Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Boosting CO2 hydrogenation via size-dependent metal–support interactions in cobalt/ceria-based catalysts

Abstract

Metal–support interactions have a strong impact on the performance of heterogeneous catalysts. Specific sites at the metal–support interface can give rise to unusual high reactivity, and there is a growing interest in optimizing not only the properties of metal particles but also the metal–support interface. Here, we demonstrate how varying the particle size of the support (ceria–zirconia) can be used to tune the metal–support interactions, resulting in a substantially enhanced CO2 hydrogenation rate. A combination of X-ray diffraction, X-ray absorption spectroscopy, near-ambient pressure X-ray photoelectron spectroscopy, transmission electron microscopy and infrared spectroscopy provides insight into the active sites at the interface between cobalt and ceria–zirconia involved in CO2 hydrogenation to CH4. Reverse oxygen spillover from the support during treatment in hydrogen results in the generation of oxygen vacancies. Stabilization of cobalt particles by ceria–zirconia particles of intermediate size leads to oxygen spillover to the support during the CO2 and CO dissociation steps, followed by further hydrogenation of the resulting intermediates on cobalt.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The effect of support calcination pretreatment on catalytic activity.
Fig. 2: Characterization of CoCZ catalysts.
Fig. 3: The relationship between catalyst morphology and cobalt sintering.
Fig. 4: Spillover effects observed by means of operando NAP-XPS and infrared spectroscopy.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the authors upon reasonable request.

References

  1. Matsubu, J. C., Yang, V. N. & Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 137, 3076–3084 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal–support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).

    Article  CAS  Google Scholar 

  3. Tauster, S. J., Fung, S. C. & Garten, R. L. Strong metal–support interactions. Group 8 noble metals supported on TiO2. J. Am. Chem. Soc. 100, 170–175 (1978).

    Article  CAS  Google Scholar 

  4. Tauster, S. J., Fung, S. C., Baker, R. T. K. & Horsley, J. A. Strong interactions in supported-metal catalysts. Science 211, 1121–1125 (1981).

    Article  CAS  PubMed  Google Scholar 

  5. Tauster, S. J. Strong metal–support interactions. Acc. Chem. Res. 20, 389–394 (1987).

    Article  CAS  Google Scholar 

  6. Li, M. & van Veen, A. C. Tuning the catalytic performance of Ni-catalysed dry reforming of methane and carbon deposition via Ni-CeO2-x interaction. Appl. Catal. B Environ. 237, 641–648 (2018).

    Article  CAS  Google Scholar 

  7. Melaet, G. et al. Evidence of highly active cobalt oxide catalyst for the Fischer–Tropsch synthesis and CO2 hydrogenation. J. Am. Chem. Soc. 136, 2260–2263 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Macino, M. et al. Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. Nat. Catal. 2, 873–881 (2019).

    Article  CAS  Google Scholar 

  9. Liu, X. et al. Strong metal–support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J. Am. Chem. Soc. 134, 10251–10258 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Tang, H. et al. Strong metal–support interactions between gold nanoparticles and nonoxides. J. Am. Chem. Soc. 138, 56–59 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Matsubu, J. C. et al. Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Tang, H. et al. Classical strong metal–support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 3, e1700231 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Daelman, N., Capdevila-Cortada, M. & López, N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mater. 18, 1215–1221 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, J. J. Advanced electron microscopy of metal–support interactions in supported metal catalysts. ChemCatChem 3, 934–948 (2011).

    Article  CAS  Google Scholar 

  15. Willinger, M. G. et al. A case of strong metal–support interactions: combining advanced microscopy and model systems to elucidate the atomic structure of interfaces. Angew. Chem. Int. Ed. 53, 5998–6001 (2014).

    Article  CAS  Google Scholar 

  16. Madhusudhan Rao, P., Viswanathan, B. & Viswanath, R. P. Strong metal support interaction state in the Fe/TiO2 system—an XPS study. J. Mater. Sci. 30, 4980–4985 (1995).

    Article  CAS  Google Scholar 

  17. Hernández Mejía, C., van Deelen, T. W. & de Jong, K. P. Activity enhancement of cobalt catalysts by tuning metal–support interactions. Nat. Commun. 9, 4459 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Li, J. et al. Enhanced CO2 methanation activity of Ni/anatase catalyst by tuning strong metal–support interactions. ACS Catal. 9, 6342–6348 (2019).

    Article  CAS  Google Scholar 

  19. Zhang, J. et al. Wet-chemistry strong metal–support interactions in titania-supported Au catalysts. J. Am. Chem. Soc. 141, 2975–2983 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Trovarelli, A., de Leitenburg, C. & Dolcetti, G. CO and CO2 hydrogenation under transient conditions over Rh–CeO2: novel positive effects of metal–support interaction on catalytic activity and selectivity. J. Chem. Soc. Chem. Commun. 472–473 (1991).

  21. Bernal, S. et al. Some recent results on metal/support interaction effects in NM/CeO2 (NM: noble metal) catalysts. Catal. Today 50, 175–206 (1999).

    Article  CAS  Google Scholar 

  22. Lykhach, Y. et al. Counting electrons on supported nanoparticles. Nat. Mater. 15, 284–288 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Pereira-Hernández, X. I. et al. Tuning Pt–CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nat. Commun. 10, 1358 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Farmer, J. A. & Campbell, C. T. Ceria maintains smaller metal catalyst particles by strong metal–support bonding. Science 329, 933–936 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Graciani, J. et al. Highly active copper–ceria and copper–ceria–titania catalysts for methanol synthesis from CO2. Science 345, 546–550 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Senanayake, S. D. et al. Hydrogenation of CO2 to methanol on CeOx/Cu(111) and ZnO/Cu(111) catalysts: role of the metal–oxide interface and importance of Ce3+ sites. J. Phys. Chem. C 120, 1778–1784 (2016).

    Article  CAS  Google Scholar 

  27. Aldana, P. A. U. et al. Catalytic CO2 valorization into CH4 on Ni-based ceria–zirconia. Reaction mechanism by operando IR spectroscopy. Catal. Today 215, 201–207 (2013).

    Article  CAS  Google Scholar 

  28. Wang, W., Wang, S., Ma, X. & Gong, J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 40, 3703–3727 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Vogt, C., Monai, M., Kramer, G. J. & Weckhuysen, B. M. The renaissance of the Sabatier reaction and its applications on Earth and in space. Nat. Catal. 2, 188–197 (2019).

    Article  CAS  Google Scholar 

  30. Vogt, C. et al. Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat. Catal. 1, 127–134 (2018).

    Article  CAS  Google Scholar 

  31. Boaro, M., Colussi, S. & Trovarelli, A. Ceria-based materials in hydrogenation and reforming reactions for CO2 valorization. Front. Chem. 7, 28 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Díez-Ramírez, J. et al. Effect of support nature on the cobalt-catalyzed CO2 hydrogenation. J. CO 2 Util. 21, 562–571 (2017).

  33. Zhang, F. et al. In situ elucidation of the active state of Co–CeOx catalysts in the dry reforming of methane: the important role of the reducible oxide support and interactions with cobalt. ACS Catal. 8, 3550–3560 (2018).

    Article  CAS  Google Scholar 

  34. Wang, L., Liu, H., Chen, Y. & Yang, S. Reverse water–gas shift reaction over co-precipitated Co–CeO2 catalysts: effect of Co content on selectivity and carbon formation. Int. J. Hydrog. Energy 42, 3682–3689 (2017).

    Article  CAS  Google Scholar 

  35. Jha, A., Jeong, D.-W., Lee, Y.-L., Nah, I. W. & Roh, H.-S. Enhancing the catalytic performance of cobalt oxide by doping on ceria in the high temperature water–gas shift reaction. RSC Adv. 5, 103023–103029 (2015).

    Article  CAS  Google Scholar 

  36. Jiao, L. & Regalbuto, J. R. The synthesis of highly dispersed noble and base metals on silica via strong electrostatic adsorption: I. Amorphous silica. J. Catal. 260, 329–341 (2008).

    Article  CAS  Google Scholar 

  37. Parastaev, A., Hoeben, W. F. L. M., van Heesch, B. E. J. M., Kosinov, N. & Hensen, E. J. M. Temperature-programmed plasma surface reaction: an approach to determine plasma-catalytic performance. Appl. Catal. B Environ. 239, 168–177 (2018).

    Article  CAS  Google Scholar 

  38. Munnik, P., de Jongh, P. E. & de Jong, K. P. Recent developments in the synthesis of supported catalysts. Chem. Rev. 115, 6687–6718 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Yamasaki, M., Habazaki, H., Asami, K., Izumiya, K. & Hashimoto, K. Effect of tetragonal ZrO2 on the catalytic activity of Ni/ZrO2 catalyst prepared from amorphous Ni–Zr alloys. Catal. Commun. 7, 24–28 (2006).

    Article  CAS  Google Scholar 

  40. Zhang, Z. F., Liu, Z. T., Liu, Z. W. & Lu, J. DMC formation over Ce0.5Zr0.5O2 prepared by complex-decomposition method. Catal. Lett. 129, 428–436 (2009).

    Article  CAS  Google Scholar 

  41. Devaiah, D., Reddy, L. H., Park, S.-E. & Reddy, B. M. Ceria–zirconia mixed oxides: synthetic methods and applications. Catal. Rev. 60, 177–277 (2018).

    Article  CAS  Google Scholar 

  42. Li, M., Amari, H. & van Veen, A. C. Metal-oxide interaction enhanced CO2 activation in methanation over ceria supported nickel nanocrystallites. Appl. Catal. B Environ. 239, 27–35 (2018).

    Article  CAS  Google Scholar 

  43. Li, W. et al. CO2 hydrogenation on unpromoted and M-promoted Co/TiO2 catalysts (M = Zr, K, Cs): effects of crystal phase of supports and metal–support interaction on tuning product distribution. ACS Catal. 9, 2739–2751 (2019).

    Article  CAS  Google Scholar 

  44. Bertella, F., Concepción, P. & Martínez, A. The impact of support surface area on the SMSI decoration effect and catalytic performance for Fischer–Tropsch synthesis of Co–Ru/TiO2-anatase catalysts. Catal. Today 296, 170–180 (2017).

    Article  CAS  Google Scholar 

  45. Lin, S. S.-Y., Daimon, H. & Ha, S. Y. Co/CeO2–ZrO2 catalysts prepared by impregnation and coprecipitation for ethanol steam reforming. Appl. Catal. A Gen. 366, 252–261 (2009).

    Article  CAS  Google Scholar 

  46. Carvalho, F. L. S., Asencios, Y. J. O., Bellido, J. D. A. & Assaf, E. M. Bio-ethanol steam reforming for hydrogen production over Co3O4/CeO2 catalysts synthesized by one-step polymerization method. Fuel Process. Technol. 142, 182–191 (2016).

    Article  CAS  Google Scholar 

  47. Younis, A., Chu, D., Kaneti, Y. V. & Li, S. Tuning the surface oxygen concentration of {111} surrounded ceria nanocrystals for enhanced photocatalytic activities. Nanoscale 8, 378–387 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Binet, C., Badri, A. & Lavalley, J.-C. A spectroscopic characterization of the reduction of ceria from electronic transitions of intrinsic point defects. J. Phys. Chem. 98, 6392–6398 (1994).

    Article  CAS  Google Scholar 

  49. Matolín, V., Matolínov, I., Sedlek, L., Prince, K. C. & Skala, T. A resonant photoemission applied to cerium oxide based nanocrystals. Nanotechnology 20, 215706 (2009).

    Article  PubMed  CAS  Google Scholar 

  50. Zhang, P. et al. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons. Nat. Commun. 6 8446 (2015).

  51. Ro, I., Resasco, J. & Christopher, P. Approaches for understanding and controlling interfacial effects in oxide-supported metal catalysts. ACS Catal. 8, 7368–7387 (2018).

    Article  CAS  Google Scholar 

  52. Vayssilov, G. N. et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat. Mater. 10, 310–315 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Karim, W. et al. Catalyst support effects on hydrogen spillover. Nature 541, 68–71 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Artiglia, L. et al. Introducing time resolution to detect Ce3+ catalytically active sites at the Pt/CeO2 interface through ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. Lett. 8, 102–108 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Skála, T., Šutara, F., Prince, K. C. & Matolín, V. Cerium oxide stoichiometry alteration via Sn deposition: influence of temperature. J. Electron Spectros. Relat. Phenom. 169, 20–25 (2009).

    Article  CAS  Google Scholar 

  56. Stadnichenko, A. I. et al. Study of active surface centers of Pt/CeO2 catalysts prepared using radio-frequency plasma sputtering technique. Surf. Sci. 679, 273–283 (2019).

    Article  CAS  Google Scholar 

  57. Kato, S. et al. Quantitative depth profiling of Ce3+ in Pt/CeO2 by in situ high-energy XPS in a hydrogen atmosphere. Phys. Chem. Chem. Phys. 17, 5078–5083 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Kosinov, N. et al. Confined carbon mediating dehydroaromatization of methane over Mo/ZSM-5. Angew. Chem. Int. Ed. 57, 1016–1020 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Applied and Engineering Sciences division of the Netherlands Organization for Scientific Research through the Alliander (now Qirion) perspective programme on Plasma Conversion of CO2. We acknowledge Diamond Light Source for time on beamline B18 under proposal SP20715-1.

Author information

Authors and Affiliations

Authors

Contributions

A.P. synthesized and characterized the set of CZ samples (TPR, X-ray diffraction, and CO chemisorption and infrared spectroscopy). E.H.O. performed the catalytic measurements. V.M. and A.P. performed the operando NAP-XPS experiments and interpreted the results. N.K., V.M. and A.P. performed and interpreted the operando X-ray absorption spectroscopy measurements. A.J.F.H. performed the TEM measurements with an in situ holder. T.F.K. synthesized and provided the cobalt–titania sample. A.P., N.K. and E.J.M.H. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Emiel J. M. Hensen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplemental Information

Supplementary Figs. 1–22, Tables 1 and 2 and discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parastaev, A., Muravev, V., Huertas Osta, E. et al. Boosting CO2 hydrogenation via size-dependent metal–support interactions in cobalt/ceria-based catalysts. Nat Catal 3, 526–533 (2020). https://doi.org/10.1038/s41929-020-0459-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-0459-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing