Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prospects for quantum enhancement with diabatic quantum annealing

Abstract

Optimization, sampling and machine learning are topics of broad interest that have inspired significant developments and new approaches in quantum computing. One such approach is quantum annealing (QA). In this Review, we assess the prospects for algorithms within the general framework of QA to achieve a quantum speedup relative to classical state-of-the-art methods. We argue for continued exploration in the QA framework on the basis that improved coherence times and control capabilities will enable the near-term exploration of several heuristic quantum optimization algorithms. These continuous-time Hamiltonian computation algorithms rely on control protocols that are more advanced than those in traditional ground-state QA, while still being considerably simpler than those used in gate-model implementations. The inclusion of coherent diabatic transitions to excited states results in a generalization we refer to collectively as diabatic quantum annealing, which we believe is the most promising route to quantum enhancement within this framework. Other promising variants of traditional QA include reverse annealing, continuous-time quantum walks and analogues of parameterized quantum circuit ansatzes for machine learning. Most of these algorithms have no known efficient classical simulations, making them worthy of further investigation with quantum hardware in the intermediate-scale regime.

Key points

  • Quantum annealing (QA) is an optimization and sampling heuristic that has been implemented in the first commercial quantum computing devices featuring the largest number of qubits to date.

  • Despite a decade of effort, evidence of a quantum speedup is lacking, so researchers have turned to alternative, new QA protocols that deviate from the traditional forward-annealing, ground-state paradigm.

  • New QA protocols exhibit promising early signs for possible quantum speedups.

  • Diabatic QA appears particularly promising: it is unlikely to be efficiently classically simulatable, yet, it retains most of the simplicity of the original QA paradigm, while being less demanding than the gate model of quantum computing.

  • Alternative QA protocols can be explored in a state-of-the-art manner by embracing the full range of new out-of-equilibrium quantum dynamics generated by time-dependent effective transverse-field Ising Hamiltonians that can be natively implemented by inductively coupled flux qubits, both existing and projected at application scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An illustration of the lowest four energy levels of a parameterized Hamiltonian H(s).
Fig. 2: A numerical study of the MAX-2-SAT problem for n = 20 qubits.
Fig. 3: Coherent adiabatic reverse annealing for the p-spin model: \({{\boldsymbol{H}}}_{{\boldsymbol{Z}}}{\boldsymbol{=}}{\boldsymbol{-}}\,\frac{{\bf{1}}}{{\boldsymbol{n}}}{{\boldsymbol{(}}{{\boldsymbol{\sum }}}_{{\boldsymbol{i}}{\boldsymbol{=}}{\bf{1}}}^{{\boldsymbol{n}}}{{\boldsymbol{Z}}}_{{\boldsymbol{i}}}{\boldsymbol{)}}}^{{\boldsymbol{p}}}\).
Fig. 4: The D-Wave reverse annealing protocol.
Fig. 5: Optimal Quantum Approximate Optimization Algorithm approaches coherent diabatic quantum annealing.

Similar content being viewed by others

References

  1. Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355 (1998). Introduced the idea of forward transverse- field Ising model quantum annealing.

    Article  ADS  Google Scholar 

  2. Albash, T. & Lidar, D. A. Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018). A comprehensive review of the theory of adiabatic quantum computation, including alternative annealing protocols.

    Article  ADS  MathSciNet  Google Scholar 

  3. Johnson, M. W. et al. Quantum annealing with manufactured spins. Nature 473, 194–198 (2011).

    Article  ADS  Google Scholar 

  4. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Brooke, J., Bitko, D., Rosenbaum, F. T. & Aeppli, G. Quantum annealing of a disordered magnet. Science 284, 779–781 (1999).

    Article  ADS  Google Scholar 

  6. Brooke, J., Rosenbaum, T. F. & Aeppli, G. Tunable quantum tunnelling of magnetic domain walls. Nature 413, 610–613 (2001).

    Article  ADS  Google Scholar 

  7. Kaminsky, W .M. & Lloyd, S. in Quantum Computing and Quantum Bits in Mesoscopic Systems Ch. 25 (eds Leggett, A. J., Ruggiero, B. & Silvestrini, P.) 229–236 (Springer, 2004).

  8. Kaminsky, W. M., Lloyd, S. & Orlando, T. P. Scalable superconducting architecture for adiabatic quantum computation. Preprint at arXiv https://arxiv.org/abs/quant-ph/0403090 (2004).

  9. Harris, R. et al. Experimental demonstration of a robust and scalable flux qubit. Phys. Rev. B 81, 134510 (2010).

    Article  ADS  Google Scholar 

  10. Harris, R. et al. Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Phys. Rev. B 82, 024511 (2010).

    Article  ADS  Google Scholar 

  11. Berkley, A. J. et al. A scalable readout system for a superconducting adiabatic quantum optimization system. Supercond. Sci. Technol. 23, 105014 (2010).

    Article  ADS  Google Scholar 

  12. Berkley, A. J. et al. Tunneling spectroscopy using a probe qubit. Phys. Rev. B 87, 020502 (2013).

    Article  ADS  Google Scholar 

  13. Bunyk, P. I. et al. Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Trans. Appl. Supercond. 24, 1700110 (2014).

    Article  Google Scholar 

  14. Lanting, T. et al. Entanglement in a quantum annealing processor. Phys. Rev. X 4, 021041 (2014).

    Google Scholar 

  15. Dickson, N. G. et al. Thermally assisted quantum annealing of a 16-qubit problem. Nat. Commun. 4, 1903 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  16. Yan, F. et al. The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun. 7, 12964 (2016).

    Article  ADS  Google Scholar 

  17. Weber, S. J. et al. Coherent coupled qubits for quantum annealing. Phys. Rev. Appl. 8, 014004 (2017).

    Article  ADS  Google Scholar 

  18. Quintana, C. M. et al. Observation of classical-quantum crossover of 1/f flux noise and its paramagnetic temperature dependence. Phys. Rev. Lett. 118, 057702 (2017).

    Article  ADS  Google Scholar 

  19. Novikov, S. et al. in Proceedings of the 2018 IEEE International Conference on Rebooting Computing (ICRC) 1–7 (2018).

  20. Khezri, M. et al. Anneal-path correction in flux qubits. npj Quant. Inf. 7, 36 (2021).

    Article  ADS  Google Scholar 

  21. Glaetzle, A. W., van Bijnen, R. M. W., Zoller, P. & Lechner, W. A coherent quantum annealer with Rydberg atoms. Nat. Commun. 8, 15813 (2017).

    Article  ADS  Google Scholar 

  22. Qiu, X., Zoller, P. & Li, X. Programmable quantum annealing architectures with Ising quantum wires. PRX Quantum 1, 020311 (2020).

    Article  Google Scholar 

  23. Harris, R. et al. Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  24. King, A. D. et al. Observation of topological phenomena in a programmable lattice of 1800 qubits. Nature 560, 456–460 (2018).

    Article  ADS  Google Scholar 

  25. Gardas, B., Dziarmaga, J., Zurek, W. H. & Zwolak, M. Defects in quantum computers. Sci. Rep. 8, 4539 (2018).

    Article  ADS  Google Scholar 

  26. King, A. D. et al. Scaling advantage in quantum simulation of geometrically frustrated magnets. Nat. Commun. 12, 1113 (2021).

  27. Weinberg, P. et al. Scaling and diabatic effects in quantum annealing with a D-Wave device. Phys. Rev. Lett. 124, 090502 (2020).

    Article  ADS  Google Scholar 

  28. Bando, Y. et al. Probing the universality of topological defect formation in a quantum annealer: Kibble-Zurek mechanism and beyond. Phys. Rev. Res. 2, 033369 (2020).

    Article  Google Scholar 

  29. Islam, R. et al. Emergence and frustration of magnetism with variable-range interactions in a quantum simulator. Science 340, 583–587 (2013).

    Article  ADS  Google Scholar 

  30. Smith, J. et al. Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys. 12, 907–911 (2016).

    Article  Google Scholar 

  31. Zhang, J. et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601–604 (2017).

    Article  ADS  Google Scholar 

  32. Simon, J. et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011).

    Article  ADS  Google Scholar 

  33. Boll, M. et al. Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains. Science 353, 1257–1260 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Weimer, H., Müller, M., Lesanovsky, I., Zoller, P. & Büchler, H. P. A Rydberg quantum simulator. Nat. Phys. 6, 382–388 (2010).

    Article  Google Scholar 

  35. Nguyen, T. L. et al. Towards quantum simulation with circular Rydberg atoms. Phys. Rev. X 8, 011032 (2018).

    Google Scholar 

  36. Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    Article  ADS  Google Scholar 

  37. Barends, R. et al. Digitized adiabatic quantum computing with a superconducting circuit. Nature 534, 222–226 (2016).

    Article  ADS  Google Scholar 

  38. Barends, R. et al. Digital quantum simulation of fermionic models with a superconducting circuit. Nat. Commun. 6, 7654 (2015).

    Article  ADS  Google Scholar 

  39. O’Malley, P. J. J. et al. Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016).

    Google Scholar 

  40. Wang, C. S. et al. Efficient multiphoton sampling of molecular vibronic spectra on a superconducting bosonic processor. Phys. Rev. X 10, 021060 (2020).

    ADS  Google Scholar 

  41. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

    Article  MathSciNet  Google Scholar 

  42. Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Boixo, S. et al. Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 10, 218–224 (2014).

    Article  Google Scholar 

  44. Rønnow, T. F. et al. Defining and detecting quantum speedup. Science 345, 420–424 (2014).

    Article  ADS  Google Scholar 

  45. Venturelli, D. et al. Quantum optimization of fully connected spin glasses. Phys. Rev. X 5, 031040 (2015).

    Google Scholar 

  46. King, J. et al. Quantum annealing amid local ruggedness and global frustration. J. Phys. Soc. Japan 88, 061007 (2019).

    Article  ADS  Google Scholar 

  47. Hen, I. et al. Probing for quantum speedup in spin-glass problems with planted solutions. Phys. Rev. A 92, 042325 (2015).

    Article  ADS  Google Scholar 

  48. Katzgraber, H. G., Hamze, F., Zhu, Z., Ochoa, A. J. & Munoz-Bauza, H. Seeking quantum speedup through spin glasses: the good, the bad, and the ugly. Phys. Rev. X 5, 031026 (2015).

    Google Scholar 

  49. Rieffel, E. G. et al. A case study in programming a quantum annealer for hard operational planning problems. Quant. Inf. Process. 14, 1–36 (2015).

    Article  ADS  MATH  Google Scholar 

  50. McGeoch, C.C. & Wang, C. in Proceedings of the 2013 ACM Conference on Computing Frontiers 1–11 (2013).

  51. Denchev, V. S. et al. What is the computational value of finite-range tunneling? Phys. Rev. X 6, 031015 (2016).

    Google Scholar 

  52. Mandrà, S., Zhu, Z., Wang, W., Perdomo-Ortiz, A. & Katzgraber, H. G. Strengths and weaknesses of weak-strong cluster problems: A detailed overview of state-of-the-art classical heuristics versus quantum approaches. Phys. Rev. A 94, 022337 (2016).

    Article  ADS  Google Scholar 

  53. King, J., Yarkoni, S., Nevisi, M. M., Hilton, J. P. & McGeoch, C. C. Benchmarking a quantum annealing processor with the time-to-target metric. Preprint at arXiv http://arXiv.org/abs/1508.05087 (2015).

  54. Vinci, W. & Lidar, D. A. Optimally stopped optimization. Phys. Rev. Appl. 6, 054016 (2016).

    Article  ADS  Google Scholar 

  55. Job, J. & Lidar, D. Test-driving 1000 qubits. Quant. Sci. Technol. 3, 030501 (2018).

    Article  ADS  Google Scholar 

  56. Albash, T. & Lidar, D. A. Demonstration of a scaling advantage for a quantum annealer over simulated annealing. Phys. Rev. X 8, 031016 (2018).

    Google Scholar 

  57. Mandrà, S. & Katzgraber, H. G. A deceptive step towards quantum speedup detection. Quant. Sci. Technol. 3, 04LT01 (2018).

    Article  Google Scholar 

  58. Adame, J. I. & McMahon, P. L. Inhomogeneous driving in quantum annealers can result in orders-of-magnitude improvements in performance. Quant. Sci. Technol. 5, 035011 (2020).

    Article  ADS  Google Scholar 

  59. Das, S., Wildridge, A. J., Vaidya, S. B. & Jung, A. Track clustering with a quantum annealer for primary vertex reconstruction at hadron colliders. Preprint at arXiv http://arXiv.org/abs/1903.08879 (2019).

  60. Sahai, T., Mishra, A., Pasini, J. M. & Jha, S. Estimating the density of states of Boolean satisfiability problems on classical and quantum computing platforms. Preprint at arXiv https://arxiv.org/abs/1910.13088 (2019).

  61. Smelyanskiy, V.N. et al. A near-term quantum computing approach for hard computational problems in space exploration. Preprint at arXiv http://arXiv.org/abs/1204.2821 (2012).

  62. Adachi, S. H. & Henderson, M. P. Application of quantum annealing to training of deep neural networks. Preprint at arXiv http://arXiv.org/abs/1510.06356 (2015).

  63. Dorband, J. E. In Proceedings of the 2015 12th International Conference on Information Technology - New Generations 703-707 (2015).

  64. Lokhov, A. Y., Vuffray, M., Misra, S. & Chertkov, M. Optimal structure and parameter learning of Ising models. Sci. Adv. 4, e1700791 (2018).

    Article  ADS  Google Scholar 

  65. O’Malley, D., Vesselinov, V. V., Alexandrov, B. S. & Alexandrov, L. B. Nonnegative/binary matrix factorization with a D-Wave quantum annealer. PLoS ONE 13, e0206653 (2018).

    Article  Google Scholar 

  66. Levit, A. et al. Free energy-based reinforcement learning using a quantum processor. Preprint at arXiv http://arXiv.org/abs/1706.00074 (2017).

  67. Mott, A., Job, J., Vlimant, J. R., Lidar, D. & Spiropulu, M. Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017).

    Article  ADS  Google Scholar 

  68. Li, R. Y., Di Felice, R., Rohs, R. & Lidar, D. A. Quantum annealing versus classical machine learning applied to a simplified computational biology problem. npj Quant. Inf. 4, 14 (2018).

    Article  ADS  Google Scholar 

  69. Benedetti, M., Realpe-Gómez, J. & Perdomo-Ortiz, A. Quantum-assisted Helmholtz machines: a quantum–classical deep learning framework for industrial datasets in near-term devices. Quant. Sci. Technol. 3, 034007 (2018).

    Article  ADS  Google Scholar 

  70. Neukart, F., Von Dollen, D. & Seidel, C. Quantum-assisted cluster analysis. Preprint at arXiv http://arXiv.org/abs/1803.02886 (2018).

  71. Li, R. Y. et al. Quantum processor-inspired machine learning in the biomedical sciences. Patterns 100246 (2021).

  72. Zlokapa, A. et al. Quantum adiabatic machine learning by zooming into a region of the energy surface. Phys. Rev. A 102, 062405 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  73. Zlokapa, A. et al. Charged particle tracking with quantum annealing-inspired optimization. Preprint at arXiv http://arXiv.org/abs/1908.04475 (2019).

  74. Cormier, K., Sipio, R.D. & Wittek, P. Unfolding as quantum annealing. J. High Energ. Phys. 2019, 128 (2019).

  75. Winci, W. et al. A path towards quantum advantage in training deep generative models with quantum annealers. Mach. Learn. Sci. Technol. 1, 045028 (2020).

    Article  Google Scholar 

  76. Willsch, D., Willsch, M., De Raedt, H. & Michielsen, K. Support vector machines on the D-Wave quantum annealer. Comput. Phys. Commun. 248, 107006 (2020).

    Article  MathSciNet  Google Scholar 

  77. Steffen, M., van Dam, W., Hogg, T., Breyta, G. & Chuang, I. Experimental implementation of an adiabatic quantum optimization algorithm. Phys. Rev. Lett. 90, 067903 (2003).

    Article  ADS  Google Scholar 

  78. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  ADS  Google Scholar 

  79. Aaronson, S. & Gottesman, D. Improved simulation of stabilizer circuits. Phys. Rev. A 70, 052328 (2004).

    Article  ADS  Google Scholar 

  80. Jozsa, R. & Miyake, A. Matchgates and classical simulation of quantum circuits. Proc. Math. Phys. Eng. Sci. 464, 3089–3106 (2008).

    MathSciNet  MATH  Google Scholar 

  81. Geraci, J. & Lidar, D. A. Classical Ising model test for quantum circuits. New J. Phys. 12, 075026 (2010).

    Article  ADS  MATH  Google Scholar 

  82. Albash, T., Martin-Mayor, V. & Hen, I. Analog errors in Ising machines. Quant. Sci. Technol. 4, 02LT03 (2019).

    Article  Google Scholar 

  83. Albash, T., Martin-Mayor, V. & Hen, I. Temperature scaling law for quantum annealing optimizers. Phys. Rev. Lett. 119, 110502 (2017).

    Article  ADS  Google Scholar 

  84. Pearson, A., Mishra, A., Hen, I. & Lidar, D. A. Analog errors in quantum annealing: doom and hope. npj Quant. Inf. 5, 107 (2019).

    Article  ADS  Google Scholar 

  85. Zlokapa, A., Boixo, S. & Lidar, D. Boundaries of quantum supremacy via random circuit sampling. Preprint at arXiv 2005.02464 (2020).

  86. Campbell, E., Khurana, A. & Montanaro, A. Applying quantum algorithms to constraint satisfaction problems. Quantum 3, 167 (2019).

    Article  Google Scholar 

  87. & Sanders, Y. R. et al. Compilation of fault-tolerant quantum heuristics for combinatorial optimization. PRX Quantum 1, 020312 (2020).

    Article  Google Scholar 

  88. Young, K. C., Blume-Kohout, R. & Lidar, D. A. Adiabatic quantum optimization with the wrong Hamiltonian. Phys. Rev. A 88, 062314 (2013).

    Article  ADS  Google Scholar 

  89. Zhu, Z., Ochoa, A. J., Schnabel, S., Hamze, F. & Katzgraber, H. G. Best-case performance of quantum annealers on native spin-glass benchmarks: how chaos can affect success probabilities. Phys. Rev. A 93, 012317 (2016).

    Article  ADS  Google Scholar 

  90. Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. Preprint at arXiv https://arxiv.org/abs/1411.4028 (2014).

  91. Susa, Y. et al. Quantum annealing of the p-spin model under inhomogeneous transverse field driving. Phys. Rev. A 98, 042326 (2018).

    Article  ADS  Google Scholar 

  92. Young, K. C., Sarovar, M. & Blume-Kohout, R. Error suppression and error correction in adiabatic quantum computation: techniques and challenges. Phys. Rev. X 3, 041013 (2013).

    Google Scholar 

  93. Mooij, J. E. et al. Josephson persistent-current qubit. Science 285, 1036–1039 (1999).

    Article  Google Scholar 

  94. Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    Article  ADS  Google Scholar 

  95. & Kendon, V. Quantum computing using continuous-time evolution. Interface Focus 10, 20190143 (2020).

    Article  Google Scholar 

  96. Muthukrishnan, S., Albash, T. & Lidar, D. A. Tunneling and speedup in quantum optimization for permutation-symmetric problems. Phys. Rev. X 6, 031010 (2016).

    Google Scholar 

  97. Katsuda, H. & Nishimori, H. Nonadiabatic quantum annealing for one-dimensional transverse-field Ising model. Preprint at arXiv https://arxiv.org/abs/1303.6045 (2013).

  98. Karanikolas, V. & Kawabata, S. Pulsed quantum annealing. J. Phys. Soc. Japan 89, 094003 (2020).

    Article  ADS  Google Scholar 

  99. Aharonov, D. et al. Adiabatic quantum computation is equivalent to standard quantum computation. SIAM J. Comput. 37, 166–194 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  100. Mizel, A., Lidar, D. A. & Mitchell, M. Simple proof of equivalence between adiabatic quantum computation and the circuit model. Phys. Rev. Lett. 99, 070502 (2007).

    Article  ADS  Google Scholar 

  101. Lloyd, S. & Terhal, B. M. Adiabatic and Hamiltonian computing on a 2D lattice with simple two-qubit interactions. New J. Phys. 18, 023042 (2016).

    Article  ADS  Google Scholar 

  102. Apolloni, B., Carvalho, C. & de Falco, D. Quantum stochastic optimization. Stochastic Process. Appl. 33, 233–244 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  103. Apolloni, B., Cesa-Bianchi, N. & de Falco, in Proceedings of the Ascona/Locarno Conference, 97–111 http://homes.di.unimi.it/cesa-bianchi/Pubblicazioni/quantumAnnealing.pdf (1988).

  104. Finnila, A. B., Gomez, M. A., Sebenik, C., Stenson, C. & Doll, J. D. Quantum annealing: a new method for minimizing multidimensional functions. Chem. Phys. Lett. 219, 343–348 (1994).

    Article  ADS  Google Scholar 

  105. Santoro, G. E., Martoňák, R., Tosatti, E. & Car, R. Theory of quantum annealing of an Ising spin glass. Science 295, 2427–2430 (2002).

    Article  ADS  Google Scholar 

  106. Das, A. & Chakrabarti, B. K. Colloquium: Quantum annealing and analog quantum computation. Rev. Mod. Phys. 80, 1061–1081 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  107. Hauke, P., Katzgraber, H. G., Lechner, W., Nishimori, H. & Oliver, W. D. Perspectives of quantum annealing: Methods and implementations. Rep. Prog. Phys. 83, 054401 (2020).

    Article  ADS  Google Scholar 

  108. Jordan, S. P., Gosset, D. & Love, P. J. Quantum-Merlin-Arthur — complete problems for stoquastic Hamiltonians and Markov matrices. Phys. Rev. A 81, 032331 (2010). Proved the universality of stoquastic digital quantum annealing.

    Article  ADS  Google Scholar 

  109. Amin, M. H., Andriyash, E., Rolfe, J., Kulchytskyy, B. & Melko, R. Quantum Boltzmann machine. Phys. Rev. X 8, 021050 (2018).

    Google Scholar 

  110. Haah, J., Hastings, M., Kothari, R. & Low, G. H. in Proceedings of the 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) 350–360 (2018).

  111. Jansen, S., Ruskai, M. B. & Seiler, R. Bounds for the adiabatic approximation with applications to quantum computation. J. Math. Phys. 48, 102111 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  112. Mozgunov, E. & Lidar, D. A. Quantum adiabatic theorem for unbounded Hamiltonians, with applications to superconducting circuits. Preprint at arXiv https://arxiv.org/abs/2011.08116 (2020).

  113. Somma, R. D., Nagaj, D. & Kieferová, M. Quantum speedup by quantum annealing. Phys. Rev. Lett. 109, 050501 (2012). The first example of an exponential quantum speedup using stoquastic digital quantum annealing.

    Article  ADS  Google Scholar 

  114. Bravyi, S., DiVincenzo, D. P., Oliveira, R. I. & Terhal, B. M. The complexity of stoquastic local hamiltonian problems. Quant. Inf. Comput. 8, 361–385 (2008).

    MathSciNet  MATH  Google Scholar 

  115. Childs, A. M., Farhi, E. & Preskill, J. Robustness of adiabatic quantum computation. Phys. Rev. A 65, 012322 (2001).

    Article  ADS  Google Scholar 

  116. Sarandy, M. S. & Lidar, D. A. Adiabatic quantum computation in open systems. Phys. Rev. Lett. 95, 250503 (2005).

    Article  ADS  Google Scholar 

  117. Amin, M. H. S., Averin, D. V. & Nesteroff, J. A. Decoherence in adiabatic quantum computation. Phys. Rev. A 79, 022107 (2009).

    Article  ADS  Google Scholar 

  118. Oreshkov, O. & Calsamiglia, J. Adiabatic Markovian dynamics. Phys. Rev. Lett. 105, 050503 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  119. Deng, Q., Averin, D. V., Amin, M. H. & Smith, P. Decoherence induced deformation of the ground state in adiabatic quantum computation. Sci. Rep. 3, 1479 (2013).

    Article  ADS  Google Scholar 

  120. Avron, J. E., Fraas, M., Graf, G. M. & Grech, P. Adiabatic theorems for generators of contracting evolutions. Commun. Math. Phys. 314, 163–191 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  121. Albash, T. & Lidar, D. A. Decoherence in adiabatic quantum computation. Phys. Rev. A 91, 062320 (2015).

    Article  ADS  Google Scholar 

  122. Venuti, L. C., Albash, T., Lidar, D. A. & Zanardi, P. Adiabaticity in open quantum systems. Phys. Rev. A 93, 032118 (2016).

    Article  ADS  Google Scholar 

  123. Campos Venuti, L. & Lidar, D. A. Error reduction in quantum annealing using boundary cancellation: only the end matters. Phys. Rev. A 98, 022315 (2018).

    Article  ADS  Google Scholar 

  124. Amin, M. H. S., Truncik, C. J. S. & Averin, D. V. Role of single-qubit decoherence time in adiabatic quantum computation. Phys. Rev. A 80, 022303 (2009).

    Article  ADS  Google Scholar 

  125. Breuer, H. P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002).

    MATH  Google Scholar 

  126. Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum computation by adiabatic evolution. Preprint at arXiv http://arxiv.org/abs/quant-ph/0001106 (2000).

  127. Smelyanskiy, V., Toussaint, U. V. & Timucin, D. Simulations of the adiabatic quantum optimization for the set partition problem. Preprint at arXiv https://arxiv.org/abs/quant-ph/0112143 (2001).

  128. Reichardt, B. W. in Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing, STOC ’04 502–510 (2004).

  129. Roland, J. & Cerf, N. J. Quantum search by local adiabatic evolution. Phys. Rev. A 65, 042308 (2002).

    Article  ADS  Google Scholar 

  130. Rezakhani, A. T., Pimachev, A. K. & Lidar, D. A. Accuracy versus run time in an adiabatic quantum search. Phys. Rev. A 82, 052305 (2010).

    Article  ADS  Google Scholar 

  131. Slutskii, M., Albash, T., Barash, L. & Hen, I. Analog nature of quantum adiabatic unstructured search. New J. Phys. 21, 113025 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  132. Martoňák, R., Santoro, G. E. & Tosatti, E. Quantum annealing by the path-integral Monte Carlo method: the two-dimensional random Ising model. Phys. Rev. B 66, 094203 (2002).

    Article  ADS  Google Scholar 

  133. Brady, L. T. & van Dam, W. Quantum Monte Carlo simulations of tunneling in quantum adiabatic optimization. Phys. Rev. A 93, 032304 (2016).

    Article  ADS  Google Scholar 

  134. Mazzola, G., Smelyanskiy, V. N. & Troyer, M. Quantum Monte Carlo tunneling from quantum chemistry to quantum annealing. Phys. Rev. B 96, 134305 (2017).

    Article  ADS  Google Scholar 

  135. Altshuler, B., Krovi, H. & Roland, J. Anderson localization makes adiabatic quantum optimization fail. Proc. Natl Acad. Sci. USA 107, 12446–12450 (2010).

    Article  ADS  MATH  Google Scholar 

  136. Hastings, M. B. & Freedman, M. H. Obstructions to classically simulating the quantum adiabatic algorithm. Quant. Inf. Comput. 13, 1038–1076 (2013).

    MathSciNet  Google Scholar 

  137. Andriyash, E. & Amin, M. H. Can quantum Monte Carlo simulate quantum annealing? Preprint at arXiv http://arXiv.org/abs/1703.09277 (2017).

  138. Bringewatt, J. & Jarret, M. Effective gaps are not effective: quasipolynomial classical simulation of obstructed stoquastic Hamiltonians. Phys. Rev. Lett. 125, 170504 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  139. Harrow, A., Mehraban, S. & Soleimanifar, M. Classical algorithms, correlation decay, and complex zeros of partition functions of quantum many-body systems. Proc. of STOC 2020, pp 378-386 https://doi.org/10.1145/3357713.3384322 (2020).

  140. Kuwahara, T., Kato, K. & Brandão, F. G. S. L. Clustering of conditional mutual information for quantum Gibbs states above a threshold temperature. Phys. Rev. Lett. 124, 220601 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  141. Crosson, E. & Slezak, S. Classical simulation of high temperature quantum Ising models. Preprint at arXiv 2002.02232 (2020).

  142. Amin, M. H. S., Love, P. J. & Truncik, C. J. S. Thermally assisted adiabatic quantum computation. Phys. Rev. Lett. 100, 060503 (2008).

    Article  ADS  Google Scholar 

  143. Shin, S. W., Smith, G., Smolin, J. A. & Vazirani, U. How “quantum” is the D-Wave machine? Preprint at arXiv http://arXiv.org/abs/1401.7087 (2014).

  144. D-Wave Systems Inc. Reverse quantum annealing for local refinement of solutions. Technical report 14-1018A-A. D-Wave Systems https://www.dwavesys.com/sites/default/files/14-1018A-A_Reverse_Quantum_Annealing_for_Local_Refinement_of_Solutions.pdf (2017).

  145. Marshall, J., Venturelli, D., Hen, I. & Rieffel, E. G. Power of pausing: advancing understanding of thermalization in experimental quantum annealers. Phys. Rev. Appl. 11, 044083 (2019).

    Article  ADS  Google Scholar 

  146. Venuti, L. C., Albash, T., Marvian, M., Lidar, D. & Zanardi, P. Relaxation versus adiabatic quantum steady-state preparation. Phys. Rev. A 95, 042302 (2017).

    Article  ADS  Google Scholar 

  147. Chen, H. & Lidar, D. A. Why and when pausing is beneficial in quantum annealing?. Phys. Rev. Appl. 14, 014100 (2020).

    Article  ADS  Google Scholar 

  148. Albash, T. & Marshall, J. Comparing relaxation mechanisms in quantum and classical transverse-field annealing. Phys. Rev. Appl. 14, 014029 (2021).

    Article  ADS  Google Scholar 

  149. Izquierdo, Z. G. et al. Ferromagnetically shifting the power of pausing. Phys. Rev. Applied 15, 044013 (2021).

  150. Albash, T., Rønnow, T. F., Troyer, M. & Lidar, D. A. Reexamining classical and quantum models for the D-Wave One processor. Eur. Phys. J. Spec. Top. 224, 111–129 (2015).

    Article  ADS  Google Scholar 

  151. Albash, T., Vinci, W., Mishra, A., Warburton, P. A. & Lidar, D. A. Consistency tests of classical and quantum models for a quantum annealer. Phys. Rev. A 91, 042314 (2015).

    Article  ADS  Google Scholar 

  152. Mishra, A., Albash, T. & Lidar, D. A. Finite temperature quantum annealing solving exponentially small gap problem with non-monotonic success probability. Nat. Commun. 9, 2917 (2018).

    Article  ADS  Google Scholar 

  153. Shor, P. W. in Proceedings of the 35th Annual Symposium on Foundations of Computer Science 124–134 http://ieeexplore.ieee.org/document/365700/ (1994).

  154. Mandra, S. Private communication (2019).

  155. Isakov, S. V. et al. Understanding quantum tunneling through quantum Monte Carlo simulations. Phys. Rev. Lett. 117, 180402 (2016).

    Article  ADS  Google Scholar 

  156. Childs, A. M. Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  157. Crosson, E., Farhi, E., Lin, C. Y. Y., Lin, H. H. & Shor, P. Different strategies for optimization using the quantum adiabatic algorithm. Preprint at arXiv http://arxiv.org/abs/1401.7320 (2014). One of the earliest studies demonstrating the advantage of diabatic over adiabatic quantum computation.

  158. Wecker, D., Hastings, M. B. & Troyer, M. Training a quantum optimizer. Phys. Rev. A 94, 022309 (2016).

    Article  ADS  Google Scholar 

  159. Farhi, E., Goldstone, J. & Gutmann, S. Quantum adiabatic evolution algorithms versus simulated annealing. Preprint at arXiv http://arXiv.org/abs/quant-ph/0201031 (2002).

  160. Brady, L. T. & van Dam, W. Necessary adiabatic run times in quantum optimization. Phys. Rev. A 95, 032335 (2017).

    Article  ADS  Google Scholar 

  161. Zanardi, P. & Rasetti, M. Noiseless quantum codes. Phys. Rev. Lett. 79, 3306–3309 (1997).

    Article  ADS  Google Scholar 

  162. Lidar, D. A., Chuang, I. L. & Whaley, K. B. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998).

    Article  ADS  Google Scholar 

  163. Viola, L., Knill, E. & Lloyd, S. Dynamical generation of noiseless quantum subsystems. Phys. Rev. Lett. 85, 3520–3523 (2000).

    Article  ADS  Google Scholar 

  164. Lidar, D. A. Towards fault tolerant adiabatic quantum computation. Phys. Rev. Lett. 100, 160506 (2008).

    Article  ADS  Google Scholar 

  165. van Dam, W., Mosca, M. & Vazirani, U. in Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science 279–287 (2001).

  166. Jörg, T., Krzakala, F., Kurchan, J., Maggs, A. C. & Pujos, J. Energy gaps in quantum first-order mean-field–like transitions: the problems that quantum annealing cannot solve. Europhys. Lett. 89, 40004 (2010).

    Article  ADS  Google Scholar 

  167. Laumann, C. R., Moessner, R., Scardicchio, A. & Sondhi, S. L. Quantum adiabatic algorithm and scaling of gaps at first-order quantum phase transitions. Phys. Rev. Lett. 109, 030502 (2012).

    Article  ADS  Google Scholar 

  168. Laumann, C. R., Moessner, R., Scardicchio, A. & Sondhi, S. L. Quantum annealing: the fastest route to quantum computation? Eur. Phys. J. Spec. Top. 224, 75–88 (2015).

    Article  Google Scholar 

  169. Knysh, S. Zero-temperature quantum annealing bottlenecks in the spin-glass phase. Nat. Commun. 7, 12370 (2016).

    Article  ADS  Google Scholar 

  170. Theis, L.S., Schuhmacher, P.K., Marthaler, M. & Wilhelm, F.K. Gap-independent cooling and hybrid quantum-classical annealing. https://arxiv.org/abs/1808.09873 (2018).

  171. Denchev, V.S., Mohseni, M. & Neven, H. Quantum assisted optimization. International Patent Application WO 2017/189052 Al (2017).

  172. Albash, T., Hen, I., Spedalieri, F. M. & Lidar, D. A. Reexamination of the evidence for entanglement in a quantum annealer. Phys. Rev. A 92, 062328 (2015).

    Article  ADS  Google Scholar 

  173. Childs, A.M. et al. Exponential algorithmic speedup by a quantum walk. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, 59-68 (ACM, 2003).

  174. Muthukrishnan, S., Albash, T. & Lidar, D. A. Sensitivity of quantum speedup by quantum annealing to a noisy oracle. Phys. Rev. A 99, 032324– (2019).

    Article  ADS  Google Scholar 

  175. Hastings, M. B. The power of adiabatic quantum computation with no sign problem. Preprint at arXiv https://arxiv.org/abs/2005.03791 (2020). The first example of a superpolynomial quantum speedup using stoquastic ground- state reverse annealing.

  176. Gilyén, A. & Vazirani, U. (Sub)Exponential advantage of adiabatic quantum computation with no sign problem. Preprint at arXiv https://arxiv.org/abs/2011.09495 (2020).

  177. Ohkuwa, M., Nishimori, H. & Lidar, D. A. Reverse annealing for the fully connected p-spin model. Phys. Rev. A 98, 022314 (2018).

    Article  ADS  Google Scholar 

  178. Amin, M. H. S. & Choi, V. First-order quantum phase transition in adiabatic quantum computation. Phys. Rev. A 80, 062326 (2009).

    Article  ADS  Google Scholar 

  179. Young, A. P., Knysh, S. & Smelyanskiy, V. N. First-order phase transition in the quantum adiabatic algorithm. Phys. Rev. Lett. 104, 020502 (2010).

    Article  ADS  Google Scholar 

  180. Jörg, T., Krzakala, F., Semerjian, G. & Zamponi, F. First-order transitions and the performance of quantum algorithms in random optimization problems. Phys. Rev. Lett. 104, 207206 (2010).

    Article  ADS  Google Scholar 

  181. Yamashiro, Y., Ohkuwa, M., Nishimori, H. & Lidar, D. A. Dynamics of reverse annealing for the fully connected p-spin model. Phys. Rev. A 100, 052321 (2019).

    Article  ADS  Google Scholar 

  182. Perdomo-Ortiz, A., Venegas-Andraca, S. E. & Aspuru-Guzik, A. A study of heuristic guesses for adiabatic quantum computation. Quant. Inf. Process. 10, 33–52 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  183. Chancellor, N. Modernizing quantum annealing using local searches. New J. Phys. 19, 023024 (2017).

    Article  ADS  Google Scholar 

  184. King, J. et al. Quantum-assisted genetic algorithm. Preprint at arXiv https://arxiv.org/abs/1907.00707 (2019).

  185. Passarelli, G., Yip, K. W., Lidar, D. A., Nishimori, H. & Lucignano, P. Reverse quantum annealing of the p-spin model with relaxation. Phys. Rev. A 101, 022331 (2020).

    Article  ADS  Google Scholar 

  186. D-Wave Systems Inc. The D-Wave 2000Q Quantum Computer technology Overview. D-Wave Systems https://www.dwavesys.com/sites/default/files/D-Wave%202000Q%20Tech%20Collateral_1029F.pdf (2018).

  187. Amin, M. H. Searching for quantum speedup in quasistatic quantum annealers. Phys. Rev. A 92, 052323 (2015).

    Article  ADS  Google Scholar 

  188. Albash, T., Boixo, S., Lidar, D. A. & Zanardi, P. Quantum adiabatic Markovian master equations. New J. Phys. 14, 123016 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  189. Venturelli, D. & Kondratyev, A. Reverse quantum annealing approach to portfolio optimization problems. Quant. Mach. Intell. 1, 17–30 (2019).

    Article  Google Scholar 

  190. Callison, A., Chancellor, N., Mintert, F. & Kendon, V. Finding spin glass ground states using quantum walks. New J. Phys. 21, 123022 (2019).

    Article  MathSciNet  Google Scholar 

  191. Morley, J. G., Chancellor, N., Bose, S. & Kendon, V. Quantum search with hybrid adiabatic–quantum-walk algorithms and realistic noise. Phys. Rev. A 99, 022339 (2019).

    Article  ADS  Google Scholar 

  192. Callison, A. et al. An energetic perspective on rapid quenches in quantum annealing. PRX Quantum 2, 010338 (2021).

  193. Hastings, M. B. Duality in quantum quenches and classical approximation algorithms: pretty good or very bad. Quantum 3, 201 (2019).

    Article  Google Scholar 

  194. Chancellor, N. Perspective on: duality in quantum quenches and classical approximation algorithms: pretty good or very bad. Quant. Views 4, 29 (2020).

    Article  Google Scholar 

  195. Szegedy, M. What do QAOA energies reveal about graphs? Preprint at arXiv https://arxiv.org/abs/1912.12277 (2019).

  196. Bapat, A. & Jordan, S. Bang-bang control as a design principle for classical and quantum optimization algorithms. Quant. Inf. Comput. 19, 424–446 (2019).

    MathSciNet  Google Scholar 

  197. Streif, M. & Leib, M. Comparison of QAOA with quantum and simulated annealing. Preprint at arXiv https://arxiv.org/abs/1901.01903 (2019).

  198. Goemans, M. & Williamson, D. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42, 1115–1145 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  199. Bravyi, S., Kliesch, A., Koenig, R. & Tang, E. Obstacles to state preparation and variational optimization from symmetry protection. Phys. Rev. Lett. 125, 260505 (2020).

  200. Hastings, M. B. Classical and quantum bounded depth approximation algorithms. Preprint at arXiv https://arxiv.org/abs/1905.07047 (2019).

  201. Akshay, V., Philathong, H., Morales, M. E. S. & Biamonte, J. D. Reachability deficits in quantum approximate optimization. Phys. Rev. Lett. 124, 090504 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  202. Yang, Z. C., Rahmani, A., Shabani, A., Neven, H. & Chamon, C. Optimizing variational quantum algorithms using Pontryagin’s minimum principle. Phys. Rev. X 7, 021027 (2017).

    Google Scholar 

  203. Jiang, Z., Rieffel, E. G. & Wang, Z. Near-optimal quantum circuit for Grover’s unstructured search using a transverse field. Phys. Rev. A 95, 062317 (2017).

    Article  ADS  Google Scholar 

  204. Zhou, L., Wang, S. T., Choi, S., Pichler, H. & Lukin, M. D. Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. Phys. Rev. X 10, 021067 (2020).

    Google Scholar 

  205. Brady, L. T., Baldwin, C. L., Bapat, A., Kharkov, Y. & Gorshkov, A. V. Optimal protocols in quantum annealing and QAOA problems. Phys. Rev. Lett. 126, 070505 (2021). Established the optimality of a hybrid QAOA–QA protocol using control theoretic tools.

  206. Mbeng, G. B., Fazio, R. & Santoro, G. E. Optimal quantum control with digitized quantum annealing. Preprint at arXiv https://arxiv.org/abs/1911.12259 (2019).

  207. Marvian, M., Lidar, D. A. & Hen, I. On the computational complexity of curing non-stoquastic Hamiltonians. Nat. Commun. 10, 1571 (2019).

    Article  ADS  Google Scholar 

  208. Klassen, J. et al. Hardness and ease of curing the sign problem for two-local qubit Hamiltonians. SIAM J. Comput. 49, 1332–1362 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  209. Fujii, K. Quantum speedup in stoquastic adiabatic quantum computation. Preprint at arXiv https://arxiv.org/abs/1803.09954 (2018).

  210. Gupta, L. & Hen, I. Elucidating the interplay between non-stoquasticity and the sign problem. Adv. Quant. Technol. 3, 1900108 (2020).

    Article  Google Scholar 

  211. Kerman, A. J. Superconducting qubit circuit emulation of a vector spin-1/2. New J. Phys. 21, 073030 (2019).

    Article  ADS  Google Scholar 

  212. Ozfidan, I. et al. Demonstration of a nonstoquastic Hamiltonian in coupled superconducting flux qubits. Phys. Rev. Appl. 13, 034037 (2020).

    Article  ADS  Google Scholar 

  213. Halverson, T., Gupta, L., Goldstein, M. & Hen, I. Efficient simulation of so-called non-stoquastic superconducting flux circuits. Preprint at arXiv https://arxiv.org/abs/2011.03831 (2020).

  214. Jiang, Z. & Rieffel, E. G. Non-commuting two-local Hamiltonians for quantum error suppression. Quant. Inf. Process. 16, 89 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  215. Marvian, M. & Lidar, D. A. Error suppression for Hamiltonian-based quantum computation using subsystem codes. Phys. Rev. Lett. 118, 030504 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  216. Marvian, M. & Lloyd, S. Robust universal Hamiltonian quantum computing using two-body interactions. Preprint at arXiv https://arxiv.org/abs/1911.01354 (2019).

  217. Kitaev, A. Y., Shen, A. H. & Vyalyi, M. N. Classical and Quantum Computation. Graduate Studies in Mathematics Vol. 47 (American Mathematical Society, 2002).

  218. Biamonte, J. D. & Love, P. J. Realizable Hamiltonians for universal adiabatic quantum computers. Phys. Rev. A 78, 012352 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  219. Susa, Y., Jadebeck, J. F. & Nishimori, H. Relation between quantum fluctuations and the performance enhancement of quantum annealing in a nonstoquastic Hamiltonian. Phys. Rev. A 95, 042321 (2017).

    Article  ADS  Google Scholar 

  220. Durkin, G. A. Quantum speedup at zero temperature via coherent catalysis. Phys. Rev. A 99, 032315 (2019).

    Article  ADS  Google Scholar 

  221. Albash, T. Role of nonstoquastic catalysts in quantum adiabatic optimization. Phys. Rev. A 99, 042334 (2019).

    Article  ADS  Google Scholar 

  222. Crosson, E. & Bowen, J. Quantum ground state isoperimetric inequalities for the energy spectrum of local Hamiltonians. Preprint at arXiv http://arXiv.org/abs/1703.10133 (2017).

  223. Crosson, E., Albash, T., Hen, I. & Young, A. P. De-signing Hamiltonians for quantum adiabatic optimization. Quantum 4, 334 (2020).

    Article  Google Scholar 

  224. Houdayer, J. A cluster Monte Carlo algorithm for 2-dimensional spin glasses. Eur. Phys. J. B Condens. Matter Complex Syst. 22, 479–484 (2001).

    Article  Google Scholar 

  225. Zhu, Z., Ochoa, A. J. & Katzgraber, H. G. Efficient cluster algorithm for spin glasses in any space dimension. Phys. Rev. Lett. 115, 077201 (2015).

    Article  ADS  Google Scholar 

  226. Eldar, L. & Harrow, A. W. in Proceedings of the 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS) 427–438 (2017).

  227. Tang, E. Quantum-inspired classical algorithms for principal component analysis and supervised clustering. Preprint at arXiv https://arxiv.org/abs/1811.00414 (2018).

  228. Tang, E. in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing - STOC 2019 217–228 https://doi.org/10.1145/3313276.3316310 (2019).

  229. Gilyén, A., Lloyd, S. & Tang, E. Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension. Preprint at arXiv https://arxiv.org/abs/1811.04909 (2018).

  230. Aaronson, S. Read the fine print. Nat. Phys. 11, 291–293 (2015).

    Article  Google Scholar 

  231. Freund, Y. & Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  232. Neven, H., Denchev, V. S., Rose, G. & Macready, W. G. Training a binary classifier with the quantum adiabatic algorithm. Preprint at arXiv http://arXiv.org/abs/0811.0416 (2008).

  233. Pudenz, K. L. & Lidar, D. A. Quantum adiabatic machine learning. Quant. Inf. Process. 12, 2027–2070 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  234. Jain, S., Ziauddin, J., Leonchyk, P., Yenkanchi, S. & Geraci, J. Quantum and classical machine learning for the classification of non-small-cell lung cancer patients. SN Appl. Sci. 2, 1088 (2020).

    Article  Google Scholar 

  235. Kieferová, M. & Wiebe, N. Tomography and generative training with quantum Boltzmann machines. Phys. Rev. A 96, 062327 (2017).

    Article  ADS  Google Scholar 

  236. Liu, J. G. & Wang, L. Differentiable learning of quantum circuit Born machines. Phys. Rev. A 98, 062324 (2018).

    Article  ADS  Google Scholar 

  237. Cheng, S., Chen, J. & Wang, L. Information perspective to probabilistic modeling: Boltzmann machines versus Born machines. Entropy 20, 583 (2018).

    Article  ADS  Google Scholar 

  238. Benedetti, M. et al. A generative modeling approach for benchmarking and training shallow quantum circuits. npj Quant. Inf. 5, 45 (2019).

    Article  ADS  Google Scholar 

  239. Coyle, B., Mills, D., Danos, V. & Kashefi, E. The Born supremacy: quantum advantage and training of an Ising Born machine. npj Quant. Inf. 6, 60 (2020).

    Article  ADS  Google Scholar 

  240. Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem. Preprint at arXiv http://arXiv.org/abs/1412.6062 (2014).

  241. Hadfield, S. et al. From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms 12, 34 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  242. Babbush, R., McClean, J., Gidney, C., Boixo, S. & Neven, H. Focus beyond quadratic speedups for error-corrected quantum advantage. PRX Quantum 2, 010103 (2021).

  243. Aaronson, S., Chia, N. H., Lin, H. H., Wang, C. & Zhang, R. On the quantum complexity of closest pair and related problems. Proceedings of the 35th Computational Complexity Conference (CCC), pp 16:1–16:43, 2020.

  244. Brassard, G., Hoyer, P., Mosca, M. & Tapp, A. Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  245. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    Article  ADS  Google Scholar 

  246. Yoder, T. J. & Kim, I. H. The surface code with a twist. Quantum 1, 2 (2017).

    Article  Google Scholar 

  247. Ataides, J. P. B., Tuckett, D. K., Bartlett, S. D., Flammia, S. T. & Brown, B. J. The XZZX surface code. Nat. Commun. 12, 2172 (2021).

  248. Bacon, D., Brown, K. R. & Whaley, K. B. Coherence-preserving quantum bits. Phys. Rev. Lett. 87, 247902 (2001).

    Article  ADS  Google Scholar 

  249. Jordan, S. P., Farhi, E. & Shor, P. W. Error-correcting codes for adiabatic quantum computation. Phys. Rev. A 74, 052322 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  250. Pudenz, K. L., Albash, T. & Lidar, D. A. Error-corrected quantum annealing with hundreds of qubits. Nat. Commun. 5, 3243 (2014).

    Article  ADS  Google Scholar 

  251. Pudenz, K. L., Albash, T. & Lidar, D. A. Quantum annealing correction for random Ising problems. Phys. Rev. A 91, 042302 (2015).

    Article  ADS  Google Scholar 

  252. Matsuura, S., Nishimori, H., Albash, T. & Lidar, D. A. Mean field analysis of quantum annealing correction. Phys. Rev. Lett. 116, 220501 (2016).

    Article  ADS  Google Scholar 

  253. Bookatz, A. D., Farhi, E. & Zhou, L. Error suppression in Hamiltonian-based quantum computation using energy penalties. Phys. Rev. A 92, 022317 (2015).

    Article  ADS  Google Scholar 

  254. Vinci, W., Albash, T., Paz-Silva, G., Hen, I. & Lidar, D. A. Quantum annealing correction with minor embedding. Phys. Rev. A 92, 042310 (2015).

    Article  ADS  Google Scholar 

  255. Vinci, W., Albash, T. & Lidar, D. A. Nested quantum annealing correction. npj Quant. Inf. 2, 16017 (2016).

    Article  ADS  Google Scholar 

  256. Mishra, A., Albash, T. & Lidar, D. A. Performance of two different quantum annealing correction codes. Quant. Inf. Process. 15, 609–636 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  257. Marvian, I. Exponential suppression of decoherence and relaxation of quantum systems using energy penalty. Preprint at arXiv http://arXiv.org/abs/1602.03251 (2016).

  258. Matsuura, S., Nishimori, H., Vinci, W., Albash, T. & Lidar, D. A. Quantum-annealing correction at finite temperature: ferromagnetic p-spin models. Phys. Rev. A 95, 022308 (2017).

    Article  ADS  Google Scholar 

  259. Marvian, M. & Lidar, D. A. Error suppression for Hamiltonian quantum computing in Markovian environments. Phys. Rev. A 95, 032302 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  260. Matsuura, S., Nishimori, H., Vinci, W. & Lidar, D. A. Nested quantum annealing correction at finite temperature: p-spin models. Phys. Rev. A 99, 062307 (2019).

    Article  ADS  Google Scholar 

  261. Lidar, D. A. Arbitrary-time error suppression for Markovian adiabatic quantum computing using stabilizer subspace codes. Phys. Rev. A 100, 022326 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  262. Li, R. Y., Albash, T. & Lidar, D. A. Limitations of error corrected quantum annealing in improving the performance of Boltzmann machines. Quantum Sci. Technol. 5, 045010 (2020).

    Article  ADS  Google Scholar 

  263. Atalaya, J., Korotkov, A. N. & Whaley, K. B. Error-correcting Bacon-Shor code with continuous measurement of noncommuting operators. Phys. Rev. A 102, 022415 (2020).

    Article  ADS  Google Scholar 

  264. Atalaya, J. et al. Continuous quantum error correction for evolution under time-dependent Hamiltonians. Phys. Rev. A 103, 042406 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  265. Pagano, G. et al. Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator. Proc. Natl Acad. Sci. USA 117, 25396–25401 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to many of our colleagues in the IARPA-QEO and DARPA-QAFS programmes, in particular, A. Kerman, E. Rieffel, F. Wilhelm and K. Zick, for their comments and insights. We also acknowledge helpful discussions with Dr. Richard Harris about D-Wave’s reverse annealing protocol. The research is based upon work (partially) supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and the Defense Advanced Research Projects Agency (DARPA), via the U.S. Army Research Office contract W911NF-17-C-0050. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the ODNI, IARPA, DARPA or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes, notwithstanding any copyright annotation thereon. This material is based upon work supported in part by the National Science Foundation the Quantum Leap Big Idea under Grant No. OMA-1936388.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to D. A. Lidar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Mohammad Amin, Shu Tanaka and the other anonymous reviewer for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Gate model

Or gate-based quantum computing. The ‘standard’ universal model of quantum computing. Qubits are initialized in a product state, then driven through single-qubit and two-qubit gates. Qubits are measured at the end, typically in the computational basis.

Stoquastic Hamiltonians

Hamiltonians whose off-diagonal elements are all nonpositive in a given basis, usually the computational basis.

Nonstoquastic Hamiltonians

Hamiltonians with at least one positive off-diagonal element in a given basis, usually the computational basis.

J-chaos

Extreme sensitivity of the output distribution of analogue computation to the values of the coupling parameters in the Hamiltonian.

Fault-tolerance

The ability to simulate a noise-free quantum computation with faulty operations. This usually involves concatenated quantum error correction with operations whose noise is below a threshold level.

Quantum Monte Carlo

A family of classical algorithms that sample from the thermal equilibrium distribution of quantum systems. These algorithms are usually efficient in the absence of a ‘sign problem’ and for stoquastic Hamiltonians.

MAX-2-SAT

An NP-hard constraint satisfaction problem consisting of clauses of ORs of two binary variables or their negations, with ANDs between clauses. The problem is to find the variable assignment that maximizes the number of satisfied clauses.

Oracle

A black box for which the cost of computing some function (even on a superposition) is one unit.

Graph Laplacian

L = D − A, where Dii is the degree of each vertex and Dij = 0 (degree matrix), and Aij = 1 when there is an edge between vertices i and j, and zero otherwise (adjacency matrix).

Unstructured search

Essentially the ‘needle in a haystack’ problem. Given a function f(x): {0,…, N}  {0, 1} such that \(f(x)={\delta }_{x,{x}_{0}}\) with x0 unknown, find x0 in the smallest number of queries to f.

Boolean hypercube

The Boolean hypercube is the graph whose vertices are the set of all length n bit strings ({0, 1}n). Two vertices are adjacent if and only if they differ on exactly one bit.

MAX-K-LIN-2

An NP-hard problem consisting of a system of linear equations (modulo 2) in ≤K variables. The problem is to find the variable assignment that maximizes the number of satisfied equations.

Trotterized

Trotterization is breaking up a time evolution over some finite duration into a very large number of tiny steps that add up to the original duration. The term comes from the Lie–Trotter formula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crosson, E.J., Lidar, D.A. Prospects for quantum enhancement with diabatic quantum annealing. Nat Rev Phys 3, 466–489 (2021). https://doi.org/10.1038/s42254-021-00313-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00313-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing