Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Myeloproliferative Neoplasms

JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials

Abstract

The recent identification of somatic mutations such as JAK2V617F that deregulate Janus kinase (JAK)–signal transducer and activator of transcription signaling has spurred development of orally bioavailable small-molecule inhibitors that selectively target JAK2 kinase as an approach to pathogenesis-directed therapy of myeloproliferative disorders (MPD). In pre-clinical studies, these compounds inhibit JAK2V617F-mediated cell growth at nanomolar concentrations, and in vivo therapeutic efficacy has been demonstrated in mouse models of JAK2V617F-induced disease. In addition, ex vivo growth of progenitor cells from MPD patients harboring JAK2V617F or MPLW515L/K mutations is also potently inhibited. JAK2 inhibitors currently in clinical trials can be grouped into those designed to primarily target JAK2 kinase (JAK2-selective) and those originally developed for non-MPD indications, but that nevertheless have significant JAK2-inhibitory activity (non-JAK2 selective). This article discusses the rationale for using JAK2 inhibitors for the treatment of MPD, as well as relevant aspects of clinical trial development for these patients. For instance, which group of MPD patients is appropriate for initial Phase I studies? Should JAK2V617F-negative MPD patients be included in the initial studies? What are the likely consequences of ‘off-target’ JAK3 and wild-type JAK2 inhibition? How should treatment responses be monitored?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zanjani ED, Lutton JD, Hoffman R, Wasserman LR . Erythroid colony formation by polycythemia vera bone marrow in vitro. Dependence on erythropoietin. J Clin Invest 1977; 59: 841–848.

    CAS  Google Scholar 

  2. Eaves CJ, Eaves AC . Erythropoietin (Ep) dose–response curves for three classes of erythroid progenitors in normal human marrow and in patients with polycythemia vera. Blood 1978; 52: 1196–1210.

    CAS  Google Scholar 

  3. Prchal JF, Axelrad AA . Letter: bone-marrow responses in polycythemia vera. N Engl J Med 1974; 290: 1382.

    CAS  Google Scholar 

  4. Correa PN, Eskinazi D, Axelrad AA . Circulating erythroid progenitors in polycythemia vera are hypersensitive to insulin-like growth factor-1 in vitro: studies in an improved serum-free medium. Blood 1994; 83: 99–112.

    CAS  Google Scholar 

  5. Lacombe C, Casadevall N, Varet B . Polycythaemia vera: in vitro studies of circulating erythroid progenitors. Br J Haematol 1980; 44: 189–199.

    CAS  Google Scholar 

  6. Dai CH, Krantz SB, Means Jr RT, Horn ST, Gilbert HS . Polycythemia vera blood burst-forming units-erythroid are hypersensitive to interleukin-3. J Clin Invest 1991; 87: 391–396.

    CAS  Google Scholar 

  7. Dai CH, Krantz SB, Green WF, Gilbert HS . Polycythaemia vera. III. Burst-forming units-erythroid (BFU-E) response to stem cell factor and c-kit receptor expression. Br J Haematol 1994; 86: 12–21.

    CAS  Google Scholar 

  8. Dai CH, Krantz SB, Dessypris EN, Means Jr RT, Horn ST, Gilbert HS . Polycythemia vera. II. Hypersensitivity of bone marrow erythroid, granulocyte–macrophage, and megakaryocyte progenitor cells to interleukin-3 and granulocyte–macrophage colony-stimulating factor. Blood 1992; 80: 891–899.

    CAS  Google Scholar 

  9. Kralovics R, Skoda RC . Molecular pathogenesis of Philadelphia chromosome negative myeloproliferative disorders. Blood Rev 2005; 19: 1–13.

    CAS  Google Scholar 

  10. Le Couedic JP, Mitjavila MT, Villeval JL, Feger F, Gobert S, Mayeux P et al. Missense mutation of the erythropoietin receptor is a rare event in human erythroid malignancies. Blood 1996; 87: 1502–1511.

    CAS  Google Scholar 

  11. Hess G, Rose P, Gamm H, Papadileris S, Huber C, Seliger B . Molecular analysis of the erythropoietin receptor system in patients with polycythaemia vera. Br J Haematol 1994; 88: 794–802.

    CAS  Google Scholar 

  12. Taksin AL, Couedic JP, Dusanter-Fourt I, Masse A, Giraudier S, Katz A et al. Autonomous megakaryocyte growth in essential thrombocythemia and idiopathic myelofibrosis is not related to a c-mpl mutation or to an autocrine stimulation by Mpl-L. Blood 1999; 93: 125–139.

    CAS  Google Scholar 

  13. Ghaffari S, Wu H, Gerlach M, Han Y, Lodish HF, Daley GQ . BCR-ABL and v-SRC tyrosine kinase oncoproteins support normal erythroid development in erythropoietin receptor-deficient progenitor cells. Proc Natl Acad Sci USA 1999; 96: 13186–13190.

    CAS  Google Scholar 

  14. Ugo V, Marzac C, Teyssandier I, Larbret F, Lecluse Y, Debili N et al. Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Exp Hematol 2004; 32: 179–187.

    CAS  Google Scholar 

  15. Oehler L, Jaeger E, Eser A, Sillaber C, Gisslinger H, Geissler K . Imatinib mesylate inhibits autonomous erythropoiesis in patients with polycythemia vera in vitro. Blood 2003; 102: 2240–2242.

    CAS  Google Scholar 

  16. Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Silvennoinen O . Signaling through the hematopoietic cytokine receptors. Annu Rev Immunol 1995; 13: 369–398.

    CAS  Google Scholar 

  17. Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 1998; 93: 385–395.

    CAS  Google Scholar 

  18. Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K . Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 1998; 93: 397–409.

    CAS  Google Scholar 

  19. Huang LJ, Constantinescu SN, Lodish HF . The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol Cell 2001; 8: 1327–1338.

    CAS  Google Scholar 

  20. Royer Y, Staerk J, Costuleanu M, Courtoy PJ, Constantinescu SN . Janus kinases affect thrombopoietin receptor cell surface localization and stability. J Biol Chem 2005; 280: 27251–27261.

    CAS  Google Scholar 

  21. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    CAS  Google Scholar 

  22. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.

    Article  CAS  Google Scholar 

  23. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.

    Article  CAS  Google Scholar 

  24. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    CAS  Google Scholar 

  25. Kralovics R, Guan Y, Prchal JT . Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp Hematol 2002; 30: 229–236.

    CAS  Google Scholar 

  26. Lippert E, Boissinot M, Kralovics R, Girodon F, Dobo I, Praloran V et al. The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera. Blood 2006; 108: 1865–1867.

    CAS  Google Scholar 

  27. Scott LM, Scott MA, Campbell PJ, Green AR . Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood 2006; 108: 2435–2437.

    CAS  Google Scholar 

  28. Levine RL, Belisle C, Wadleigh M, Zahrieh D, Lee S, Chagnon P et al. X-inactivation-based clonality analysis and quantitative JAK2V617F assessment reveal a strong association between clonality and JAK2V617F in PV but not ET/MMM, and identifies a subset of JAK2V617F-negative ET and MMM patients with clonal hematopoiesis. Blood 2006; 107: 4139–4141.

    CAS  Google Scholar 

  29. Steensma DP, Dewald GW, Lasho TL, Powell HL, McClure RF, Levine RL et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both ‘atypical’ myeloproliferative disorders and myelodysplastic syndromes. Blood 2005; 106: 1207–1209.

    CAS  Google Scholar 

  30. Levine RL, Loriaux M, Huntly BJ, Loh ML, Beran M, Stoffregen E et al. The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood 2005; 106: 3377–3379.

    CAS  Google Scholar 

  31. Jamieson CH, Gotlib J, Durocher JA, Chao MP, Mariappan MR, Lay M et al. The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc Natl Acad Sci USA 2006; 103: 6224–6229.

    CAS  Google Scholar 

  32. Delhommeau F, Dupont S, Tonetti C, Masse A, Godin I, Le Couedic JP et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood 2007; 109: 71–77.

    CAS  Google Scholar 

  33. Bellanne-Chantelot C, Chaumarel I, Labopin M, Bellanger F, Barbu V, De Toma C et al. Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. Blood 2006; 108: 346–352.

    CAS  Google Scholar 

  34. Lacout C, Pisani DF, Tulliez M, Gachelin FM, Vainchenker W, Villeval JL . JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 2006; 108: 1652–1660.

    CAS  Google Scholar 

  35. Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG . Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 2006; 107: 4274–4281.

    CAS  Google Scholar 

  36. Zaleskas VM, Krause DS, Lazarides K, Patel N, Hu Y, Li S et al. Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS ONE 2006; 1: e18.

    Google Scholar 

  37. Bumm TG, Elsea C, Corbin AS, Loriaux M, Sherbenou D, Wood L et al. Characterization of murine JAK2V617F-positive myeloproliferative disease. Cancer Res 2006; 66: 11156–11165.

    CAS  Google Scholar 

  38. Dupont S, Masse A, James C, Teyssandier I, Lecluse Y, Larbret F et al. The JAK2 V617F mutation triggers erythropoietin hypersensitivity and terminal erythroid amplification in primary cells from patients with polycythemia vera. Blood 2007; 110: 1013–1021.

    CAS  Google Scholar 

  39. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3: 1140–1151.

    CAS  Google Scholar 

  40. Grunebach F, Bross-Bach U, Kanz L, Brossart P . Detection of a new JAK2 D620E mutation in addition to V617F in a patient with polycythemia vera. Leukemia 2006; 20: 2210–2211.

    CAS  Google Scholar 

  41. Lasho TL, Pardanani A, McClure RF, Mesa RA, Levine RL, Gilliland DG et al. Concurrent MPL515 and JAK2V617F mutations in myelofibrosis: chronology of clonal emergence and changes in mutant allele burden over time. Br J Haematol 2006; 135: 683–687.

    CAS  Google Scholar 

  42. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108: 3472–3476.

    CAS  Google Scholar 

  43. Inami M, Inokuchi K, Okabe M, Kosaka F, Mitamura Y, Yamaguchi H et al. Polycythemia associated with the JAK2V617F mutation emerged during treatment of chronic myelogenous leukemia. Leukemia 2007; 21: 1103–1104.

    CAS  Google Scholar 

  44. Hussein K, Bock O, Seegers A, Flasshove M, Henneke F, Buesche G et al. Myelofibrosis evolving during imatinib treatment of a chronic myeloproliferative disease with coexisting BCR-ABL translocation and JAK2V617F mutation. Blood 2007; 109: 4106–4107.

    CAS  Google Scholar 

  45. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007; 356: 459–468.

    CAS  Google Scholar 

  46. Pardanani A, Lasho TL, Finke C, Hanson CA, Tefferi A . Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera. Leukemia 2007; 21: 1960–1963.

    CAS  Google Scholar 

  47. Mercher T, Wernig G, Moore SA, Levine RL, Gu TL, Frohling S et al. JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model. Blood 2006; 108: 2770–2779.

    CAS  Google Scholar 

  48. Walters DK, Mercher T, Gu TL, O'Hare T, Tyner JW, Loriaux M et al. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 2006; 10: 65–75.

    CAS  Google Scholar 

  49. Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 2005; 280: 22788–22792.

    CAS  Google Scholar 

  50. Schwaller J, Frantsve J, Aster J, Williams IR, Tomasson MH, Ross TS et al. Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo- and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. EMBO J 1998; 17: 5321–5333.

    CAS  Google Scholar 

  51. Schwaller J, Parganas E, Wang D, Cain D, Aster JC, Williams IR et al. Stat5 is essential for the myelo- and lymphoproliferative disease induced by TEL/JAK2. Mol Cell 2000; 6: 693–704.

    CAS  Google Scholar 

  52. Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 1997; 278: 1309–1312.

    CAS  Google Scholar 

  53. Daley GQ, Van Etten RA, Baltimore D . Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830.

    CAS  Google Scholar 

  54. Cools J, Stover EH, Boulton CL, Gotlib J, Legare RD, Amaral SM et al. PKC412 overcomes resistance to imatinib in a murine model of FIP1L1-PDGFRalpha-induced myeloproliferative disease. Cancer Cell 2003; 3: 459–469.

    CAS  Google Scholar 

  55. Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG . FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood 2002; 99: 310–318.

    CAS  Google Scholar 

  56. Boggon TJ, Li Y, Manley PW, Eck MJ . Crystal structure of the Jak3 kinase domain in complex with a staurosporine analog. Blood 2005; 106: 996–1002.

    CAS  Google Scholar 

  57. Lucet IS, Fantino E, Styles M, Bamert R, Patel O, Broughton SE et al. The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. Blood 2006; 107: 176–183.

    CAS  Google Scholar 

  58. Pardanani A, Hood J, Lasho T, Levine RL, Martin MB, Noronha G et al. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia 2007; 21: 1658–1668.

    CAS  Google Scholar 

  59. Hood J, Cao J, Hanna E, Lohse D, Mak CC, McPherson A et al. JAK2 inhibitors for the treatment of myeloproliferative disorders. Blood (ASH Annual Meeting Abstracts) 2006; 108.

  60. Giles F, Bergstrom D, Garcia-Manero G, Kornblau S, Andreeff M, Kantarjian H et al. MK-0457 is a novel aurora kinase and janus kinase 2 (JAK2) inhibitor with activity in transformed JAK2-positive myeloproliferative disease (MPD). Blood (ASH Annual Meeting Abstracts); 2006; 108 Abstract 4893.

  61. Dobrzanski P, Hexner E, Serdikoff C, Jan M, Swider C, Robinson C et al. CEP-701 is a Jak2 inhibitor which attenuates Jak2/Stat5 signaling pathway and the proliferation of primary cells from patients with myeloproliferative disorders. Blood (ASH Annual Meeting Abstracts); 2006; 108 Abstract 3594.

  62. Li Z, Xu M, Xing S, Ho WT, Ishii T, Li Q et al. Erlotinib effectively inhibits JAK2V617F activity and polycythemia vera cell growth. J Biol Chem 2007; 282: 3428–3432.

    CAS  Google Scholar 

  63. Lyons J, Curry J, Mallet K, Miller D, Reule M, Sevears L et al. Jak2 and T315I Abl activity of clinical candidate, AT9283. AACR Annual Meeting 2007: Abstract 5747.

  64. Grandage VL, Everington T, Linch DC, Khwaja A . Go6976 is a potent inhibitor of the JAK2 and FLT3 tyrosine kinases with significant activity in primary acute myeloid leukaemia cells. Br J Haematol 2006; 135: 303–316.

    CAS  Google Scholar 

  65. Thompson JE, Cubbon RM, Cummings RT, Wicker LS, Frankshun R, Cunningham BR et al. Photochemical preparation of a pyridone containing tetracycle: a Jak protein kinase inhibitor. Bioorg Med Chem Lett 2002; 12: 1219–1223.

    CAS  Google Scholar 

  66. Elliott MA, Verstovsek S, Dingli D, Schwager SM, Mesa RA, Li CY et al. Monocytosis is an adverse prognostic factor for survival in younger patients with primary myelofibrosis. Leuk Res 2007; [e-pub ahead of print 28 March]; doi:10.1016/j.leukres.2006.12.025.

    CAS  Google Scholar 

  67. Dupriez B, Morel P, Demory JL, Lai JL, Simon M, Plantier I et al. Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system. Blood 1996; 88: 1013–1018.

    CAS  Google Scholar 

  68. Tefferi A, Cortes J, Verstovsek S, Mesa RA, Thomas D, Lasho TL et al. Lenalidomide therapy in myelofibrosis with myeloid metaplasia. Blood 2006; 108: 1158–1164.

    CAS  Google Scholar 

  69. Deeg HJ, Gooley TA, Flowers ME, Sale GE, Slattery JT, Anasetti C et al. Allogeneic hematopoietic stem cell transplantation for myelofibrosis. Blood 2003; 102: 3912–3918.

    CAS  Google Scholar 

  70. Guardiola P, Anderson JE, Bandini G, Cervantes F, Runde V, Arcese W et al. Allogeneic stem cell transplantation for agnogenic myeloid metaplasia: a European Group for Blood and Marrow Transplantation, Societe Francaise de Greffe de Moelle, Gruppo Italiano per il Trapianto del Midollo Osseo, and Fred Hutchinson Cancer Research Center Collaborative Study. Blood 1999; 93: 2831–2838.

    CAS  Google Scholar 

  71. Kroger N, Zabelina T, Schieder H, Panse J, Ayuk F, Stute N et al. Pilot study of reduced-intensity conditioning followed by allogeneic stem cell transplantation from related and unrelated donors in patients with myelofibrosis. Br J Haematol 2005; 128: 690–697.

    Google Scholar 

  72. Rondelli D, Barosi G, Bacigalupo A, Prchal JT, Popat U, Alessandrino EP et al. Allogeneic hematopoietic stem-cell transplantation with reduced-intensity conditioning in intermediate- or high-risk patients with myelofibrosis with myeloid metaplasia. Blood 2005; 105: 4115–4119.

    CAS  Google Scholar 

  73. Gangat N, Wolanskyj AP, McClure RF, Li CY, Schwager S, Wu W et al. Risk stratification for survival and leukemic transformation in essential thrombocythemia: a single institutional study of 605 patients. Leukemia 2007; 21: 270–276.

    CAS  Google Scholar 

  74. Gangat N, Strand J, Li CY, Wu W, Pardanani A, Tefferi A . Leucocytosis in polycythaemia vera predicts both inferior survival and leukaemic transformation. Br J Haematol 2007; 138: 354–358.

    Google Scholar 

  75. Tefferi A, Gangat N, Wolanskyj AP, Schwager S, Pardanani A, Mesa R et al. Choosing the right patients for clinical trials in essential thrombocythemia or polycythemia vera: leukemic or fibrotic transformation risk assessment among 1061 patients from a single institution. Blood 2007 (ASH Annual Meeting Abstracts); submitted.

  76. Campbell PJ, Baxter EJ, Beer PA, Scott LM, Bench AJ, Huntly BJ et al. Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation. Blood 2006; 108: 3548–3555.

    CAS  Google Scholar 

  77. Theocharides A, Boissinot M, Girodon F, Garand R, Teo SS, Lippert E et al. Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood 2007; 110: 375–379.

    CAS  Google Scholar 

  78. Steensma DP, McClure RF, Karp JE, Tefferi A, Lasho TL, Powell HL et al. JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained. Leukemia 2006; 20: 971–978.

    CAS  Google Scholar 

  79. Tefferi A, Barosi G, Mesa RA, Cervantes F, Deeg HJ, Reilly JT et al. International working group (IWG) consensus criteria for treatment response in myelofibrosis with myeloid metaplasia, for the IWG for myelofibrosis research and treatment (IWG-MRT). Blood 2006; 108: 1497–1503.

    CAS  Google Scholar 

  80. Samuelsson J, Mutschler M, Birgegard G, Gram-Hansen P, Bjorkholm M, Pahl HL . Limited effects on JAK2 mutational status after pegylated interferon alpha-2b therapy in polycythemia vera and essential thrombocythemia. Haematologica 2006; 91: 1281–1282.

    Google Scholar 

  81. Kiladjian JJ, Cassinat B, Turlure P, Cambier N, Roussel M, Bellucci S et al. High molecular response rate of polycythemia vera patients treated with pegylated interferon alpha-2a. Blood 2006; 108: 2037–2040.

    CAS  Google Scholar 

  82. Jones AV, Silver RT, Waghorn K, Curtis C, Kreil S, Zoi K et al. Minimal molecular response in polycythemia vera patients treated with imatinib or interferon alpha. Blood 2006; 107: 3339–3341.

    CAS  Google Scholar 

  83. Ruiz-Arguelles GJ, Garces-Eisele J, Reyes-Nunez V, Ruiz-Delgado GJ, Rosillo C, Camoriano JK . Clearance of the Janus kinase 2 (JAK2) V617F mutation after allogeneic stem cell transplantation in a patient with myelofibrosis with myeloid metaplasia. Am J Hematol 2007; 82: 400–402.

    CAS  Google Scholar 

  84. Tefferi A, Lasho TL, Mesa RA, Pardanani A, Ketterling RP, Hanson CA . Lenalidomide therapy in del(5)(q31)-associated myelofibrosis: cytogenetic and JAK2V617F molecular remissions. Leukemia 2007; 21: 1827–1828.

    CAS  Google Scholar 

  85. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.

    CAS  Google Scholar 

  86. O'Shea JJ, Park H, Pesu M, Borie D, Changelian P . New strategies for immunosuppression: interfering with cytokines by targeting the Jak/Stat pathway. Curr Opin Rheumatol 2005; 17: 305–311.

    CAS  Google Scholar 

  87. Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 1998; 93: 373–383.

    CAS  Google Scholar 

  88. Nosaka T, van Deursen JM, Tripp RA, Thierfelder WE, Witthuhn BA, McMickle AP et al. Defective lymphoid development in mice lacking Jak3. Science 1995; 270: 800–802.

    CAS  Google Scholar 

  89. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    CAS  Google Scholar 

  90. Schwartzberg PL, Stall AM, Hardin JD, Bowdish KS, Humaran T, Boast S et al. Mice homozygous for the ablm1 mutation show poor viability and depletion of selected B and T cell populations. Cell 1991; 65: 1165–1175.

    CAS  Google Scholar 

  91. Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006; 355: 2408–2417.

    CAS  Google Scholar 

  92. Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T et al. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 2004; 10: 262–267.

    CAS  Google Scholar 

  93. Carter TA, Wodicka LM, Shah NP, Velasco AM, Fabian MA, Treiber DK et al. Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc Natl Acad Sci USA 2005; 102: 11011–11016.

    CAS  Google Scholar 

  94. Giles F, Cortes J, Bergstrom D, Xiao A, Jones D, Verstovsek S et al. MK-0457, a novel multikinase inhibitor, is active in patients with chronic myeloid leukemia (CML) and acute lymphocytic leukemia (ALL) with T315I BCR-ABL resistance mutation and patients with refractory JAK-2 positive myeloproliferative diseases (MPD). Blood (ASH Annual Meeting Abstracts); 2006; 108 Abstract 253.

  95. Giles FJ, Cortes J, Jones D, Bergstrom D, Kantarjian H, Freedman SJ . MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood 2007; 109: 500–502.

    CAS  Google Scholar 

  96. Levis M, Allebach J, Tse KF, Zheng R, Baldwin BR, Smith BD et al. A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 2002; 99: 3885–3891.

    CAS  Google Scholar 

  97. Smith BD, Levis M, Beran M, Giles F, Kantarjian H, Berg K et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 2004; 103: 3669–3676.

    CAS  Google Scholar 

  98. Knapper S, Burnett AK, Littlewood T, Kell WJ, Agrawal S, Chopra R et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood 2006; 108: 3262–3270.

    CAS  Google Scholar 

  99. Changelian PS, Flanagan ME, Ball DJ, Kent CR, Magnuson KS, Martin WH et al. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 2003; 302: 875–878.

    CAS  Google Scholar 

  100. Borie DC, Changelian PS, Larson MJ, Si MS, Paniagua R, Higgins JP et al. Immunosuppression by the JAK3 inhibitor CP-690,550 delays rejection and significantly prolongs kidney allograft survival in nonhuman primates. Transplantation 2005; 79: 791–801.

    CAS  Google Scholar 

  101. Kudlacz E, Perry B, Sawyer P, Conklyn M, McCurdy S, Brissette W et al. The novel JAK-3 inhibitor CP-690550 is a potent immunosuppressive agent in various murine models. Am J Transplant 2004; 4: 51–57.

    CAS  Google Scholar 

  102. Conklyn M, Andresen C, Changelian P, Kudlacz E . The JAK3 inhibitor CP-690550 selectively reduces NK and CD8+ cell numbers in cynomolgus monkey blood following chronic oral dosing. J Leukoc Biol 2004; 76: 1248–1255.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Pardanani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardanani, A. JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials. Leukemia 22, 23–30 (2008). https://doi.org/10.1038/sj.leu.2404948

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404948

Keywords

This article is cited by

Search

Quick links