rheumatology 54, 2239–2243 (2015).

    PubMed  Google Scholar 

  54. Springer, J. M. et al. Serum S100 proteins as a marker of disease activity in large vessel vasculitis. J. Clin. Rheumatol. 24, 393–395 (2018).

    PubMed  PubMed Central  Google Scholar 

  55. Mantovani, A., Garlanda, C., Doni, A. & Bottazzi, B. Pentraxins in innate immunity: from C-reactive protein to the long pentraxin PTX3. J. Clin. Immunol. 28, 1–13 (2008).

    CAS  PubMed  Google Scholar 

  56. Baldini, M. et al. Selective up-regulation of the soluble pattern-recognition receptor pentraxin 3 and of vascular endothelial growth factor in giant cell arteritis: Relevance for recent optic nerve ischemia. Arthritis Rheum. 64, 854–865 (2012).

    CAS  PubMed  Google Scholar 

  57. Gloor, A. D. et al. Immuno-monitoring reveals an extended subclinical disease activity in tocilizumab-treated giant cell arteritis. Rheumatology 57, 1795–1801 (2018).

    PubMed  Google Scholar 

  58. Pulsatelli, L. et al. Serum levels of long pentraxin PTX3 in patients with polymyalgia rheumatica. Clin. Exp. Rheumatol. 28, 756–758 (2010).

    CAS  PubMed  Google Scholar 

  59. van Sleen, Y. et al. Leukocyte dynamics reveal a persistent myeloid dominance in giant cell arteritis and polymyalgia rheumatica. Front. Immunol. 10, 1981 (2019).

    PubMed  PubMed Central  Google Scholar 

  60. Dasgupta, B., Duke, O., Timms, A. M., Pitzalis, C. & Panayi, G. S. Selective depletion and activation of CD8+ lymphocytes from peripheral blood of patients with polymyalgia rheumatica and giant cell arteritis. Ann. Rheum. Dis. 48, 307–311 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Boiardi, L. et al. CD8 lymphocyte subsets in active polymyalgia rheumatica: comparison with elderly-onset and adult rheumatoid arthritis and influence of prednisone therapy. Br. J. Rheumatol. 35, 642–648 (1996).

    CAS  PubMed  Google Scholar 

  62. van der Geest, K. S. M. et al. Disturbed B cell homeostasis in newly diagnosed giant cell arteritis and polymyalgia rheumatica. Arthritis Rheumatol. 66, 1927–1938 (2014).

    PubMed  Google Scholar 

  63. Miyabe, C. et al. An expanded population of pathogenic regulatory T cells in giant cell arteritis is abrogated by IL-6 blockade therapy. Ann. Rheum. Dis. 76, 898–905 (2017).

    CAS  PubMed  Google Scholar 

  64. Samson, M. et al. Th1 and Th17 lymphocytes expressing CD161 are implicated in giant cell arteritis and polymyalgia rheumatica pathogenesis. Arthritis Rheum. 64, 3788–3798 (2012).

    CAS  PubMed  Google Scholar 

  65. Dejaco, C. et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. Ann. Rheum. Dis. 77, 636–643 (2018).

    PubMed  Google Scholar 

  66. Huwart, A. et al. Ultrasonography and magnetic resonance imaging changes in patients with polymyalgia rheumatica treated by tocilizumab. Arthritis Res. Ther. 20, 11 (2018).

    PubMed  PubMed Central  Google Scholar 

  67. Kaneko, K., Suematsu, E., Miyamura, T. & Ishioka, H. Differences of articular and extra-articular involvement in polymyalgia rheumatica: a comparison by whole-body FDG-PET/CT. Mod. Rheumatol. 30, 358–364 (2020).

    PubMed  Google Scholar 

  68. Chrysidis, S. et al. Definitions and reliability assessment of elementary ultrasound lesions in giant cell arteritis: a study from the OMERACT large vessel vasculitis ultrasound working group. RMD Open 4, e000598 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. De Miguel, E. et al. Atherosclerosis as a potential pitfall in the diagnosis of giant cell arteritis. Rheumatology 57, 318–321 (2018).

    PubMed  Google Scholar 

  70. Fernández, E. et al. OP0210 False positives of ultrasound in giant cell arteritis. Some diseases can also have halo sign. Ann. Rheum. Dis. 78 (Suppl. 2), 181 (2019).

    Google Scholar 

  71. Schmidt, W. A. The ultrasound halo sign of temporal arteries: is it always giant cell arteritis? Rheumatology 58, 1898–1899 (2019).

