Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The RNA modification N6-methyladenosine as a novel regulator of the immune system

Abstract

Protection from harmful pathogens depends on activation of the immune system, which relies on tight regulation of gene expression. Recently, the RNA modification N6-methyladenosine (m6A) has been found to play an essential role in such regulation. Here, we summarize newly discovered functions of m6A in controlling various aspects of immunity, including immune recognition, activation of innate and adaptive immune responses, and cell fate decisions. We then discuss some of the current challenges in the field and describe future directions for uncovering the immunological functions of m6A and its mechanisms of action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The cellular m6A machinery and its potential molecular functions.
Fig. 2: m6A regulates the innate immune response to infection through diverse mechanisms.
Fig. 3: m6A modification regulates cytokine receptor signaling.
Fig. 4: Dendritic cell functions are modulated by m6A modification.

Similar content being viewed by others

References

  1. Li, S. & Mason, C. E. The pivotal regulatory landscape of RNA modifications. Annu. Rev. Genomics Hum. Genet. 15, 127–150 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Desrosiers, R., Friderici, K. & Rottman, F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl Acad. Sci. USA 71, 3971–3975 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Perry, R. P. & Kelley, D. E. Existence of methylated messenger RNA in mouse L cells. Cell 1, 37–42 (1974).

    Article  CAS  Google Scholar 

  4. Bokar, J. A., Shambaugh, M. E., Polayes, D., Matera, A. G. & Rottman, F. M. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 3, 1233–1247 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Śledź, P. & Jinek, M. Structural insights into the molecular mechanism of the m6A writer complex. Elife 5, e18434 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang, P., Doxtader, K. A. & Nam, Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol. Cell 63, 306–317 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, X. et al. Structural basis of N6-adenosine methylation by the METTL3–METTL14 complex. Nature 534, 575–578 (2016); erratum 542, 260 (2017).

  10. Liu, J. et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Ping, X.-L. et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24, 177–189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wen, J. et al. Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol. Cell 69, 1028–1038.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yue, Y. et al. VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 4, 10 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Knuckles, P., Lence, T. & Haussmann, I. U. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d. Genes Dev. 32, 415–429 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Patil, D. P. et al. m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537, 369–373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, N. et al. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 19, 1848–1856 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garcia-Campos, M. A. et al. Deciphering the “m6A code” via antibody-independent quantitative profiling. Cell 178, 731–747.e16 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, Z. et al. Single-base mapping of m6A by an antibody-independent method. Sci. Adv. 5, eaax0250 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Darnell, R. B., Ke, S. & Darnell, J. E. Jr. Pre-mRNA processing includes N6 methylation of adenosine residues that are retained in mRNA exons and the fallacy of “RNA epigenetics”. RNA 24, 262–267 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gokhale, N. S. et al. N6-methyladenosine in Flaviviridae viral RNA genomes regulates infection. Cell Host Microbe 20, 654–665 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lichinchi, G. et al. Dynamics of human and viral RNA methylation during Zika virus infection. Cell Host Microbe 20, 666–673 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu, M. et al. N6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nat. Microbiol. 5, 584–598 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pendleton, K. E. et al. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169, 824–835.e14 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma, H. et al. N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat. Chem. Biol. 15, 88–94 (2019); erratum 15, 549 (2019).

  25. van Tran, N. et al. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res. 47, 7719–7733 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Akichika, S. et al. Cap-specific terminal N6-methylation of RNA by an RNA polymerase II–associated methyltransferase. Science 363, eaav0080 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Boulias, K. et al. Identification of the m6Am methyltransferase PCIF1 reveals the location and functions of m6Am in the transcriptome. Mol. Cell 75, 631–643.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun, H., Zhang, M., Li, K., Bai, D. & Yi, C. Cap-specific, terminal N6-methylation by a mammalian m6Am methyltransferase. Cell Res. 29, 80–82 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Li, F., Zhao, D., Wu, J. & Shi, Y. Structure of the YTH domain of human YTHDF2 in complex with an m6A mononucleotide reveals an aromatic cage for m6A recognition. Cell Res. 24, 1490–1492 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zhu, T. et al. Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. Cell Res. 24, 1493–1496 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, C. et al. Structural basis for the discriminative recognition of N6-methyladenosine RNA by the human YT521-B homology domain family of proteins. J. Biol. Chem. 290, 24902–24913 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Xu, C. et al. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat. Chem. Biol. 10, 927–929 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Nayler, O., Hartmann, A. M. & Stamm, S. The ER repeat protein YT521-B localizes to a novel subnuclear compartment. J. Cell Biol. 150, 949–962 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xiao, W. et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61, 507–519 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Wojtas, M. N. et al. Regulation of m6A transcripts by the 3′→ 5′ RNA helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline. Mol. Cell 68, 374–387.e12 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Bailey, A. S. et al. The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline. Elife 6, 26116 (2017).

    Article  Google Scholar 

  37. Patil, D. P., Pickering, B. F. & Jaffrey, S. R. Reading m6A in the transcriptome: m6A-binding proteins. Trends Cell Biol. 28, 113–127 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

    Article  PubMed  CAS  Google Scholar 

  39. Wang, X. et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shi, H. et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27, 315–328 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Du, H. et al. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat. Commun. 7, 12626 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ries, R. J. et al. m6A enhances the phase separation potential of mRNA. Nature 571, 424–428 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kasowitz, S. D. et al. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet. 14, e1007412 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Roundtree, I. A. et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife 6, e31311 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kretschmer, J. et al. The m6A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′–3′ exoribonuclease XRN1. RNA 24, 1339–1350 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hsu, P. J. et al. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 27, 1115–1127 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jain, D. et al. ketu mutant mice uncover an essential meiotic function for the ancient RNA helicase YTHDC2. Elife 7, e30919 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Arguello, A. E., DeLiberto, A. N. & Kleiner, R. E. RNA chemical proteomics reveals the N6-methyladenosine (m6A)-regulated protein–RNA interactome. J. Am. Chem. Soc. 139, 17249–17252 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Edupuganti, R. R. et al. N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat. Struct. Mol. Biol. 24, 870–878 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, N. et al. N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature 518, 560–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, N. et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 45, 6051–6063 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang, H. et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20, 285–295 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meyer, K. D. et al. 5′ UTR m6A promotes cap-independent translation. Cell 163, 999–1010 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alarcón, C. R. et al. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell 162, 1299–1308 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Spitale, R. C. et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Wei, J. et al. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol. Cell 71, 973–985.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mauer, J. et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature 541, 371–375 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Peng, S. et al. Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1. Sci. Transl. Med. 11, eaau7116 (2019).

    Article  PubMed  CAS  Google Scholar 

  62. Wang, L., Wen, M. & Cao, X. Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses. Science 365, eaav0758 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Sommer, S., Lavi, U. & Darnell, J. E. Jr. The absolute frequency of labeled N-6-methyladenosine in HeLa cell messenger RNA decreases with label time. J. Mol. Biol. 124, 487–499 (1978).

    Article  CAS  PubMed  Google Scholar 

  64. Geula, S. et al. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science 347, 1002–1006 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Li, H.-B. et al. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 548, 338–342 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ke, S. et al. m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev. 31, 990–1006 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee, H. et al. Stage-specific requirement for Mettl3-dependent m6A mRNA methylation during haematopoietic stem cell differentiation. Nat. Cell Biol. 21, 700–709 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cheng, Y. et al. m6A RNA methylation maintains hematopoietic stem cell identity and symmetric commitment. Cell Rep. 28, 1703–1716.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Weng, H. et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification. Cell Stem Cell 22, 191–205.e9 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Zhou, J. et al. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 526, 591–594 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhou, J. et al. N6-methyladenosine guides mRNA alternative translation during integrated stress response. Mol. Cell 69, 636–647.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lin, S., Choe, J., Du, P., Triboulet, R. & Gregory, R. I. The m6A methyltransferase METTL3 promotes translation in human cancer cells. Mol. Cell 62, 335–345 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Choe, J. et al. mRNA circularization by METTL3–eIF3h enhances translation and promotes oncogenesis. Nature 561, 556–560 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Haussmann, I. U. et al. m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature 540, 301–304 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Lesbirel, S. et al. The m6A-methylase complex recruits TREX and regulates mRNA export. Sci. Rep. 8, 13827 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Grozhik, A. V., Linder, B., Olarerin-George, A. O. & Jaffrey, S. R. Mapping m6A at individual-nucleotide resolution using crosslinking and immunoprecipitation (miCLIP). Methods Mol. Biol. 1562, 55–78 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767–772 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ke, S., Alemu, E. A., Mertens, C. & Gantman, E. C. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes 29, 2037–2053 (2015).

    Article  CAS  Google Scholar 

  79. Meyer, K. D. DART-seq: an antibody-free method for global m6A detection. Nat. Methods 16, 1275–1280 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu, H. et al. Accurate detection of m6A RNA modifications in native RNA sequences. Nat. Commun. 10, 4079 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Lorenz, D. A., Sathe, S., Einstein, J. M. & Yeo, G. W. Direct RNA sequencing enables m6A detection in endogenous transcript isoforms at base specific resolution. RNA 26, 19–28 (2019).

    Article  PubMed  CAS  Google Scholar 

  82. Wu, J. & Chen, Z. J. Innate immune sensing and signaling of cytosolic nucleic acids. Ann. Rev. Immunol. 32, 461–488 (2014).

    Article  CAS  Google Scholar 

  83. Roers, A., Hiller, B. & Hornung, V. Recognition of endogenous nucleic acids by the innate immune system. Immunity 44, 739–754 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    Article  PubMed  CAS  Google Scholar 

  85. Durbin, A. F., Wang, C., Marcotrigiano, J. & Gehrke, L. RNAs containing modified nucleotides fail to trigger RIG-I conformational changes for innate immune signaling. Mbio 7, e00833–16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wilusz, J. E. A 360° view of circular RNAs: from biogenesis to functions. Wiley Interdiscip. Rev. RNA 9, e1478 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Wesselhoeft, R. A. et al. RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol. Cell 74, 508–520.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, Y. G. et al. Sensing self and foreign circular RNAs by intron identity. Mol. Cell 67, 228–238.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen, Y. G. et al. N6-methyladenosine modification controls circular RNA immunity. Mol. Cell 76, 96–109.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Imaeda, A. et al. N6-methyl adenosine in siRNA evades immune response without reducing RNAi activity. Nucleosides Nucleotides Nucleic Acids 38, 972–979 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Ringeard, M., Marchand, V., Decroly, E., Motorin, Y. & Bennasser, Y. FTSJ3 is an RNA 2′-O-methyltransferase recruited by HIV to avoid innate immune sensing. Nature 565, 500–504 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Habjan, M. et al. Sequestration by IFIT1 impairs translation of 2′ O-unmethylated capped RNA. PLoS Pathog. 9, e1003663 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Hyde, J. L. & Diamond, M. S. Innate immune restriction and antagonism of viral RNA lacking 2′-O methylation. Virology 479–480, 66–74 (2015).

    Article  PubMed  CAS  Google Scholar 

  94. Daffis, S. et al. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468, 452–456 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ivashkiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36–49 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zheng, Q., Hou, J., Zhou, Y., Li, Z. & Cao, X. The RNA helicase DDX46 inhibits innate immunity by entrapping m6A-demethylated antiviral transcripts in the nucleus. Nat. Immunol. 18, 1094–1103 (2017); erratum 18, 1361 (2017).

  97. Winkler, R. et al. m6A modification controls the innate immune response to infection by targeting type I interferons. Nat. Immunol. 20, 173–182 (2019); erratum 20, 243 (2019).

  98. Rubio, R. M., Depledge, D. P., Bianco, C., Thompson, L. & Mohr, I. RNA m6 A modification enzymes shape innate responses to DNA by regulating interferon β. Genes Dev. 32, 1472–1484 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang, Y. et al. RNA-binding protein YTHDF3 suppresses interferon-dependent antiviral responses by promoting FOXO3 translation. Proc. Natl Acad. Sci. USA 116, 976–981 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Liu, Y. et al. N6-methyladenosine RNA modification–mediated cellular metabolism rewiring inhibits viral replication. Science 365, 1171–1176 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Williams, G. D., Gokhale, N. S. & Horner, S. M. Regulation of viral infection by the RNA modification N6-methyladenosine. Annu. Rev. Virol. 6, 235–253 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Price, A. M., Hayer, K. E., McIntyre, A. B. R. & Gokhale, N. S. Direct RNA sequencing reveals m6A modifications on adenovirus RNA are necessary for efficient splicing. Preprint at bioRxiv https://doi.org/10.1101/865485 (2019).

  103. Gao, Y. et al. Mettl3 mediated m6A modification is essential in fetal hematopoiesis. Blood 132 (Suppl. 1), 3825 (2018).

    Article  Google Scholar 

  104. Wang, H. et al. Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation. Nat. Commun. 10, 1898 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Tan, J. T. et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl Acad. Sci. USA 98, 8732–8737 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Palmer, D. C. & Restifo, N. P. Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends Immunol. 30, 592–602 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Seki, Y.-I. et al. IL-7/STAT5 cytokine signaling pathway is essential but insufficient for maintenance of naive CD4 T cell survival in peripheral lymphoid organs. J. Immunol. 178, 262–270 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Bahrami, S. & Drabløs, F. Gene regulation in the immediate-early response process. Adv. Biol. Regul. 62, 37–49 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Rabani, M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 29, 436–442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sprent, J. & Surh, C. D. Writer’s block: preventing m6A mRNA methylation promotes T cell naivety. Immunol. Cell Biol. 95, 855–856 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 153, 1151–1164 (1995).

    Google Scholar 

  112. Lio, C.-W. J. & Hsieh, C.-S. A two-step process for thymic regulatory T cell development. Immunity 28, 100–111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chinen, T. et al. An essential role for the IL-2 receptor in Treg cell function. Nat. Immunol. 17, 1322–1333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tong, J. et al. m6A mRNA methylation sustains Treg suppressive functions. Cell Res. 28, 253–256 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lu, L.-F. et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30, 80–91 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Qi, H., Kastenmüller, W. & Germain, R. N. Spatiotemporal basis of innate and adaptive immunity in secondary lymphoid tissue. Annu. Rev. Cell Dev. Biol. 30, 141–167 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Dustin, M. L. The immunological synapse. Cancer Immunol. Res. 2, 1023–1033 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–779 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu, K. & Nussenzweig, M. C. Origin and development of dendritic cells. Immunol. Rev. 234, 45–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Feng, Z., Li, Q., Meng, R., Yi, B. & Xu, Q. METTL3 regulates alternative splicing of MyD88 upon the lipopolysaccharide-induced inflammatory response in human dental pulp cells. J. Cell. Mol. Med. 22, 2558–2568 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Han, D. et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature 566, 270–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shakhar, G. et al. Stable T cell–dendritic cell interactions precede the development of both tolerance and immunity in vivo. Nat. Immunol. 6, 707–714 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yamamoto, M. et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420, 324–329 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Kurts, C., Robinson, B. W. S. & Knolle, P. A. Cross-priming in health and disease. Nat. Rev. Immunol. 10, 403–414 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Alloatti, A., Kotsias, F., Magalhaes, J. G. & Amigorena, S. Dendritic cell maturation and cross-presentation: timing matters! Immunol. Rev. 272, 97–108 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cebrian, I. et al. Sec22b regulates phagosomal maturation and antigen crosspresentation by dendritic cells. Cell 147, 1355–1368 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Burbage, M., Gros, M. & Amigorena, S. Translate less, prime better, to improve anti-tumor responses. Nat. Immunol. 20, 518–520 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Li, L. & Clevers, H. Coexistence of quiescent and active adult stem cells in mammals. Science 327, 542–545 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kissa, K. & Herbomel, P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464, 112–115 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Boisset, J.-C. et al. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464, 116–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Bertrand, J. Y. et al. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464, 108–111 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang, C. et al. m6A modulates haematopoietic stem and progenitor cell specification. Nature 549, 273–276 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Lv, J. et al. Endothelial-specific m6A modulates mouse hematopoietic stem and progenitor cell development via Notch signaling. Cell Res. 28, 249–252 (2018).

    Article  PubMed  CAS  Google Scholar 

  134. Zhang, P. et al. G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition. Cell Res. 25, 1093–1107 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lizama, C. O. et al. Repression of arterial genes in hemogenic endothelium is sufficient for haematopoietic fate acquisition. Nat. Commun. 6, 7739 (2015).

    Article  PubMed  Google Scholar 

  136. Gama-Norton, L. et al. Notch signal strength controls cell fate in the haemogenic endothelium. Nat. Commun. 6, 8510 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Yao, Q. J. et al. Mettl3–Mettl14 methyltransferase complex regulates the quiescence of adult hematopoietic stem cells. Cell Res. 28, 952–954 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Reavie, L. et al. Regulation of hematopoietic stem cell differentiation by a single ubiquitin ligase–substrate complex. Nat. Immunol. 11, 207–215 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wilson, A. et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 18, 2747–2763 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Vu, L. P. et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med. 23, 1369–1376 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang, H. et al. Loss of YTHDF2-mediated m6A-dependent mRNA clearance facilitates hematopoietic stem cell regeneration. Cell Res. 28, 1035–1038 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Li, Z. et al. Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Res. 28, 904–917 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ebert, M. S. & Sharp, P. A. Roles for microRNAs in conferring robustness to biological processes. Cell 149, 515–524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Labi, V. et al. Context-specific regulation of cell survival by a miRNA-controlled BIM rheostat. Genes Dev. 33, 1673–1687 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Igor Ulitsky, Schraga Schwartz, Michal Schwartz and Amalie Grenov for providing valuable feedback. Work in the Stern-Ginossar lab on m6A is supported by a European Research Council starting grant (grant no. StG-2014-638142) and by the Minerva foundation. The Shulman lab is supported by the ERC grant (grant no. StG-2015-677713), Human Frontiers of Science Program (grant no. CDA-00023/2016), Israel Science Foundation (ISF) grant no. 1090/18 and the Morris Kahn Institute for Human Immunology. N.S.-G is an incumbent of the Skirball New Scientist Chair. N.S.-G. and Z.S. are members of the European Molecular Biology Organization (EMBO) Young Investigator Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziv Shulman or Noam Stern-Ginossar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Editor recognition statement J. D. K. Wilson was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shulman, Z., Stern-Ginossar, N. The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nat Immunol 21, 501–512 (2020). https://doi.org/10.1038/s41590-020-0650-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-020-0650-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing