Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The changing landscape of atherosclerosis

Abstract

Emerging evidence has spurred a considerable evolution of concepts relating to atherosclerosis, and has called into question many previous notions. Here I review this evidence, and discuss its implications for understanding of atherosclerosis. The risk of developing atherosclerosis is no longer concentrated in Western countries, and it is instead involved in the majority of deaths worldwide. Atherosclerosis now affects younger people, and more women and individuals from a diverse range of ethnic backgrounds, than was formerly the case. The risk factor profile has shifted as levels of low-density lipoprotein (LDL) cholesterol, blood pressure and smoking have decreased. Recent research has challenged the protective effects of high-density lipoprotein, and now focuses on triglyceride-rich lipoproteins in addition to low-density lipoprotein as causal in atherosclerosis. Non-traditional drivers of atherosclerosis—such as disturbed sleep, physical inactivity, the microbiome, air pollution and environmental stress—have also gained attention. Inflammatory pathways and leukocytes link traditional and emerging risk factors alike to the altered behaviour of arterial wall cells. Probing the pathogenesis of atherosclerosis has highlighted the role of the bone marrow: somatic mutations in stem cells can cause clonal haematopoiesis, which represents a previously unrecognized but common and potent age-related contributor to the risk of developing cardiovascular disease. Characterizations of the mechanisms that underpin thrombotic complications of atherosclerosis have evolved beyond the ‘vulnerable plaque’ concept. These advances in our understanding of the biology of atherosclerosis have opened avenues to therapeutic interventions that promise to improve the prevention and treatment of now-ubiquitous atherosclerotic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Initiation of atherosclerosis.
Fig. 2: The progression of atherosclerosis reflects and interplay between factors that promote or mitigate atherogenesis.
Fig. 3: Thrombotic complications of atherosclerosis and evolution of the atherosclerotic plaque.

Similar content being viewed by others

Peter Libby, Julie E. Buring, … Eldrin F. Lewis

References

  1. Gaziano, T. A., Prabhakaran, D. & Gaziano, J. M. in Braunwald’s Heart Disease (eds Zipes, D. P. et al.) 1–18 (Saunders, 2018).

  2. Dai, H. et al. Global, regional, and national burden of ischemic heart disease and its attributable risk factors, 1990-2017: results from the global Burden of Disease Study 2017. Eur. Heart J. Qual. Care Clin. Outcomes, https://doi.org/10.1093/ehjqcco/qcaa076 (2020).

  3. Libby, P. et al. Atherosclerosis. Nat. Rev. Dis. Primers 5, 56 (2019).

    Article  PubMed  Google Scholar 

  4. Virani, S. S. et al. Heart disease and stroke statistics—2021 update: a report from the American Heart Association. Circulation 143, e254–e743 (2021).

    Article  PubMed  Google Scholar 

  5. Arora, S. et al. Twenty year trends and sex differences in young adults hospitalized with acute myocardial infarction. Circulation 139, 1047–1056 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Towfighi, A., Markovic, D. & Ovbiagele, B. National gender-specific trends in myocardial infarction hospitalization rates among patients aged 35 to 64 years. Am. J. Cardiol. 108, 1102–1107 (2011).

    Article  PubMed  Google Scholar 

  7. Blüher, M. Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 15, 288–298 (2019).

    Article  PubMed  Google Scholar 

  8. Roth, G. A. et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J. Am. Coll. Cardiol. 76, 2982–3021 (2020). This compilation provides recent data regarding cardiovascular risk factors in various regions of the world, and their import for cardiovascular diseases.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Després, J.-P. & Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 444, 881–887 (2006).

    Article  ADS  PubMed  CAS  Google Scholar 

  10. Nordestgaard, B. G. & Varbo, A. Triglycerides and cardiovascular disease. Lancet 384, 626–635 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Moore, J. X., Chaudhary, N. & Akinyemiju, T. Metabolic syndrome prevalence by race/ethnicity and sex in the United States, national health and nutrition examination survey, 1988–2012. Prev. Chronic Dis. 14, E24 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ference, B. A. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 38, 2459–2472 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borén, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Goldstein, J. L. & Brown, M. S. A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161, 161–172 (2015). A review of the involvement of LDL in atherosclerosis, which represents one of the major advances in cardiovascular science in the past century.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Domanski, M. J. et al. Time course of LDL cholesterol exposure and cardiovascular disease event risk. J. Am. Coll. Cardiol. 76, 1507–1516 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Ridker, P. M. How common is residual inflammatory risk? Circ. Res. 120, 617–619 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Schwartz, G. G. et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med. 379, 2097–2107 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Kwok, C. S. et al. Unplanned hospital readmissions after acute myocardial infarction: a nationwide analysis of rates, trends, predictors and causes in the United States between 2010 and 2014. Coron. Artery Dis. 31, 354–364 (2020).