    PubMed  Google Scholar 

  72. Bosch, P. et al. FRI0274 Ultrasound cut-off value for intima-media thickness of the axillary arteries in patients with chronic large-vessel giant cell arteritis. Ann. Rheum. Dis. 78 (Suppl. 2), 817 (2019).

    Google Scholar 

  73. Aschwanden, M. et al. Vascular involvement in patients with giant cell arteritis determined by duplex sonography of 2x11 arterial regions. Ann. Rheum. Dis. 69, 1356–1359 (2010).

    PubMed  Google Scholar 

  74. Monti, S. et al. The proposed role of ultrasound in the management of giant cell arteritis in routine clinical practice. Rheumatology 57, 112–119 (2018).

    PubMed  Google Scholar 

  75. Aschwanden, M. et al. Vessel wall plasticity in large vessel giant cell arteritis: an ultrasound follow-up study. Rheumatology 58, 792–797 (2019).

    PubMed  Google Scholar 

  76. Slart, R. H. J. A. et al. FDG-PET/CT(A) imaging in large vessel vasculitis and polymyalgia rheumatica: joint procedural recommendation of the EANM, SNMMI, and the PET Interest Group (PIG), and endorsed by the ASNC. Eur. J. Nucl. Med. Mol. Imaging 45, 1250–1269 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. Nielsen, B. D. et al. Three days of high-dose glucocorticoid treatment attenuates large-vessel 18F-FDG uptake in large-vessel giant cell arteritis but with a limited impact on diagnostic accuracy. Eur. J. Nucl. Med. Mol. Imaging 45, 1119–1128 (2018).

    CAS  PubMed  Google Scholar 

  78. Clifford, A. H. et al. Positron emission tomography/computerized tomography in newly diagnosed patients with giant cell arteritis who are taking glucocorticoids. J. Rheumatol. 44, 1859–1866 (2017).

    CAS  PubMed  Google Scholar 

  79. Grayson, P. C. et al. 18 F-fluorodeoxyglucose-positron emission tomography as an imaging biomarker in a prospective, longitudinal cohort of patients with large vessel vasculitis. Arthritis Rheumatol. 70, 439–449 (2018).

    PubMed  PubMed Central  Google Scholar 

  80. Blockmans, D. et al. Repetitive 18F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a prospective study of 35 patients. Arthritis Rheum. 55, 131–137 (2006).

    PubMed  Google Scholar 

  81. de Boysson, H. et al. Repetitive 18F-FDG-PET/CT in patients with large-vessel giant-cell arteritis and controlled disease. Eur. J. Intern. Med. 46, 66–70 (2017).

    PubMed  Google Scholar 

  82. Martínez-Rodríguez, I. et al. 18 F-FDG PET/CT in the follow-up of large-vessel vasculitis: a study of 37 consecutive patients. Semin. Arthritis Rheum. 47, 530–537 (2018).

    PubMed  Google Scholar 

  83. Blockmans, D. et al. Relationship between fluorodeoxyglucose uptake in the large vessels and late aortic diameter in giant cell arteritis. Rheumatology 47, 1179–1184 (2008).

    CAS  PubMed  Google Scholar 

  84. Allsop, C. J. & Gallagher, P. J. Temporal artery biopsy in giant-cell arteritis. A reappraisal. Am. J. Surg. Pathol. 5, 317–323 (1981).

    CAS  PubMed  Google Scholar 

  85. Ashton-Key, M. & Gallagher, P. J. Surgical pathology of cranial arteritis and polymyalgia rheumatica. Baillieres Clin. Rheumatol. 5, 387–404 (1991).

    CAS  PubMed  Google Scholar 

  86. Lie, J. T. Temporal artery biopsy diagnosis of giant cell arteritis: lessons from 1109 biopsies. Anat. Pathol. 1, 69–97 (1996).

    CAS  PubMed  Google Scholar 

  87. Visvanathan, S. et al. Tissue and serum markers of inflammation during the follow-up of patients with giant-cell arteritis — a prospective longitudinal study. Rheumatology 50, 2061–2070 (2011).

    CAS  PubMed  Google Scholar 

  88. Maleszewski, J. J. et al. Clinical and pathological evolution of giant cell arteritis: a prospective study of follow-up temporal artery biopsies in 40 treated patients. Mod. Pathol. 30, 788–796 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Fauchald, P., Rygvold, O. & Oystese, B. Temporal arteritis and polymyalgia rheumatica. Clinical and biopsy findings. Ann. Intern. Med. 77, 845–852 (1972).

    CAS  PubMed  Google Scholar 

  90. Schönau, V., Roth, J., Englbrecht, M., Rech, J. & Schett, G. Does an 18F-FDG-PET/CT in patients with giant cell arteritis in clinical remission make sense? [abstract 2200]. Arthritis Rheumatol. 70 (Suppl. 9), 2425–2426 (2018).

    Google Scholar 

  91. Banerjee, S. et al. Effect of treatment on imaging, clinical, and serologic assessments of disease activity in large-vessel vasculitis. J. Rheumatol. 47, 99–107 (2020).

    PubMed  Google Scholar 

  92. Schönau, V. et al. THU0599 resolution of vascular inflammation in patients with giant cell arteritis receiving glucocorticoids, methotrexate or tocilizumab treatment-data from the Italian/German RIGA study. Ann. Rheum. Dis. 78 (Suppl. 2), A591 (2019).

    Google Scholar 

  93. Prieto-González, S. et al. Effect of glucocorticoid treatment on computed tomography angiography detected large-vessel inflammation in giant-cell arteritis. a prospective, longitudinal study. Medicine 94, e486 (2015).

    PubMed  PubMed Central  Google Scholar 

  94. Reichenbach, S. et al. Magnetic resonance angiography in giant cell arteritis: results of a randomized controlled trial of tocilizumab in giant cell arteritis. Rheumatology 57, 982–986 (2018).

    CAS  PubMed  Google Scholar 

  95. Both, M. et al. MRI and FDG-PET in the assessment of inflammatory aortic arch syndrome in complicated courses of giant cell arteritis. Ann. Rheum. Dis. 67, 1030–1033 (2008).

    CAS  PubMed  Google Scholar 

  96. Quinn, K. A. et al. Comparison of magnetic resonance angiography and 18F-fluorodeoxyglucose positron emission tomography in large-vessel vasculitis. Ann. Rheum. Dis. 77, 1165–1171 (2018).

    PubMed  PubMed Central  Google Scholar 

  97. Einspieler, I. et al. Imaging large vessel vasculitis with fully integrated PET/MRI: a pilot study. Eur. J. Nucl. Med. Mol. Imaging 42, 1012–1024 (2015).

    CAS  PubMed  Google Scholar 

  98. Laurent, C. et al. PET/MRI in large-vessel vasculitis: clinical value for diagnosis and assessment of disease activity. Sci. Rep. 9, 12388 (2019).

    PubMed  PubMed Central  Google Scholar 

  99. Dasgupta, B. et al. Provisional classification criteria for polymyalgia rheumatica: a European league against rheumatism/American college of rheumatology collaborative initiative. Ann. Rheum. Dis. 71, 484–492 (2012).

    PubMed  PubMed Central  Google Scholar 

  100. Jimenez-Palop, M. et al. Ultrasonographic monitoring of response to therapy in polymyalgia rheumatica. Ann. Rheum. Dis. 69, 879–882 (2010).

    CAS  PubMed  Google Scholar 

  101. Macchioni, P., Catanoso, M. G., Pipitone, N., Boiardi, L. & Salvarani, C. Longitudinal examination with shoulder ultrasound of patients with polymyalgia rheumatica. Rheumatology 48, 1566–1569 (2009).

    PubMed  Google Scholar 

  102. Camellino, D. & Cimmino, M. A. Imaging of polymyalgia rheumatica: indications on its pathogenesis, diagnosis and prognosis. Rheumatology 51, 77–86 (2012).

    PubMed  Google Scholar 

  103. Blockmans, D. et al. Repetitive 18-fluorodeoxyglucose positron emission tomography in isolated polymyalgia rheumatica: a prospective study in 35 patients. Rheumatology 46, 672–677 (2007).

    CAS  PubMed  Google Scholar 

  104. Palard-Novello, X. et al. Value of (18)F-FDG PET/CT for therapeutic assessment of patients with polymyalgia rheumatica receiving tocilizumab as first-line treatment. Eur. J. Nucl. Med. Mol. Imaging 43, 773–779 (2016).

    CAS  PubMed  Google Scholar 

  105. Mackie, S. L. et al. Accuracy of musculoskeletal imaging for the diagnosis of polymyalgia rheumatica: systematic review. RMD Open 1, e000100 (2015).

    PubMed  PubMed Central  Google Scholar 

  106. Monti, S. et al. Systematic literature review informing the 2018 update of the EULAR recommendation for the management of large vessel vasculitis: focus on giant cell arteritis. RMD Open 5, e001003 (2019).

    PubMed  PubMed Central  Google Scholar 

  107. Mackie, S. L. et al. British Society for Rheumatology guideline on diagnosis and treatment of giant cell arteritis. Rheumatology 59, e1–e23 (2020).

    PubMed  Google Scholar 

  108. Hocevar, A. et al. Do early diagnosis and glucocorticoid treatment decrease the risk of permanent visual loss and early relapses in giant cell arteritis. Medicine 95, e3210 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Restuccia, G. et al. Flares in biopsy-proven giant cell arteritis in northern Italy: characteristics and predictors in a long-term follow-up study. Medicine 95, e3524 (2016).

    PubMed  PubMed Central  Google Scholar 

  110. Unizony, S. et al. FRI0261 Risk factors for treatment failure in patients with giant cell arteritis treated with tocilizumab plus prednisone versus prednisone alone. Ann. Rheum. Dis. 78 (Suppl. 2), 810 (2019).

    Google Scholar 

  111. Dumont, A. et al. Factors associated with relapse and dependence on glucocorticoids in giant cell arteritis. J. Rheumatol. 47, 108–116 (2020).

    PubMed  Google Scholar 

  112. Dejaco, C. et al. 2015 recommendations for the management of polymyalgia rheumatica: a European League Against Rheumatism/American College of Rheumatology collaborative initiative. Ann. Rheum. Dis. 74, 1799–1807 (2015).

    CAS  PubMed  Google Scholar 

  113. Hayashi, K. et al. Thrombocytosis as a prognostic factor in polymyalgia rheumatica: characteristics determined from cluster analysis. Ther. Adv. Musculoskelet. Dis. 11, 1759720X1986482 (2019).

    Google Scholar 

  114. Cimmino, M. A., Zampogna, G. & Parodi, M. Is FDG-PET useful in the evaluation of steroid-resistant PMR patients? Rheumatology 47, 926–927 (2008).

    CAS  PubMed  Google Scholar 

  115. Prieto-Peña, D. et al. Predictors of positive 18F-FDG PET/CT-scan for large vessel vasculitis in patients with persistent polymyalgia rheumatica. Semin. Arthritis Rheum. 48, 720–727 (2019).

    PubMed  Google Scholar 

  116. Miceli, M. C. et al. Baseline shoulder ultrasonography is not a predictive marker of response to glucocorticoids in patients with polymyalgia rheumatica: A 12-month followup study. J. Rheumatol. 44, 241–247 (2017).

    PubMed  Google Scholar 

  117. Hellmich, B. et al. 2018 update of the EULAR recommendations for the management of large vessel vasculitis. Ann. Rheum. Dis. 79, 19–30 (2020).

    PubMed  Google Scholar 

  118. Buttgereit, F. Views on glucocorticoid therapy in rheumatology: the age of convergence. Nat. Rev. Rheumatol. 16, 239–246 (2020).

    CAS  PubMed  Google Scholar 

  119. Mazlumzadeh, M. et al. Treatment of giant cell arteritis using induction therapy with high-dose glucocorticoids: a double-blind, placebo-controlled, randomized prospective clinical trial. Arthritis Rheum. 54, 3310–3318 (2006).

    CAS  PubMed  Google Scholar 

  120. Chevalet, P. et al. A randomized, multicenter, controlled trial using intravenous pulses of methylprednisolone in the initial treatment of simple forms of giant cell arteritis: a one year followup study of 164 patients. J. Rheumatol. 27, 1484–1491 (2000).

    CAS  PubMed  Google Scholar 

  121. Matteson, E. L. et al. Patient-reported outcomes in polymyalgia rheumatica. J. Rheumatol. 39, 795–803 (2012).

    PubMed  Google Scholar 

  122. Dasgupta, B., Dolan, A. L., Panayi, G. S. & Fernandes, L. An initially double-blind controlled 96 week trial of depot methylprednisolone against oral prednisolone in the treatment of polymyalgia rheumatica. Rheumatology 37, 189–195 (1998).

    CAS  Google Scholar 

  123. Mahr, A. D. et al. Adjunctive methotrexate for treatment of giant cell arteritis: an individual patient data meta-analysis. Arthritis Rheum. 56, 2789–2797 (2007).

    CAS  PubMed  Google Scholar 

  124. Dejaco, C. et al. Current evidence for therapeutic interventions and prognostic factors in polymyalgia rheumatica: a systematic literature review informing the 2015 European League Against Rheumatism/American College of Rheumatology recommendations for the management of polymyalgia rheumatica. Ann. Rheum. Dis. 74, 1808–1817 (2015).

    CAS  PubMed  Google Scholar 

  125. Caporali, R. et al. Prednisone plus methotrexate for polymyalgia rheumatica: a randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 141, 493–500 (2004).

    CAS  PubMed  Google Scholar 

  126. Cimmino, M. A. et al. Long-term follow-up of polymyalgia rheumatica patients treated with methotrexate and steroids. Clin. Exp. Rheumatol. 26, 395–400 (2008).

    CAS  PubMed  Google Scholar 

  127. Toussirot, É., Martin, A., Soubrier, M., Redeker, S. & Régent, A. Rapid and sustained response to tocilizumab in patients with polymyalgia rheumatica resistant or intolerant to glucocorticoids: a multicenter open-label study. J. Rheumatol. 43, 249–250 (2016).

    CAS  PubMed  Google Scholar 

  128. Camellino, D., Soldano, S., Cutolo, M. & Cimmino, M. A. Dissecting the inflammatory response in polymyalgia rheumatica: the relative role of IL-6 and its inhibition. Rheumatol. Int. 38, 1699–1704 (2018).

    CAS  PubMed  Google Scholar 

  129. Chino, K. et al. Tocilizumab monotherapy for polymyalgia rheumatica: a prospective, single-center, open-label study. Int. J. Rheum. Dis. 22, 2151–2157 (2019).

    CAS  PubMed  Google Scholar 

  130. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03600818 (2020).

  131. Albrecht, K. et al. Long-term glucocorticoid treatment in patients with polymyalgia rheumatica, giant cell arteritis, or both diseases: results from a national rheumatology database. Rheumatol. Int. 38, 569–577 (2018).

    CAS  PubMed  Google Scholar 

  132. Chandran, A. et al. Glucocorticoid usage in giant cell arteritis over six decades (1950 to 2009). Clin. Exp. Rheumatol. 33, S98–S102 (2015).

    Google Scholar 

  133. Mainbourg, S. et al. Prevalence of giant cell arteritis relapse in patients treated with glucocorticoids: a meta-analysis. Arthritis Care Res. 72, 838–849 (2019).

    Google Scholar 

  134. Villiger, P. M. et al. Tocilizumab for induction and maintenance of remission in giant cell arteritis: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 387, 1921–1927 (2016).

    CAS  PubMed  Google Scholar 

  135. Adler, S. et al. Risk of relapse after discontinuation of tocilizumab therapy in giant cell arteritis. Rheumatology 58, 1639–1643 (2019).

    PubMed  Google Scholar 

  136. Shbeeb, I., Challah, D., Raheel, S., Crowson, C. S. & Matteson, E. L. Comparable rates of glucocorticoid-associated adverse events in patients with polymyalgia rheumatica and comorbidities in the general population. Arthritis Care Res. 70, 643–647 (2018).

    CAS  Google Scholar 

  137. Muratore, F., Pipitone, N., Hunder, G. G. & Salvarani, C. Discontinuation of therapies in polymyalgia rheumatica and giant cell arteritis. Clin. Exp. Rheumatol. 31, S86–S92 (2013).

    PubMed  Google Scholar 

  138. Borresen, S. W. et al. Adrenal insufficiency in prednisolone-treated patients with polymyalgia rheumatica or giant cell arteritis-prevalence and clinical approach. Rheumatology https://doi.org/10.1093/rheumatology/keaa011 (2020).

    Article  PubMed  Google Scholar 

  139. Camellino, D., Dejaco, C., Buttgereit, F. & Matteson, E. L. Treat to target: a valid concept for management of polymyalgia rheumatica and giant cell arteritis? Rheum. Dis. Clin. North Am. 45, 549–567 (2019).

    PubMed  Google Scholar 

  140. Wu, J., Keeley, A., Mallen, C., Morgan, A. W. & Pujades-Rodriguez, M. Incidence of infections associated with oral glucocorticoid dose in people diagnosed with polymyalgia rheumatica or giant cell arteritis: a cohort study in England. CMAJ 191, E680–E688 (2019).

    PubMed  PubMed Central  Google Scholar 

  141. Strehl, C. et al. Defining conditions where long-term glucocorticoid treatment has an acceptably low level of harm to facilitate implementation of existing recommendations: viewpoints from an EULAR task force. Ann. Rheum. Dis. 75, 952–957 (2016).

    CAS  PubMed  Google Scholar 

  142. Au, K. et al. High disease activity is associated with an increased risk of infection in patients with rheumatoid arthritis. Ann. Rheum. Dis. 70, 785–791 (2011).

    PubMed  Google Scholar 

  143. Ritchlin, C. T. et al. Serious infections in patients with self-reported psoriatic arthritis from the psoriasis longitudinal assessment and registry (PSOLAR) treated with biologics. BMC Rheumatol. 3, 52 (2019).

    PubMed  PubMed Central  Google Scholar 

  144. Danza, A. & Ruiz-Irastorza, G. Infection risk in systemic lupus erythematosus patients: susceptibility factors and preventive strategies. Lupus 22, 1286–1294 (2013).

    CAS  PubMed  Google Scholar 

  145. Pimentel-Quiroz, V. R. et al. Factors predictive of serious infections over time in systemic lupus erythematosus patients: data from a multi-ethnic, multi-national, Latin American lupus cohort. Lupus 28, 1101–1110 (2019).

    CAS  PubMed  Google Scholar 

  146. Yoo, J., Jung, S. M., Song, J. J., Park, Y.-B. & Lee, S.-W. Birmingham vasculitis activity and chest manifestation at diagnosis can predict hospitalised infection in ANCA-associated vasculitis. Clin. Rheumatol. 37, 2133–2141 (2018).

    PubMed  Google Scholar 

  147. Garcia-Vives, E., Segarra-Medrano, A., Martinez-Valle, F., Agraz, I. & Solans-Laque, R. Prevalence and risk factors for major infections in patients with antineutrophil cytoplasmic antibody-associated vasculitis: influence on the disease outcome. J. Rheumatol. 47, 407–414 (2020).

    PubMed  Google Scholar 

  148. Duru, N. et al. EULAR evidence-based and consensus-based recommendations on the management of medium to high-dose glucocorticoid therapy in rheumatic diseases. Ann. Rheum. Dis. 72, 1905–1913 (2013).

    CAS  PubMed  Google Scholar 

  149. Lai, L. Y. H., Harris, E., West, R. M. & Mackie, S. L. Association between glucocorticoid therapy and incidence of diabetes mellitus in polymyalgia rheumatica and giant cell arteritis: a systematic review and meta-analysis. RMD Open 4, e000521 (2018).

    PubMed  PubMed Central  Google Scholar 

  150. Miloslavsky, E. M. et al. Development of a glucocorticoid toxicity index (GTI) using multicriteria decision analysis. Ann. Rheum. Dis. 76, 543–546 (2017).

    PubMed  Google Scholar 

  151. Sproul, E. E. & Hawthorne, J. J. Chronic diffuse mesaortitis: report of two cases of unusual type. Am. J. Pathol. 13, 311–323.4 (1937).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Harrison, C. V. Giant-cell or temporal arteritis: a review. J. Clin. Pathol. 1, 197–211 (1948).

    PubMed  PubMed Central  Google Scholar 

  153. Harris, M. Dissecting aneurysm of the aorta due to giant cell arteritis. Br. Heart J. 30, 840–844 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Kermani, T. A. et al. Large-vessel involvement in giant cell arteritis: a population-based cohort study of the incidence-trends and prognosis. Ann. Rheum. Dis. 72, 1989–1994 (2013).

    PubMed  Google Scholar 

  155. Nuenninghoff, D. M., Hunder, G. G., Christianson, T. J. H., McClelland, R. L. & Matteson, E. L. Incidence and predictors of large-artery complication (aortic aneurysm, aortic dissection, and/or large-artery stenosis) in patients with giant cell arteritis: a population-based study over 50 years. Arthritis Rheum. 48, 3522–3531 (2003).

    PubMed  Google Scholar 

  156. Mackie, S. L., Hensor, E. M. A., Morgan, A. W. & Pease, C. T. Should I send my patient with previous giant cell arteritis for imaging of the thoracic aorta? A systematic literature review and meta-analysis. Ann. Rheum. Dis. 73, 143–148 (2014).

    PubMed  Google Scholar 

  157. Olsson, C., Thelin, S., Ståhle, E., Ekbom, A. & Granath, F. Thoracic aortic aneurysm and dissection. Circulation 114, 2611–2618 (2006).

    PubMed  Google Scholar 

  158. Gonzalez-Gay, M. A. et al. Biopsy-proven giant cell arteritis patients with coronary artery disease have increased risk of aortic aneurysmal disease and arterial thrombosis. Clin. Exp. Rheumatol. 31, S94 (2013).

    CAS  PubMed  Google Scholar 

  159. Robson, J. C. et al. The relative risk of aortic aneurysm in patients with giant cell arteritis compared with the general population of the UK. Ann. Rheum. Dis. 74, 129–135 (2015).

    PubMed  Google Scholar 

  160. de Boysson, H. et al. 18F-fluorodeoxyglucose positron emission tomography and the risk of subsequent aortic complications in giant-cell arteritis. A multicenter cohort of 130 patients. Medicine 95, e3851 (2016).

    PubMed  PubMed Central  Google Scholar 

  161. de Boysson, H. et al. Large-vessel involvement and aortic dilation in giant-cell arteritis. A multicenter study of 549 patients. Autoimmun. Rev. 17, 391–398 (2018).

    PubMed  Google Scholar 

  162. Evans, J. M., O’Fallon, W. M. & Hunder, G. G. Increased incidence of aortic aneurysm and dissection in giant cell (temporal) arteritis. A population-based study. Ann. Intern. Med. 122, 502–507 (1995).

    CAS  PubMed  Google Scholar 

  163. Kermani, T. A. et al. Predictors of dissection in aortic aneurysms from giant cell arteritis. J. Clin. Rheumatol. 22, 184–187 (2016).

    PubMed  Google Scholar 

  164. Bienvenu, B. et al. Management of giant cell arteritis: recommendations of the French study group for large vessel vasculitis (GEFA). Rev. Med. Interne 37, 154–165 (2016).

    CAS  PubMed  Google Scholar 

  165. Marin Zucaro, N. et al. Development of thoracic aortic aneurysms in patients with polymyalgia rheumatica: underdiagnosed giant cell arteritis? [abstract 816]. Arthritis Rheumatol. 70 (Suppl. 9), 897–898 (2018).

    Google Scholar 

  166. Tomasson, G. et al. Risk for cardiovascular disease early and late after a diagnosis of giant-cell arteritis: a cohort study. Ann. Intern. Med. 160, 73–80 (2014).

    PubMed  PubMed Central  Google Scholar 

  167. Robson, J. C. et al. Which patients with giant cell arteritis will develop cardiovascular or cerebrovascular disease? A clinical practice research datalink study. J. Rheumatol. 43, 1085–1092 (2016).

    PubMed  Google Scholar 

  168. Li, L., Neogi, T. & Jick, S. Giant cell arteritis and vascular disease-risk factors and outcomes: a cohort study using UK clinical practice research datalink. Rheumatology 56, 753–762 (2017).

    CAS  PubMed  Google Scholar 

  169. Nesher, G. et al. Low-dose aspirin and prevention of cranial ischemic complications in giant cell arteritis. Arthritis Rheum. 50, 1332–1337 (2004).

    CAS  PubMed  Google Scholar 

  170. Lee, M. S., Smith, S. D., Galor, A. & Hoffman, G. S. Antiplatelet and anticoagulant therapy in patients with giant cell arteritis. Arthritis Rheum. 54, 3306–3309 (2006).

    PubMed  Google Scholar 

  171. Ungprasert, P., Koster, M. J., Warrington, K. J. & Matteson, E. L. Polymyalgia rheumatica and risk of coronary artery disease: a systematic review and meta-analysis of observational studies. Rheumatol. Int. 37, 143–149 (2017).

    PubMed  Google Scholar 

  172. Hancock, A. T., Mallen, C. D., Belcher, J. & Hider, S. L. Association between polymyalgia rheumatica and vascular disease: a systematic review. Arthritis Care Res. 64, 1301–1305 (2012).

    Google Scholar 

  173. Pujades-Rodriguez, M. et al. Associations between polymyalgia rheumatica and giant cell arteritis and 12 cardiovascular diseases. Heart 102, 383–389 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Kobayashi, D. et al. Incidence of cardiovascular events in polymyalgia rheumatica and giant cell arteritis amongst an Asian population: propensity score matched cohort study. Int. J. Rheum. Dis. 21, 1314–1321 (2018).

    PubMed  Google Scholar 

  175. Matteson, E. L., Gold, K. N., Bloch, D. A. & Hunder, G. G. Long-term survival of patients with giant cell arteritis in the American College of Rheumatology giant cell arteritis classification criteria cohort. Am. J. Med. 100, 193–196 (1996).

    CAS  PubMed  Google Scholar 

  176. Hill, C. L. et al. Risk of mortality in patients with giant cell arteritis: a systematic review and meta-analysis. Semin. Arthritis Rheum. 46, 513–519 (2017).

    PubMed  Google Scholar 

  177. Brekke, L. K. et al. Survival and death causes of patients with giant cell arteritis in Western Norway 1972–2012: a retrospective cohort study. Arthritis Res. Ther. 21, 154 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Raheel, S., Shbeeb, I., Crowson, C. S. & Matteson, E. L. Epidemiology of polymyalgia rheumatica 2000–2014 and examination of incidence and survival trends over 45 years: a population-based study. Arthritis Care Res. 69, 1282–1285 (2017).

    Google Scholar 

  179. Langford, C. A. et al. A randomized, double-blind trial of abatacept (CTLA-4Ig) for the treatment of giant cell arteritis. Arthritis Rheumatol. 69, 837–845 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03600805 (2020).

  181. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03725202 (2020).

  182. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03026504 (2020).

  183. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03827018 (2020).

  184. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03765788 (2020).

  185. Pulsatelli, L. et al. Interleukin-6 and soluble interleukin-6 receptor are elevated in large-vessel vasculitis: a cross-sectional and longitudinal study. Clin. Exp. Rheumatol. 35, S102–S110 (2017).

    Google Scholar 

  186. Berger, C. T., Rebholz-Chaves, B., Recher, M., Manigold, T. & Daikeler, T. Serial IL-6 measurements in patients with tocilizumab-treated large-vessel vasculitis detect infections and may predict early relapses. Ann. Rheum. Dis. 78, 1012–1014 (2019).

    PubMed  Google Scholar 

  187. Samson, M. & Bonnotte, B. Analysis of IL-6 measurement in patients with GCA treated with tocilizumab should consider concomitant treatment with prednisone. Ann. Rheum. Dis. 79, e102 (2019).

    PubMed  Google Scholar 

  188. van der Geest, K. S. M. et al. Serum markers associated with disease activity in giant cell arteritis and polymyalgia rheumatica. Rheumatology 54, 1397–1402 (2015).

    PubMed  Google Scholar 

  189. Pulsatelli, L. et al. Serum interleukin-6 receptor in polymyalgia rheumatica: a potential marker of relapse/recurrence risk. Arthritis Rheum. 59, 1147–1154 (2008).

    CAS  PubMed  Google Scholar 

  190. Brun, J. G., Madland, T. M., Gran, J. T. & Myklebust, G. A longitudinal study of calprotectin in patients with polymyalgia rheumatica or temporal arteritis: relation to disease activity. Scand. J. Rheumatol. 34, 125–128 (2005).

    CAS  PubMed  Google Scholar 

  191. Sundholm, J. K. M., Pettersson, T., Paetau, A., Albäck, A. & Sarkola, T. Diagnostic performance and utility of very high-resolution ultrasonography in diagnosing giant cell arteritis of the temporal artery. Rheumatol. Adv. Pract. 3, rkz018 (2019).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.C. and C.D. researched data for the article. D.C., E.L.M., F.B. and C.D. wrote the article. All authors made a substantial contribution to discussion of content and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Christian Dejaco.

Ethics declarations

Competing interests

D.C. has received consultancy and speaker fees from AbbVie, Celgene, Janssen-Cilag, Lilly, Mylan, Novartis and Sanofi. E.L.M. was a site investigator for the GiACTA study and is a contributor and section editor for UpToDate. F.B. has received consultancy and speaker fees as well as research grants from Mundipharma, Horizon and Roche/Chugai. C.D. has received consultancy and speaker fees from AbbVie, BMS, Lilly, MSD, Novartis, Pfizer, Roche, Sanofi and UCB, and a research grant from Celgene.

Additional information

Peer review information

Nature Reviews Rheumatology thanks Maria Cid, Peter Greyson, Francesco Muratore and Kim Heang Ly for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Claudication

Cramping pain, elicited by repetitive activities (such as chewing or walking), owing to reduced blood flow.

Vascular bruits

An abnormal sound made on the auscultation of an artery, owing to a turbulent flow secondary to vascular stenosis.

Girdles

The parts of the appendicular skeleton that anchor the limbs to the axial skeleton, even though they are broadly defined as the shoulder and pelvis areas.

Amaurosis fugax

Transient visual loss (from the ancient Greek “ᾰμαύρωσῐς”, meaning darkening, and the Latin “fugax”, meaning brief, fleeting).

Diplopia

The vision of two images of a single object (also called double vision).

Remitting seronegative symmetrical synovitis with pitting oedema

(RS3PE). A clinical syndrome characterized by bilateral, diffuse swelling and inflammation of the hands and/or feet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camellino, D., Matteson, E.L., Buttgereit, F. et al. Monitoring and long-term management of giant cell arteritis and polymyalgia rheumatica. Nat Rev Rheumatol 16, 481–495 (2020). https://doi.org/10.1038/s41584-020-0458-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-020-0458-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing