Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Structural and molecular mechanisms for membrane protein biogenesis by the Oxa1 superfamily

Abstract

Members of the Oxa1 superfamily perform membrane protein insertion in bacteria, the eukaryotic endoplasmic reticulum (ER), and endosymbiotic organelles. Here, we review recent structures of the three ER-resident insertases and discuss the extent to which structure and function are conserved with their bacterial counterpart YidC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Oxa1 superfamily.
Fig. 2: Members of the Oxa1 superfamily share a common membrane domain fold.
Fig. 3: Oxa1 homologs utilize cytoplasmically exposed coiled-coils for substrate recruitment.

Similar content being viewed by others

References

  1. Guna, A. & Hegde, R. S. Transmembrane domain recognition during membrane protein biogenesis and quality control. Curr. Biol. 28, R498–R511 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Chen, Y. & Dalbey, R. E. Oxa1 superfamily: new members found in the ER. Trends Biochem. Sci. 43, 151–153 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Hennon, S. W., Soman, R., Zhu, L. & Dalbey, R. E. YidC/Alb3/Oxa1 family of insertases. J. Biol. Chem. 290, 14866–14874 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumazaki, K. et al. Structural basis of Sec-independent membrane protein insertion by YidC. Nature 509, 516–520 (2014). This paper presents the first high-resolution structure of YidC and proposes a model for substrate insertion via the hydrophilic groove.

    Article  CAS  PubMed  Google Scholar 

  5. Kumazaki, K. et al. Crystal structure of Escherichia coli YidC, a membrane protein chaperone and insertase. Sci. Rep. 4, 7299 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anghel, S. A., McGilvray, P. T., Hegde, R. S. & Keenan, R. J. Identification of Oxa1 homologs operating in the eukaryotic endoplasmic reticulum. Cell Rep. 21, 3708–3716 (2017). This paper identifies Get1, EMC3, and TMCO1 as ER homologues of YidC, thereby defining the Oxa1 superfamily.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McDowell, M. A. et al. Structural basis of tail-anchored membrane protein biogenesis by the GET insertase complex. Mol. Cell 80, 72–86.e7 (2020). This paper presents the cryo-EM structure of the human Get1–Get2–Get3 complex, identifying a membrane heterotetramer with two distinct hydrophilic grooves.

    Article  CAS  PubMed  Google Scholar 

  8. Pleiner, T. et al. Structural basis for membrane insertion by the human ER membrane protein complex. Science 369, 433–436 (2020). This work presents the cryo-EM structure of the human EMC, identifying EMC3 as the site for insertion and the hydrophilic groove as functionally important.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bai, L., You, Q., Feng, X., Kovach, A. & Li, H. Structure of the ER membrane complex, a transmembrane-domain insertase. Nature 584, 475–478 (2020). This paper presents the cryo-EM structure of yeast EMC, identifying the hydrophilic groove as functionally important for substrate insertion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O'Donnell, J. P. et al. The architecture of EMC reveals a path for membrane protein insertion. Elife 9, e57887 (2020). This study presents the cryo-EM structure of human EMC and a crystal structure of EMC2, identifying it as an interaction site for substrate TMDs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miller-Vedam, L. E. et al. Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients. Elife 9, e62611 (2020). This paper presents the structures of the yeast and human EMC, identifying two lipid-accessible membrane cavities involved in terminal helix insertion and polytopic membrane protein biogenesis.

    Article  PubMed  PubMed Central  Google Scholar 

  12. McGilvray, P. T. et al. An ER translocon for multi-pass membrane protein biogenesis. Elife 9, e56889 (2020). This paper presents the structure of the TMCO1 translocon and shows that it is important for membrane insertion of substrates with four or more TMDs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Bloois, E. et al. The Sec-independent function of Escherichia coli YidC is evolutionary-conserved and essential. J. Biol. Chem. 280, 12996–13003 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Jiang, F. et al. Chloroplast YidC homolog Albino3 can functionally complement the bacterial YidC depletion strain and promote membrane insertion of both bacterial and chloroplast thylakoid proteins. J. Biol. Chem. 277, 19281–19288 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Laan, M. V. D., Nouwen, N. P. & Driessen, A. J. M. YidC — an evolutionary conserved device for the assembly of energy-transducing membrane protein complexes. Curr. Opin. Microbiol. 8, 182–187 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. Walter, B., Hristou, A., Nowaczyk, Marc, M. & Schünemann, D. In vitro reconstitution of co-translational D1 insertion reveals a role of the cpSec–Alb3 translocase and Vipp1 in photosystem II biogenesis. Biochem. J. 468, 315–324 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Samuelson, J. C. et al. YidC mediates membrane protein insertion in bacteria. Nature 406, 637–641 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Borgese, N., Coy-Vergara, J., Colombo, S. F. & Schwappach, B. The ways of tails: the GET pathway and more. Protein J. 38, 289–305 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Guna, A., Volkmar, N., Christianson, J. C. & Hegde, R. S. The ER membrane protein complex is a transmembrane domain insertase. Science 359, 470–473 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Chitwood, P. J., Juszkiewicz, S., Guna, A., Shao, S. & Hegde, R. S. EMC is required to initiate accurate membrane protein topogenesis. Cell 175, 1507–1519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shurtleff, M. J. et al. The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins. Elife 7, e37018 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang, F., Chan, C., Weir, N. R. & Denic, V. The Get1/2 transmembrane complex is an endoplasmic-reticulum membrane protein insertase. Nature 512, 441–444 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schuldiner, M. et al. The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134, 634–645 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xin, B. et al. Homozygous frameshift mutation in TMCO1 causes a syndrome with craniofacial dysmorphism, skeletal anomalies, and mental retardation. Proc. Natl Acad. Sci. USA 107, 258–263 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Xin, Y. et al. Structure of YidC from Thermotoga maritima and its implications for YidC-mediated membrane protein insertion. FASEB J. 32, 2411–2421 (2018).

    Article  PubMed  Google Scholar 

  26. Tanaka, Y. et al. 2.8-Å crystal structure of Escherichia coli YidC revealing all core regions, including flexible C2 loop. Biochem. Biophys. Res. Commun. 505, 141–145 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Lemaire, C., Guibet-Grandmougin, F., Angles, D., Dujardin, G. & Bonnefoy, N. A yeast mitochondrial membrane methyltransferase-like protein can compensate for oxa1 mutations. J. Biol. Chem. 279, 47464–47472 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, Y. et al. YidC insertase of Escherichia coli: water accessibility and membrane shaping. Structure 25, 1403–1414 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Klenner, C. & Kuhn, A. Dynamic disulfide scanning of the membrane-inserting Pf3 coat protein reveals multiple YidC substrate contacts. J. Biol. Chem. 287, 3769–3776 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Yu, Z., Koningstein, G., Pop, A. & Luirink, J. The conserved third transmembrane segment of YidC contacts nascent Escherichia coli inner membrane proteins. J. Biol. Chem. 283, 34635–34642 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wickles, S. et al. A structural model of the active ribosome-bound membrane protein insertase YidC. Elife 3, e03035 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hariharan, B. et al. Polarity/charge as a determinant of translocase requirements for membrane protein insertion. Biochim. Biophys. Acta 1863, 183502 (2021).

    Article  CAS  Google Scholar 

  33. Rodriguez, F. et al. Structural model for the protein-translocating element of the twin-arginine transport system. Proc. Natl Acad. Sci. USA 110, E1092–E1101 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Noinaj, N. et al. Structural insight into the biogenesis of β-barrel membrane proteins. Nature 501, 385–390 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu, X. et al. Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex. Science 368, eaaz2449 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gafvelin, G., Sakaguchi, M., Andersson, H. & von Heijne, G. Topological rules for membrane protein assembly in eukaryotic cells. J. Biol. Chem. 272, 6119–6127 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Baker, J. A., Wong, W.-C., Eisenhaber, B., Warwicker, J. & Eisenhaber, F. Charged residues next to transmembrane regions revisited: “positive-inside rule” is complemented by the “negative inside depletion/outside enrichment rule”. BMC Biol. 15, 66 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kedrov, A. et al. Structural dynamics of the YidC:ribosome complex during membrane protein biogenesis. Cell Rep. 17, 2943–2954 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dalbey, R. E. & Kuhn, A. How YidC inserts and folds proteins across a membrane. Nat. Struct. Mol. Biol. 21, 435–436 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. He, H., Kuhn, A. & Dalbey, R. E. Tracking the stepwise movement of a membrane-inserting protein in vivo. J. Mol. Biol. 432, 484–496 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, F., Whynot, A., Tung, M. & Denic, V. The mechanism of tail-anchored protein insertion into the ER membrane. Mol. Cell 43, 738–750 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamamoto, Y. & Sakisaka, T. Molecular machinery for insertion of tail-anchored membrane proteins into the endoplasmic reticulum membrane in mammalian cells. Mol. Cell 48, 387–397 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Zalisko, B. E., Chan, C., Denic, V., Rock, R. S. & Keenan, R. J. Tail-anchored protein insertion by a single Get1/2 heterodimer. Cell Rep. 20, 2287–2293 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Boy, D. & Koch, H.-G. Visualization of distinct entities of the SecYEG translocon during translocation and integration of bacterial proteins. Mol. Biol. Cell 20, 1804–1815 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kohler, R. et al. YidC and Oxa1 form dimeric insertion pores on the translating ribosome. Mol. Cell 34, 344–353 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Spann, D., Pross, E., Chen, Y., Dalbey, R. E. & Kuhn, A. Each protomer of a dimeric YidC functions as a single membrane insertase. Sci. Rep. 8, 589 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Volkmar, N. et al. The ER membrane protein complex promotes biogenesis of sterol-related enzymes maintaining cholesterol homeostasis. J. Cell Sci. 132, jcs223453 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Sachelaru, I. et al. YidC occupies the lateral gate of the SecYEG translocon and is sequentially displaced by a nascent membrane protein. J. Biol. Chem. 288, 16295–16307 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Botte, M. et al. A central cavity within the holo-translocon suggests a mechanism for membrane protein insertion. Sci. Rep. 6, 38399 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Urbanus, M. L. et al. Sec-dependent membrane protein insertion: sequential interaction of nascent FtsQ with SecY and YidC. EMBO Rep. 2, 524–529 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Petriman, N.-A. et al. The interaction network of the YidC insertase with the SecYEG translocon, SRP and the SRP receptor FtsY. Sci. Rep. 8, 578 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Klostermann, E., Droste Gen Helling, I., Carde, J.-P. & Schünemann, D. The thylakoid membrane protein ALB3 associates with the cpSecY-translocase in Arabidopsis thaliana. Biochem. J. 368, 777–781 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stefer, S. et al. Structural basis for tail-anchored membrane protein biogenesis by the Get3–receptor complex. Science 333, 758–762 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mariappan, M. et al. The mechanism of membrane-associated steps in tail-anchored protein insertion. Nature 477, 61–66 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bozkurt, G. et al. Structural insights into tail-anchored protein binding and membrane insertion by Get3. Proc. Natl Acad. Sci. USA 106, 21131–21136 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu, J., Li, J., Qian, X., Denic, V. & Sha, B. The crystal structures of yeast Get3 suggest a mechanism for tail-anchored protein membrane insertion. PLoS One 4, e8061 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Mateja, A. et al. The structural basis of tail-anchored membrane protein recognition by Get3. Nature 461, 361–366 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Suloway, C. J. M., Chartron, J. W., Zaslaver, M. A. & Clemons, W. M. Model for eukaryotic tail-anchored protein binding based on the structure of Get3. Proc. Natl Acad. Sci. USA 106, 14849–14854 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mateja, A. et al. Structure of the Get3 targeting factor in complex with its membrane protein cargo. Science 347, 1152–1155 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kubota, K., Yamagata, A., Sato, Y., Goto-Ito, S. & Fukai, S. Get1 stabilizes an open dimer conformation of Get3 ATPase by binding two distinct interfaces. J. Mol. Biol. 422, 366–375 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Rome, M. E., Chio, U. S., Rao, M., Gristick, H. & Shan, S.-O. Differential gradients of interaction affinities drive efficient targeting and recycling in the GET pathway. Proc. Natl Acad. Sci. USA 111, 4929–4935 (2014).

    Article  CAS  Google Scholar 

  62. Denic, V., Dotsch, V. & Sinning, I. Endoplasmic reticulum targeting and insertion of tail-anchored membrane proteins by the GET pathway. Cold Spring Harb. Perspect. Biol. 5, a013334 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Locher, K. P. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat. Struct. Mol. Biol. 23, 487–493 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Hennon, S. W. & Dalbey, R. E. Cross-linking-based flexibility and proximity relationships between the TM segments of the Escherichia coli YidC. Biochemistry 53, 3278–3286 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Borowska, M. T., Dominik, P. K., Anghel, S. A., Kossiakoff, A. A. & Keenan, R. J. A YidC-like protein in the archaeal plasma membrane. Structure 23, 1715–1724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kedrov, A. et al. Elucidating the native architecture of the YidC: ribosome complex. J. Mol. Biol. 425, 4112–4124 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Seitl, I., Wickles, S., Beckmann, R., Kuhn, A. & Kiefer, D. The C-terminal regions of YidC from Rhodopirellula baltica and Oceanicaulis alexandrii bind to ribosomes and partially substitute for SRP receptor function in Escherichia coli. Mol. Microbiol. 91, 408–421 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Welte, T. et al. Promiscuous targeting of polytopic membrane proteins to SecYEG or YidC by the Escherichia coli signal recognition particle. Mol. Biol. Cell 23, 464–479 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Falk, S., Ravaud, S., Koch, J. & Sinning, I. The C terminus of the Alb3 membrane insertase recruits cpSRP43 to the thylakoid membrane. J. Biol. Chem. 285, 5954–5962 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Jia, L. et al. Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C-terminal region of Oxa1. EMBO J. 22, 6438–6447 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Szyrach, G., Ott, M., Bonnefoy, N., Neupert, W. & Herrmann, J. M. Ribosome binding to the Oxa1 complex facilitates co‐translational protein insertion in mitochondria. EMBO J. 22, 6448–6457 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dong, R., Pan, S., Peng, Z., Zhang, Y. & Yang, J. mTM-align: a server for fast protein structure database search and multiple protein structure alignment. Nucleic Acids Res. 46, W380–W386 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by an EMBO Long Term Fellowship (ALTF 1230-2013) to M.A.M. and by the DFG through the Leibniz Programme (SI 586/6-1) and TRR83 (TP22) to I.S.

Author information

Authors and Affiliations

Authors

Contributions

M.A.M., M.H. and I.S. wrote the manuscript.

Corresponding author

Correspondence to Irmgard Sinning.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Structural & Molecular Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Anke Sparmann was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDowell, M.A., Heimes, M. & Sinning, I. Structural and molecular mechanisms for membrane protein biogenesis by the Oxa1 superfamily. Nat Struct Mol Biol 28, 234–239 (2021). https://doi.org/10.1038/s41594-021-00567-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-021-00567-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing