Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Response
  • Published:

Low glycemic index diets and body weight

Abstract

In their review (low-glycaemic index diets and body weight regulation (2006)), McMillan-Price and Brand-Miller argue that the low glycemic index (GI) diet is a simple and more popular diet that will successfully improve cardiovascular risk factors and reduce body weight. We do not find that there is convincing evidence in the existing literature to suggest that a low GI diet is superior in achieving improvement in cardiovascular health and in reducing body weight in healthy overweight subjects, when compared to official dietary advice recommending a diet high in vegetables, fruit and fiber, and low in sugar and fat. This lack of evidence might partly be due to the lack of long-term, well-powered studies, with well-controlled diets differing only in GI. Data also suggest that subjects’ insulin sensitivity might be an important predictor of the effects of a low GI diet, and therefore findings from studies in insulin-resistant and diabetic subjects should not be extrapolated to findings in healthy individuals. We agree with McMillan-Price and Brand-Miller when they state that ‘in practice it is difficult to tease out the separate effects of GI, palatability, volume, fiber and other factors that influence satiety responses to realistic meals’. Predicting GI of realistic meals has also proven difficult. We therefore find that future studies should focus on individual food factors, such as the effect of whole grain, including intact grains, fiber, including resistant starch, energy density and preparation methods. This approach would allow for more tightly controlled trials, with less confounding factors, and also lead to simpler dietary advice with assured efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. McMillan-Price J, Brand-Miller J . Low-glycaemic index diets and body weight regulation. Int J Obes 2006; 30: S40–S46.

    Article  Google Scholar 

  2. Mayer J . Regulation of energy intake and the body weight – the glucostatic theory and the lipostatic hypothesis. Ann NY Acad Sci 1955; 63: 15–43.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson GH, Catherine NL, Woodend DM, Wolever TM . Inverse association between the effect of carbohydrates on blood glucose and subsequent short-term food intake in young men. Am J Clin Nutr 2002; 76: 1023–1030.

    Article  CAS  PubMed  Google Scholar 

  4. Anderson GH, Woodend D . Effect of glycemic carbohydrates on short-term satiety and food intake. Nutr Rev 2003; 61 (Pt 2): S17–S26.

    Article  PubMed  Google Scholar 

  5. Campfield LA, Smith FJ . Transient declines in blood glucose signal meal initiation. Int J Obes 1990; 14 (Suppl 3): 15–31.

    PubMed  Google Scholar 

  6. Granfeldt Y, Liljeberg H, Drews A, Newman R, Bjorck I . Glucose and insulin responses to barley products: influence of food structure and amylose-amylopectin ratio. Am J Clin Nutr 1994; 59: 1075–1082.

    Article  CAS  PubMed  Google Scholar 

  7. Holt S, Brand J, Soveny C, Hansky J . Relationship of satiety to postprandial glycaemic, insulin and cholecystokinin responses. Appetite 1992; 18: 129–141.

    Article  CAS  PubMed  Google Scholar 

  8. Holt SH, Brand Miller JC, Petocz P . Interrelationships among postprandial satiety, glucose and insulin responses and changes in subsequent food intake. Eur J Clin Nutr 1996; 50: 788–797.

    CAS  PubMed  Google Scholar 

  9. Lavin JH, Wittert G, Sun WM, Horowitz M, Morley JE, Read NW . Appetite regulation by carbohydrate: role of blood glucose and gastrointestinal hormones. Am J Physiol 1996; 271 (Pt 1): E209–E214.

    CAS  PubMed  Google Scholar 

  10. Melanson KJ, Westerterp-Plantenga MS, Saris WH, Smith FJ, Campfield LA . Blood glucose patterns and appetite in time-blinded humans: carbohydrate versus fat. Am J Physiol 1999; 277 (Pt 2): R337–R345.

    CAS  PubMed  Google Scholar 

  11. Raben A, Holst JJ, Christensen NJ, Astrup A . Determinants of postprandial appetite sensations: macronutrient intake and glucose metabolism. Int J Obes Relat Metab Disord 1996; 20: 161–169.

    CAS  PubMed  Google Scholar 

  12. Smith FJ, Campfield LA . Meal initiation occurs after experimental induction of transient declines in blood glucose. Am J Physiol 1993; 265 (Pt 2): R1423–R1429.

    CAS  PubMed  Google Scholar 

  13. Brand-Miller JC, Holt SH, Pawlak DB, McMillan J . Glycemic index and obesity. Am J Clin Nutr 2002; 76: 281S–285S.

    Article  CAS  PubMed  Google Scholar 

  14. Ludwig DS, Majzoub JA, Al Zahrani A, Dallal GE, Blanco I, Roberts SB . High glycemic index foods, overeating, and obesity. Pediatrics 1999; 103: E26.

    Article  CAS  PubMed  Google Scholar 

  15. Ludwig DS . Dietary glycemic index and obesity. J Nutr 2000; 130 (Suppl): 280S–283S.

    Article  CAS  PubMed  Google Scholar 

  16. Ludwig DS . The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 2002; 287: 2414–2423.

    Article  CAS  PubMed  Google Scholar 

  17. Pawlak DB, Ebbeling CB, Ludwig DS . Should obese patients be counselled to follow a low-glycaemic index diet? Yes. Obes Rev 2002; 3: 235–243.

    Article  CAS  PubMed  Google Scholar 

  18. Roberts SB . High-glycemic index foods, hunger, and obesity: is there a connection? Nutr Rev 2000; 58: 163–169.

    Article  CAS  PubMed  Google Scholar 

  19. Chapman IM, Goble EA, Wittert GA, Morley JE, Horowitz M . Effect of intravenous glucose and euglycemic insulin infusions on short-term appetite and food intake. Am J Physiol 1998; 274 (Pt 2): R596–R603.

    CAS  PubMed  Google Scholar 

  20. Ludwig DS . Dietary glycemic index and obesity. J Nutr 2000; 130 (Suppl): 280S–283S.

    Article  CAS  PubMed  Google Scholar 

  21. Raben A . Should obese patients be counselled to follow a low-glycaemic index diet? No. Obes Rev 2002; 3: 245–256.

    Article  CAS  PubMed  Google Scholar 

  22. Alfenas RC, Mattes RD . Influence of glycemic index/load on glycemic response, appetite, and food intake in healthy humans. Diabetes Care 2005; 28: 2123–2129.

    Article  PubMed  Google Scholar 

  23. Wolever TM, Brand-Miller JC . Influence of glycemic index/load on glycemic response, appetite, and food intake in healthy humans. Diabetes Care 2006; 29: 474–475.

    Article  PubMed  Google Scholar 

  24. Ludwig DS, Roberts SB . Influence of glycemic index/load on glycemic response, appetite, and food intake in healthy humans. Diabetes Care 2006; 29: 474–476.

    Article  PubMed  Google Scholar 

  25. Brand-Miller JC, Wolever TMS . The use of glycaemic index tables to predict glycaemic index of breakfast meals. Br J Nutr 2005; 94: 133–134.

    Article  CAS  PubMed  Google Scholar 

  26. Ludwig DS, Roberts SB . Influence of glycemic index/load on glycemic response, appetite, and food intake in healthy humans. Diabetes Care 2006; 29: 474–476.

    Article  PubMed  Google Scholar 

  27. Wolever TM, Brand-Miller JC . Influence of glycemic index/load on glycemic response, appetite, and food intake in healthy humans. Diabetes Care 2006; 29: 474–475.

    Article  PubMed  Google Scholar 

  28. Raben A . Should obese patients be counselled to follow a low-glycaemic index diet? No. Obes Rev 2002; 3: 245–256.

    Article  CAS  PubMed  Google Scholar 

  29. Raben A . Should obese patients be counselled to follow a low-glycaemic index diet? No. Obes Rev 2002; 3: 245–256.

    Article  CAS  PubMed  Google Scholar 

  30. Raben A, Macdonald I, Astrup A . Replacement of dietary fat by sucrose or starch: effects on 14 d ad libitum energy intake, energy expenditure and body weight in formerly obese and never-obese subjects. Int J Obes Relat Metab Disord 1997; 21: 846–859.

    Article  CAS  PubMed  Google Scholar 

  31. Bouche C, Rizkalla SW, Luo J, Vidal H, Veronese A, Pacher N et al. Five-week, low-glycemic index diet decreases total fat mass and improves plasma lipid profile in moderately overweight nondiabetic men. Diabetes Care 2002; 25: 822–828.

    Article  CAS  PubMed  Google Scholar 

  32. Raben A . Should obese patients be counselled to follow a low-glycaemic index diet? No. Obes Rev 2002; 3: 245–256.

    Article  CAS  PubMed  Google Scholar 

  33. Sloth B, Krog-Mikkelsen I, Flint A, Tetens I, Bjorck I, Vinoy S et al. No difference in body weight decrease between a low-glycemic-index and a high-glycemic-index diet but reduced LDL cholesterol after 10-wk ad libitum intake of the low-glycemic-index diet. Am J Clin Nutr 2004; 80: 337–347.

    Article  CAS  PubMed  Google Scholar 

  34. Wolever TM, Mehling C . Long-term effect of varying the source or amount of dietary carbohydrate on postprandial plasma glucose, insulin, triacylglycerol, and free fatty acid concentrations in subjects with impaired glucose tolerance. Am J Clin Nutr 2003; 77: 612–621.

    Article  CAS  PubMed  Google Scholar 

  35. Brynes AE, Mark EC, Ghatei MA, Dornhorst A, Morgan LM, Bloom SR et al. A randomised four-intervention crossover study investigating the effect of carbohydrates on daytime profiles of insulin, glucose, non-esterified fatty acids and triacylglycerols in middle-aged men. Br J Nutr 2003; 89: 207–218.

    Article  CAS  PubMed  Google Scholar 

  36. Raatz SK, Torkelson CJ, Redmon JB, Reck KP, Kwong CA, Swanson JE et al. Reduced glycemic index and glycemic load diets do not increase the effects of energy restriction on weight loss and insulin sensitivity in obese men and women. J Nutr 2005; 135: 2387–2391.

    Article  CAS  PubMed  Google Scholar 

  37. Ebbeling CB, Leidig MM, Sinclair KB, Hangen JP, Ludwig DS . A reduced-glycemic load diet in the treatment of adolescent obesity. Arch Pediatr Adolesc Med 2003; 157: 773–779.

    Article  PubMed  Google Scholar 

  38. Ebbeling CB, Leidig MM, Sinclair KB, Seger-Shippee LG, Feldman HA, Ludwig DS . Effects of an ad libitum low-glycemic load diet on cardiovascular disease risk factors in obese young adults. Am J Clin Nutr 2005; 81: 976–982.

    Article  CAS  PubMed  Google Scholar 

  39. Frost GS, Brynes AE, Bovill-Taylor C, Dornhorst A . A prospective randomised trial to determine the efficacy of a low glycaemic index diet given in addition to healthy eating and weight loss advice in patients with coronary heart disease. Eur J Clin Nutr 2004; 58: 121–127.

    Article  CAS  PubMed  Google Scholar 

  40. Pittas AG, Das SK, Hajduk CL, Golden J, Saltzman E, Stark PC et al. A low-glycemic load diet facilitates greater weight loss in overweight adults with high insulin secretion but not in overweight adults with low insulin secretion in the CALERIE Trial. Diabetes Care 2005; 28: 2939–2941.

    Article  PubMed  Google Scholar 

  41. Blaak EE, Saris WH . Postprandial thermogenesis and substrate utilization after ingestion of different dietary carbohydrates. Metabolism 1996; 45: 1235–1242.

    Article  CAS  PubMed  Google Scholar 

  42. Macdonald I . Differences in dietary-induced thermogenesis following the ingestion of various carbohydrates. Ann Nutr Metab 1984; 28: 226–230.

    Article  CAS  PubMed  Google Scholar 

  43. Schwarz JM, Schutz Y, Froidevaux F, Acheson KJ, Jeanpretre N, Schneider H et al. Thermogenesis in men and women induced by fructose vs glucose added to a meal. Am J Clin Nutr 1989; 49: 667–674.

    Article  CAS  PubMed  Google Scholar 

  44. Schwarz JM, Schutz Y, Piolino V, Schneider H, Felber JP, Jequier E . Thermogenesis in obese women: effect of fructose vs glucose added to a meal. Am J Physiol 1992; 262 (Pt 1): E394–E401.

    CAS  PubMed  Google Scholar 

  45. Sharief NN, Macdonald I . Differences in dietary-induced thermogenesis with various carbohydrates in normal and overweight men. Am J Clin Nutr 1982; 35: 267–272.

    Article  CAS  PubMed  Google Scholar 

  46. Tappy L, Randin JP, Felber JP, Chiolero R, Simonson DC, Jequier E et al. Comparison of thermogenic effect of fructose and glucose in normal humans. Am J Physiol 1986; 250: E718–E724.

    CAS  PubMed  Google Scholar 

  47. Van GL, Mertens I, Vansant G, De LI . Carbohydrate-induced thermogenesis in obese women. Effect of insulin and catecholamines. J Endocrinol Invest 1999; 22: 109–114.

    Article  Google Scholar 

  48. Macor C, De PC, Vettor R, Sicolo N, De PE, Federspil G . [Postprandial thermogenesis and obesity: effects of glucose and fructose]. Minerva Endocrinol 1990; 15: 273–277.

    CAS  PubMed  Google Scholar 

  49. Brundin T, Wahren J . Whole body and splanchnic oxygen consumption and blood flow after oral ingestion of fructose or glucose. Am J Physiol 1993; 264 (Pt 1): E504–E513.

    CAS  PubMed  Google Scholar 

  50. Fukagawa NK, Veirs H, Langeloh G . Acute effects of fructose and glucose ingestion with and without caffeine in young and old humans. Metabolism 1995; 44: 630–638.

    Article  CAS  PubMed  Google Scholar 

  51. McDevitt RM, Poppitt SD, Murgatroyd PR, Prentice AM . Macronutrient disposal during controlled overfeeding with glucose, fructose, sucrose, or fat in lean and obese women. Am J Clin Nutr 2000; 72: 369–377.

    Article  CAS  PubMed  Google Scholar 

  52. Tappy L, Randin JP, Felber JP, Chiolero R, Simonson DC, Jequier E et al. Comparison of thermogenic effect of fructose and glucose in normal humans. Am J Physiol 1986; 250: E718–E724.

    CAS  PubMed  Google Scholar 

  53. Febbraio MA, Stewart KL . CHO feeding before prolonged exercise: effect of glycemic index on muscle glycogenolysis and exercise performance. J Appl Physiol 1996; 81: 1115–1120.

    Article  CAS  PubMed  Google Scholar 

  54. Febbraio MA, Keenan J, Angus DJ, Campbell SE, Garnham AP . Preexercise carbohydrate ingestion, glucose kinetics, and muscle glycogen use: effect of the glycemic index. J Appl Physiol 2000; 89: 1845–1851.

    Article  CAS  PubMed  Google Scholar 

  55. Stevenson E, Williams C, Nute M . The influence of the glycaemic index of breakfast and lunch on substrate utilisation during the postprandial periods and subsequent exercise. Br J Nutr 2005; 93: 885–893.

    Article  CAS  PubMed  Google Scholar 

  56. Wee SL, Williams C, Tsintzas K, Boobis L . Ingestion of a high-glycemic index meal increases muscle glycogen storage at rest but augments its utilization during subsequent exercise. J Appl Physiol 2005; 99: 707–714.

    Article  CAS  PubMed  Google Scholar 

  57. Wu CL, Nicholas C, Williams C, Took A, Hardy L . The influence of high-carbohydrate meals with different glycaemic indices on substrate utilisation during subsequent exercise. Br J Nutr 2003; 90: 1049–1056.

    Article  CAS  PubMed  Google Scholar 

  58. Howe JC, Rumpler WV, Behall KM . Dietary starch composition and level of energy intake alter nutrient oxidation in ‘carbohydrate-sensitive’ men. J Nutr 1996; 126: 2120–2129.

    Article  CAS  PubMed  Google Scholar 

  59. Diaz EO, Galgani JE, Aguirre CA, Atwater IJ, Burrows R . Effect of glycemic index on whole-body substrate oxidation in obese women. Int J Obes (London) 2005; 29: 108–114.

    Article  CAS  Google Scholar 

  60. Ritz P, Krempf M, Cloarec D, Champ M, Charbonnel B . Comparative continuous-indirect-calorimetry study of two carbohydrates with different glycemic indices. Am J Clin Nutr 1991; 54/5: 855–859.

    Article  Google Scholar 

  61. Sloth B, Krog-Mikkelsen I, Dimitrov D, Holst JJ, Flint A, Tetens I et al. Effects of low vs high glycemic index diets on appetite and energy expenditure. Int J Obes Relat Metab Disrord 2004; 28 (Suppl 1): S34.

    Google Scholar 

  62. Pereira MA, Swain J, Goldfine AB, Rifai N, Ludwig DS . Effects of a low-glycemic load diet on resting energy expenditure and heart disease risk factors during weight loss. JAMA 2004; 292: 2482–2490.

    Article  CAS  PubMed  Google Scholar 

  63. Pereira MA, Swain J, Goldfine AB, Rifai N, Ludwig DS . Effects of a low-glycemic load diet on resting energy expenditure and heart disease risk factors during weight loss. JAMA 2004; 292: 2482–2490.

    Article  CAS  PubMed  Google Scholar 

  64. Kelly S, Frost G, Whittaker V, Summerbell C . Low glycaemic index diets for coronary heart disease. Cochrane Database Syst Rev 2004; 4: CD004467.

    Google Scholar 

  65. Ludwig DS . The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 2002; 287: 2414–2423.

    Article  CAS  PubMed  Google Scholar 

  66. Sloth B, Krog-Mikkelsen I, Flint A, Tetens I, Bjorck I, Vinoy S et al. No difference in body weight decrease between a low-glycemic-index and a high-glycemic-index diet but reduced LDL cholesterol after 10-wk ad libitum intake of the low-glycemic-index diet. Am J Clin Nutr 2004; 80: 337–347.

    Article  CAS  PubMed  Google Scholar 

  67. Jensen L, Krog-Mikkelsen I, Sloth B, Flint A, Astrup A, Raben A et al. A low glycemic index diet reduces plasma PAI-1 activity in overweight women. LMC International Food Congress, Nutrigenomics and Health 2006.

  68. Jarvi AE, Karlstrom BE, Granfeldt YE, Bjorck IE, Asp NG, Vessby BO . Improved glycemic control and lipid profile and normalized fibrinolytic activity on a low-glycemic index diet in type 2 diabetic patients. Diabetes Care 1999; 22: 10–18.

    Article  CAS  PubMed  Google Scholar 

  69. Jarvi AE, Karlstrom BE, Granfeldt YE, Bjorck IE, Asp NG, Vessby BO . Improved glycemic control and lipid profile and normalized fibrinolytic activity on a low-glycemic index diet in type 2 diabetic patients. Diabetes Care 1999; 22: 10–18.

    Article  CAS  PubMed  Google Scholar 

  70. Sloth B, Krog-Mikkelsen I, Flint A, Tetens I, Bjorck I, Vinoy S . et al. No difference in body weight decrease between a low-glycemic-index and a high-glycemic-index diet but reduced LDL cholesterol after 10-wk ad libitum intake of the low-glycemic-index diet. Am J Clin Nutr 2004; 80: 337–347.

    Article  CAS  PubMed  Google Scholar 

  71. Henry CJ, Lightowler HJ, Strik CM, Storey M . Glycaemic index values for commercially available potatoes in Great Britain. Br J Nutr 2005; 94: 917–921.

    Article  CAS  PubMed  Google Scholar 

  72. Tahvonen R, Hietanen RM, Sihvonen J, Salminen E . Influence of different processing methods on the glycemic index of potato (Nicola), 2006; 19: 372–378.

    Article  CAS  Google Scholar 

  73. Flint A, Moller BK, Raben A, Pedersen D, Tetens I, Holst JJ et al. The use of glycaemic index tables to predict glycaemic index of composite breakfast meals. Br J Nutr 2004; 91: 979–989.

    Article  CAS  PubMed  Google Scholar 

  74. Alexander J, Andersson SA, Aro A, Becker W, Fogelholm M, Lyhne N et al. Nordic Nutrition Recommendations 2004, Integrating nutrition and physical activity 4th edn. Nordic Counsil of Ministers: Copenhagen, 2004, pp 5–435.

    Google Scholar 

  75. Australian Goverment, Department of Health and Ageing, and National Health and Medical Research Council. Food for health, Dietary guidelines for Australians, A guide to healthy eating, 2003, pp 2–25.

  76. US Department of Health and Human Services (HHS) and US Department of Agriculture (USDA). Dietary Guidelines for Americans 6th edn. 2005, pp 1–70.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Sloth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sloth, B., Astrup, A. Low glycemic index diets and body weight. Int J Obes 30 (Suppl 3), S47–S51 (2006). https://doi.org/10.1038/sj.ijo.0803492

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803492

Keywords

This article is cited by

Search

Quick links