    Article  PubMed  Google Scholar 

  20. Brook, R. D., Newby, D. E. & Rajagopalan, S. Air pollution and cardiometabolic disease: an update and call for clinical trials. Am. J. Hypertens. 31, 1–10 (2018).

    Article  CAS  Google Scholar 

  21. Münzel, T. Up in the air: links between the environment and cardiovascular disease. Cardiovasc. Res. 115, e144–e146 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Drager, L. F., McEvoy, R. D., Barbe, F., Lorenzi-Filho, G. & Redline, S. Sleep apnea and cardiovascular disease: lessons from recent trials and need for team science. Circulation 136, 1840–1850 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mozaffarian, D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation 133, 187–225 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Malik, V. S. & Hu, F. B. Sugar-sweetened beverages and cardiometabolic health: an update of the evidence. Nutrients 11, 1840 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  25. Andersson, C., Johnson, A. D., Benjamin, E. J., Levy, D. & Vasan, R. S. 70-year legacy of the Framingham Heart Study. Nat. Rev. Cardiol. 16, 687–698 (2019).

    Article  PubMed  Google Scholar 

  26. Aragam, K. G. & Natarajan, P. Polygenic scores to assess atherosclerotic cardiovascular disease risk. Circ. Res. 126, 1159–1177 (2020). A recent review of the generation and use of polygenic risk scores for atherosclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Elliott, J. et al. Predictive accuracy of a polygenic risk score-enhanced prediction model vs a clinical risk score for coronary artery disease. J. Am. Med. Assoc. 323, 636–645 (2020).

    Article  Google Scholar 

  28. Mosley, J. D. et al. Predictive accuracy of a polygenic risk score compared with a clinical risk score for incident coronary heart disease. J. Am. Med. Assoc. 323, 627–635 (2020).

    Article  CAS  Google Scholar 

  29. Siddiqi, H. K., Kiss, D. & Rader, D. HDL-cholesterol and cardiovascular disease: rethinking our approach. Curr. Opin. Cardiol. 30, 536–542 (2015).

    Article  PubMed  Google Scholar 

  30. Thomas, D. G., Wei, Y. & Tall, A. R. Lipid and metabolic syndrome traits in coronary artery disease: a Mendelian randomization study. J. Lipid Res., https://doi.org/10.1194/jlr.P120001000 (2020).

  31. Nazir, S. et al. Interaction between high-density lipoproteins and inflammation: function matters more than concentration! Adv. Drug Deliv. Rev. 159, 94–119 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Shea, S. et al. Cholesterol mass efflux capacity, incident cardiovascular disease, and progression of carotid plaque. Arterioscler. Thromb. Vasc. Biol. 39, 89–96 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Libby, P. Triglycerides on the rise: should we swap seats on the seesaw? Eur. Heart J. 36, 774–776 (2015).

    Article  PubMed  Google Scholar 

  34. Musunuru, K. & Kathiresan, S. Surprises from genetic analyses of lipid risk factors for atherosclerosis. Circ. Res. 118, 579–585 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Voight, B. F. et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 380, 572–580 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Do, R. et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat. Genet. 45, 1345–1352 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khera, A. V. et al. Association of rare and common variation in the lipoprotein lipase gene with coronary artery disease. J. Am. Med. Assoc. 317, 937–946 (2017).

    Article  CAS  Google Scholar 

  38. Lewis, G. F., Xiao, C. & Hegele, R. A. Hypertriglyceridemia in the genomic era: a new paradigm. Endocr. Rev. 36, 131–147 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Varbo, A., Benn, M., Tybjærg-Hansen, A. & Nordestgaard, B. G. Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation 128, 1298–1309 (2013). This contribution from the Copenhagen group presents evidence that remnant TGRL produce a greater inflammatory response than does LDL.

    Article  CAS  PubMed  Google Scholar 

  40. Hansen, S. E. J., Madsen, C. M., Varbo, A. & Nordestgaard, B. G. Low-grade inflammation in the association between mild-to-moderate hypertriglyceridemia and risk of acute pancreatitis: a study of more than 115000 individuals from the general population. Clin. Chem. 65, 321–332 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Tsimikas, S. A test in context: lipoprotein(a): diagnosis, prognosis, controversies, and emerging therapies. J. Am. Coll. Cardiol. 69, 692–711 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Tsimikas, S. & Hall, J. L. Lipoprotein(a) as a potential causal genetic risk factor of cardiovascular disease: a rationale for increased efforts to understand its pathophysiology and develop targeted therapies. J. Am. Coll. Cardiol. 60, 716–721 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Thanassoulis, G. et al. Genetic associations with valvular calcification and aortic stenosis. N. Engl. J. Med. 368, 503–512 (2013). This genome-wide association study pointed to lipoprotein(a) as causal for aortic stenosis, which is a common concomitant of atherosclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, S.-R. et al. LPA gene, ethnicity, and cardiovascular events. Circulation 135, 251–263 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Tsimikas, S. Potential causality and emerging medical therapies for lipoprotein(a) and its associated oxidized phospholipids in calcific aortic valve stenosis. Circ. Res. 124, 405–415 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Libby, P. & Hansson, G. K. From focal lipid storage to systemic inflammation: JACC review topic of the week. J. Am. Coll. Cardiol. 74, 1594–1607 (2019). This review provides an overview of various theories of atherogenesis, culminating in a portrayal of the current view that posits a synthesis that combines elements of many of the previous concepts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xiao, L. & Harrison, D. G. Inflammation in hypertension. Can. J. Cardiol. 36, 635–647 (2020).

    Article  PubMed  Google Scholar 

  48. Ridker, P. M., Koenig, W., Kastelein, J. J., Mach, F. & Lüscher, T. F. Has the time finally come to measure hsCRP universally in primary and secondary cardiovascular prevention? Eur. Heart J. 39, 4109–4111 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Ridker, P. M. A test in context: high-sensitivity C-reactive protein. J. Am. Coll. Cardiol. 67, 712–723 (2016).

    Article  PubMed  Google Scholar 

  50. Ketelhuth, D. F. J. & Hansson, G. K. Adaptive response of T and B cells in atherosclerosis. Circ. Res. 118, 668–678 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Que, X. et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 558, 301–306 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sage, A. P., Tsiantoulas, D., Binder, C. J. & Mallat, Z. The role of B cells in atherosclerosis. Nat. Rev. Cardiol. 16, 180–196 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Lorenzo, C. et al. ALDH4A1 is an atherosclerosis auto-antigen targeted by protective antibodies. Nature 589, 287–292 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Ketelhuth, D. F. J. et al. Immunometabolism and atherosclerosis: perspectives and clinical significance: a position paper from the Working Group on Atherosclerosis and Vascular Biology of the European Society of Cardiology. Cardiovasc. Res. 115, 1385–1392 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tabas, I. & Bornfeldt, K. E. Intracellular and intercellular aspects of macrophage immunometabolism in atherosclerosis. Circ. Res. 126, 1209–1227 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rohlenova, K., Veys, K., Miranda-Santos, I., De Bock, K. & Carmeliet, P. Endothelial cell metabolism in health and disease. Trends Cell Biol. 28, 224–236 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Sakash, J. B., Byrne, G. I., Lichtman, A. & Libby, P. Cytokines induce indoleamine 2,3-dioxygenase expression in human atheroma-asociated cells: implications for persistent Chlamydophila pneumoniae infection. Infect. Immun. 70, 3959–3961 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cuffy, M. C. et al. Induction of indoleamine 2,3-dioxygenase in vascular smooth muscle cells by interferon-γ contributes to medial immunoprivilege. J. Immunol. 179, 5246–5254 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Baumgartner, R., Forteza, M. J. & Ketelhuth, D. F. J. The interplay between cytokines and the kynurenine pathway in inflammation and atherosclerosis. Cytokine 122, 154148 (2019).

    Article  PubMed  CAS  Google Scholar 

  60. Hansson, G. K. Inflammation and atherosclerosis: the end of a controversy. Circulation 136, 1875–1877 (2017).

    Article  PubMed  Google Scholar 

  61. Baylis, R. A., Gomez, D., Mallat, Z., Pasterkamp, G. & Owens, G. K. The CANTOS trial: one important step for clinical cardiology but a giant leap for vascular biology. Arterioscler. Thromb. Vasc. Biol. 37, e174–e177 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017). Results of the clinical trial that first established the role of inflammation in human atherosclerosis by showing improved cardiovascular and other outcomes by targeted neutralization of IL-1β.

    Article  CAS  PubMed  Google Scholar 

  63. Ridker, P. M. et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Tardif, J. C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020). Two studies64,65 that report the results of large-scale clinical trials, showing that treatment with colchicine can reduce recurrent events in patients with recent myocardial infarction or stable coronary artery disease.

  66. Libby, P. & Everett, B. M. Novel antiatherosclerotic therapies. Arterioscler. Thromb. Vasc. Biol. 39, 538–545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ridker, P. M. et al. Low-dose methotrexate for the prevention of atherosclerotic events. N. Engl. J. Med. 380, 752–762 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Ross, R. et al. Waist circumference as a vital sign in clinical practice: a consensus statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 16, 177–189 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  69. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017). This paper describes a newly recognized, potent, age-related, independent and common risk factor for atherosclerosis.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Steensma, D. P. et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126, 9–16 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Libby, P. et al. Clonal hematopoiesis: crossroads of aging, cardiovascular disease, and cancer: JACC review topic of the week. J. Am. Coll. Cardiol. 74, 567–577 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fidler, T. P. et al. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature, https://doi.org/10.1038/s41586-021-03341-5 (2021).

  76. Gisterå, A. et al. Low-density lipoprotein-reactive T cells regulate plasma cholesterol levels and development of atherosclerosis in humanized hypercholesterolemic mice. Circulation 138, 2513–2526 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Ramírez, C. M. et al. Caveolin-1 regulates atherogenesis by attenuating low-density lipoprotein transcytosis and vascular inflammation independently of endothelial nitric oxide synthase activation. Circulation 140, 225–239 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Kraehling, J. R. et al. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat. Commun. 7, 13516 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang, L. et al. SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature 569, 565–569 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Leibundgut, G. et al. Oxidized phospholipids are present on plasminogen, affect fibrinolysis, and increase following acute myocardial infarction. J. Am. Coll. Cardiol. 59, 1426–1437 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Libby, P. Counterregulation rules in atherothrombosis. J. Am. Coll. Cardiol. 59, 1438–1440 (2012).

    Article  PubMed  Google Scholar 

  82. Kruth, H. S. Sequestration of aggregated low-density lipoproteins by macrophages. Curr. Opin. Lipidol. 13, 483–488 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Llorente-Cortes, V., Martinez-Gonzalez, J. & Badimon, L. LDL receptor-related protein mediates uptake of aggregated LDL in human vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 20, 1572–1579 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Robbins, C. S. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med. 19, 1166–1172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lichtman, A. H., Binder, C. J., Tsimikas, S. & Witztum, J. L. Adaptive immunity in atherogenesis: new insights and therapeutic approaches. J. Clin. Invest. 123, 27–36, (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gisterå, A. & Hansson, G. K. The immunology of atherosclerosis. Nat. Rev. Nephrol. 13, 368–380 (2017).

    Article  PubMed  CAS  Google Scholar 

  87. Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117, 195–205 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117, 185–194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bennett, M. R., Sinha, S. & Owens, G. K. Vascular smooth muscle cells in atherosclerosis. Circ. Res. 118, 692–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kubo, T. et al. The dynamic nature of coronary artery lesion morphology assessed by serial virtual histology intravascular ultrasound tissue characterization. J. Am. Coll. Cardiol. 55, 1590–1597 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Deliargyris, E. N. Intravascular ultrasound virtual histology derived thin cap fibroatheroma now you see it, now you don’t. J. Am. Coll. Cardiol. 55, 1598–1599 (2010).

    Article  PubMed  Google Scholar 

  92. Vergallo, R. & Crea, F. Atherosclerotic plaque healing. N. Engl. J. Med. 383, 846–857 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Netea, M. G. et al. Trained immunity: a program of innate immune memory in health and disease. Science 352, aaf1098 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Williams, J. W. et al. Single cell RNA sequencing in atherosclerosis research. Circ. Res. 126, 1112–1126 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kalluri, A. S. et al. Single-cell analysis of the normal mouse aorta reveals functionally distinct endothelial cell populations. Circulation 140, 147–163 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 180, 764–779 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Schloss, M. J., Swirski, F. K. & Nahrendorf, M. Modifiable cardiovascular risk, hematopoiesis, and innate immunity. Circ. Res. 126, 1242–1259 (2020). This paper summarizes work that links lifestyle and behavioural variables with alterations in the bone marrow that modify cardiovascular diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Libby, P., Nahrendorf, M. & Swirski, F. K. Leukocytes link local and systemic inflammation in ischemic cardiovascular disease: an expanded “cardiovascular continuum”. J. Am. Coll. Cardiol. 67, 1091–1103 (2016). This paper summarizes recent data that add the central nervous system and bone marrow to traditional cardiovascular risk schemes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yurdagul, A., Jr, Doran, A. C., Cai, B., Fredman, G. & Tabas, I. A. Mechanisms and consequences of defective efferocytosis in atherosclerosis. Front. Cardiovasc. Med. 4, 86 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Virmani, R. et al. Coronary artery atherosclerosis revisited in Korean war combat casualties. Arch. Pathol. Lab. Med. 111, 972–976 (1987). https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3307684&dopt=Abstract

    CAS  PubMed  Google Scholar 

  102. Tuzcu, E. M. et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation 103, 2705–2710 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Fernández-Friera, L. et al. Vascular inflammation in subclinical atherosclerosis detected by hybrid PET/MRI. J. Am. Coll. Cardiol. 73, 1371–1382 (2019).

    Article  PubMed  Google Scholar 

  104. Davies, M. J. Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation 94, 2013–2020 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Waksman, R. et al. The lipid-rich plaque study of vulnerable plaques and vulnerable patients: study design and rationale. Am. Heart J. 192, 98–104 (2017).

    Article  PubMed  Google Scholar 

  106. Libby, P. Mechanisms of acute coronary syndromes and their implications for therapy. N. Engl. J. Med. 368, 2004–2013 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Libby, P. Collagenases and cracks in the plaque. J. Clin. Invest. 123, 3201–3203 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Stone, G. W. et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364, 226–235 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. The SCOT-HEART Investigators. Coronary CT angiography and 5-year risk of myocardial infarction. N. Engl. J. Med. 379, 924–933 (2018).

    Article  Google Scholar 

  110. Douglas, P. S. et al. Outcomes of anatomical versus functional testing for coronary artery disease. N. Engl. J. Med. 372, 1291–1300 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Libby, P. & Pasterkamp, G. Requiem for the ‘vulnerable plaque’. Eur. Heart J. 36, 2984–2987 (2015).

    PubMed  Google Scholar 

  112. Arbab-Zadeh, A. & Fuster, V. The myth of the “vulnerable plaque”: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J. Am. Coll. Cardiol. 65, 846–855 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Pasterkamp, G., den Ruijter, H. M. & Libby, P. Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease. Nat. Rev. Cardiol. 14, 21–29 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Franck, G. et al. Haemodynamic stress-induced breaches of the arterial intima trigger inflammation and drive atherogenesis. Eur. Heart J. 40, 928–937 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Crea, F. & Libby, P. Acute coronary syndromes. Circulation 136, 1155–1166 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Libby, P., Pasterkamp, G., Crea, F. & Jang, I. K. Reassessing the mechanisms of acute coronary syndromes. Circ. Res. 124, 150–160 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kolte, D., Libby, P. & Jang, I-K. New insights into plaque erosion as a mechanism of acute coronary syndromes. J. Am. Med. Assoc., https://doi.org/10.1001/jama.2021.0069 (2021).

  118. Libby, P. Once more unto the breach: endothelial permeability and atherogenesis. Eur. Heart J. 40, 938–940 (2019).

    Article  PubMed  Google Scholar 

  119. Molinaro, R. et al. Targeted delivery of protein arginine deiminase-4 inhibitors to limit arterial intimal NETosis and preserve endothelial integrity. Cardiovasc. Res., https://doi.org/10.1093/cvr/cvab074 (2012).

  120. Khera, A. V. et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N. Engl. J. Med. 375, 2349–2358 (2016). This paper presents data that show that healthy behaviours can modify coronary disease risk that is conferred by inherited factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Collins, R. et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 388, 2532–2561 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Cannon, C. P. et al. Ezetimibe added to statin therapy after acute coronary syndromes. N. Engl. J. Med. 372, 2387–2397 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003). This paper reports a molecular mechanism that regulates LDL concentrations, and that led to the rapid development of a class of lipid-lowering drugs that lower cardiovascular risk.

    Article  CAS  PubMed  Google Scholar 

  125. Preiss, D., Tobert, J. A., Hovingh, G. K. & Reith, C. Lipid-modifying agents, from statins to PCSK9 inhibitors: JACC focus seminar. J. Am. Coll. Cardiol. 75, 1945–1955 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Ray, K. K. et al. Safety and efficacy of bempedoic acid to reduce LDL cholesterol. N. Engl. J. Med. 380, 1022–1032 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Ray, K. K. et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med. 376, 1430–1440 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Tsimikas, S. et al. Lipoprotein(a) reduction in persons with cardiovascular disease. N. Engl. J. Med. 382, 244–255 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Libby, P. Lipoprotein (a): a frustrating final frontier in lipid management? JACC Basic Transl. Sci. 1, 428–431 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Pradhan, A. D. et al. Rationale and design of the pemafibrate to reduce cardiovascular outcomes by reducing triglycerides in patients with diabetes (PROMINENT) study. Am. Heart J. 206, 80–93 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Bhatt, D. L. et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 380, 11–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Bhatt, D. L. et al. Effects of icosapent ethyl on total ischemic events: from REDUCE-IT. J. Am. Coll. Cardiol. 73, 2791–2802 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Mason, R. P., Libby, P. & Bhatt, D. L. Emerging mechanisms of cardiovascular protection for the omega-3 fatty acid eicosapentaenoic acid. Arterioscler. Thromb. Vasc. Biol. 40, 1135–1147 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Libby, P. & Plutzky, J. Diabetic macrovascular disease: the glucose paradox? Circulation 106, 2760–2763 (2002).

    Article  PubMed  Google Scholar 

  135. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Neuen, B. L. et al. Cardiovascular and renal outcomes with canagliflozin according to baseline kidney function. Circulation 138, 1537–1550 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wiviott, S. D. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 380, 347–357 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Gerstein, H. C. et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 394, 121–130 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Seeger, T., Porteus, M. & Wu, J. C. Genome editing in cardiovascular biology. Circ. Res. 120, 778–780 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Karakikes, I., Ameen, M., Termglinchan, V. & Wu, J. C. Human induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 117, 80–88 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Feinberg, M. W. & Moore, K. J. MicroRNA regulation of atherosclerosis. Circ. Res. 118, 703–720 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Jaé, N. & Dimmeler, S. Noncoding RNAs in vascular diseases. Circ. Res. 126, 1127–1145 (2020).

    Article  PubMed  CAS  Google Scholar 

  146. Owsiany, K. M., Alencar, G. F. & Owens, G. K. Revealing the origins of foam cells in atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 39, 836–838 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.L. receives funding support from the National Heart, Lung, and Blood Institute (1R01HL134892), the American Heart Association (18CSA34080399), the RRM Charitable Fund and the Simard Fund.

Author information

Authors and Affiliations

Authors

Contributions

P.L. is entirely responsible for the conception and design of the work; the acquisition, analysis and interpretation of data; and the initial draft of the work and its revision. P.L. approved the previously submitted version and has agreed both to be personally accountable for his own contributions and to ensure that questions related to the accuracy or integrity of any part of the work are appropriately investigated, resolved and the resolution documented in the literature.

Corresponding author

Correspondence to Peter Libby.

Ethics declarations

Competing interests

P.L. is an unpaid consultant to, or involved in clinical trials for, Amgen, AstraZeneca, Baim Institute, Beren Therapeutics, Esperion, Therapeutics, Genentech, Kancera, Kowa Pharmaceuticals, Medimmune, Merck, Norvo Nordisk, Merck, Novartis, Pfizer and Sanofi-Regeneron. P.L. is a member of the scientific advisory boards for Amgen, Corvidia Therapeutics, DalCor Pharmaceuticals, Kowa Pharmaceuticals, Olatec Therapeutics, Medimmune, Novartis and XBiotech, Inc. The laboratory of P.L. has received research funding in the past two years from Novartis. P.L. is on the Board of Directors of XBiotech, Inc. P.L. has a financial interest in Xbiotech, a company developing therapeutic human antibodies. The interests of P.L. were reviewed and are managed by Brigham and Women’s Hospital and Partners HealthCare, in accordance with their conflict of interest policies.

Additional information

Peer review information Nature thanks Christie Ballantyne, Michael Holmes and Daniel Rader for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021). https://doi.org/10.1038/s41586-021-03392-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03392-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing