Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mutations in monoamine oxidase (MAO) genes in mice lead to hypersensitivity to serotonin-enhancing drugs: implications for drug side effects in humans

Abstract

A possible side effect of serotonin-enhancing drugs is the serotonin syndrome, which can be lethal. Here we examined possible hypersensitivity to two such drugs, the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP) and the atypical opioid tramadol, in mice lacking the genes for both monoamine oxidase A (MAOA) and MAOB. MAOA/B-knockout (KO) mice displayed baseline serotonin syndrome behaviors, and these behavioral responses were highly exaggerated following 5-HTP or tramadol versus baseline and wild-type (WT) littermates. Compared with MAOA/B-WT mice, baseline tissue serotonin levels were increased 2.6–3.9-fold in MAOA/B-KO mice. Following 5-HTP, serotonin levels were further increased 4.5–6.2-fold in MAOA/B-KO mice. These exaggerated responses are in line with the exaggerated responses following serotonin-enhancing drugs that we previously observed in mice lacking the serotonin transporter (SERT). These findings provide a second genetic mouse model suggestive of possible human vulnerability to the serotonin syndrome in individuals with lesser-expressing MAO or SERT polymorphisms that confer serotonergic system changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Isbister GK, Buckley NA . The pathophysiology of serotonin toxicity in animals and humans: implications for diagnosis and treatment. Clin Neuropharmacol 2005; 28: 205–214.

    Article  CAS  PubMed  Google Scholar 

  2. Pilgrim JL, Gerostamoulos D, Drummer OH . Deaths involving contraindicated and inappropriate combinations of serotonergic drugs. Int J Legal Med 2011; 125: 803–815.

    Article  PubMed  Google Scholar 

  3. Gnanadesigan N, Espinoza RT, Smith R, Israel M, Reuben DB . Interaction of serotonergic antidepressants and opioid analgesics: Is serotonin syndrome going undetected? J Am Med Dir Assoc 2005; 6: 265–269.

    Article  PubMed  Google Scholar 

  4. Garrett PM . Tramadol overdose and serotonin syndrome manifesting as acute right heart dysfunction. Anaesth Intensive Care 2004; 32: 575–577.

    Article  CAS  PubMed  Google Scholar 

  5. Gillman PK . Monoamine oxidase inhibitors, opioid analgesics and serotonin toxicity. Br J Anaesth 2005; 95: 434–441.

    Article  CAS  PubMed  Google Scholar 

  6. Mason BJ, Blackburn KH . Possible serotonin syndrome associated with tramadol and sertraline coadministration. Ann Pharmacother 1997; 31: 175–177.

    Article  CAS  PubMed  Google Scholar 

  7. Houlihan DJ . Serotonin syndrome resulting from coadministration of tramadol, venlafaxine, and mirtazapine. Ann Pharmacother 2004; 38: 411–413.

    Article  PubMed  Google Scholar 

  8. Vizcaychipi MP, Walker S, Palazzo M . Serotonin syndrome triggered by tramadol. Br J Anaesth 2007; 99: 919.

    Article  CAS  PubMed  Google Scholar 

  9. Kesavan S, Sobala GM . Serotonin syndrome with fluoxetine plus tramadol. J R Soc Med 1999; 92: 474–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mittino D, Mula M, Monaco F . Serotonin syndrome associated with tramadol-sertraline coadministration. Clin Neuropharmacol 2004; 27: 150–151.

    Article  PubMed  Google Scholar 

  11. Lantz MS, Buchalter EN, Giambanco V . Serotonin syndrome following the administration of tramadol with paroxetine. Int J Geriatr Psychiatry 1998; 13: 343–345.

    Article  CAS  PubMed  Google Scholar 

  12. Peacock LE, Wright F . Serotonin syndrome secondary to tramadol and citalopram. Age Ageing 40: 528.

    Article  PubMed  Google Scholar 

  13. Dayer P, Collart L, Desmeules J . The pharmacology of tramadol. Drugs 1994; 47 (Suppl 1): 3–7.

    Article  CAS  PubMed  Google Scholar 

  14. Hennies HH, Friderichs E, Wilsmann K, Flohe L . Effect of the opioid analgesic tramadol on inactivation of norepinephrine and serotonin. Biochem Pharmacol 1982; 31: 1654–1655.

    Article  CAS  PubMed  Google Scholar 

  15. Raffa RB, Friderichs E, Reimann W, Shank RP, Codd EE, Vaught JL . Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an ‘atypical’ opioid analgesic. J Pharmacol Exp Ther 1992; 260: 275–285.

    CAS  PubMed  Google Scholar 

  16. Munro G, Baek CA, Erichsen HK, Nielsen AN, Nielsen EO, Scheel-Kruger J et al. The novel compound (+/-)-1-[10-((E)-3-Phenyl-allyl)-3,10-diaza-bicyclo[4.3.1]dec-3-yl]-propan-1-one (NS7051) attenuates nociceptive transmission in animal models of experimental pain; a pharmacological comparison with the combined mu-opioid receptor agonist and monoamine reuptake inhibitor tramadol. Neuropharmacology 2008; 54: 331–343.

    Article  CAS  PubMed  Google Scholar 

  17. Bloms-Funke P, Dremencov E, Cremers TI, Tzschentke TM . Tramadol increases extracellular levels of serotonin and noradrenaline as measured by in vivo microdialysis in the ventral hippocampus of freely-moving rats. Neurosci Lett 2011; 490: 191–195.

    Article  CAS  PubMed  Google Scholar 

  18. Fox MA, Jensen CL, French HT, Stein AR, Huang SJ, Tolliver TJ et al. Neurochemical, behavioral, and physiological effects of pharmacologically enhanced serotonin levels in serotonin transporter (SERT)-deficient mice. Psychopharmacology (Berl) 2008; 201: 203–218.

    Article  CAS  Google Scholar 

  19. Fox MA, Jensen CL, Gallagher PS, Murphy DL . Receptor mediation of exaggerated responses to serotonin-enhancing drugs in serotonin transporter (SERT)-deficient mice. Neuropharmacology 2007; 53: 643–656.

    Article  CAS  PubMed  Google Scholar 

  20. Izumi T, Iwamoto N, Kitaichi Y, Kato A, Inoue T, Koyama T . Effects of co-administration of a selective serotonin reuptake inhibitor and monoamine oxidase inhibitors on 5-HT-related behavior in rats. Eur J Pharmacol 2006; 532: 258–264.

    Article  CAS  PubMed  Google Scholar 

  21. Sternbach H . The serotonin syndrome. Am J Psychiatry 1991; 148: 705–713.

    Article  CAS  PubMed  Google Scholar 

  22. Bortolato M, Chen K, Shih JC . Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev 2008; 60: 1527–1533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shih JC . Molecular basis of human MAO A and B. Neuropsychopharmacology 1991; 4: 1–7.

    CAS  PubMed  Google Scholar 

  24. Shih JC, Chen K, Ridd MJ . Monoamine oxidase: from genes to behavior. Annu Rev Neurosci 1999; 22: 197–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S et al. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 1995; 268: 1763–1766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Evrard A, Malagie I, Laporte AM, Boni C, Hanoun N, Trillat AC et al. Altered regulation of the 5-HT system in the brain of MAO-A knock-out mice. Eur J Neurosci 2002; 15: 841–851.

    Article  CAS  PubMed  Google Scholar 

  27. Owesson CA, Hopwood SE, Callado LF, Seif I, McLaughlin DP, Stamford JA . Altered presynaptic function in monoaminergic neurons of monoamine oxidase-A knockout mice. Eur J Neurosci 2002; 15: 1516–1522.

    Article  PubMed  Google Scholar 

  28. Holschneider DP, Chen K, Seif I, Shih JC . Biochemical, behavioral, physiologic, and neurodevelopmental changes in mice deficient in monoamine oxidase A or B. Brain Res Bull 2001; 56: 453–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grimsby J, Toth M, Chen K, Kumazawa T, Klaidman L, Adams JD et al. Increased stress response and beta-phenylethylamine in MAOB-deficient mice. Nat Genet 1997; 17: 206–210.

    Article  CAS  PubMed  Google Scholar 

  30. Chen K, Holschneider DP, Wu W, Rebrin I, Shih JC . A spontaneous point mutation produces monoamine oxidase A/B knock-out mice with greatly elevated monoamines and anxiety-like behavior. J Biol Chem 2004; 279: 39645–39652.

    Article  CAS  PubMed  Google Scholar 

  31. Murphy DL, Fox MA, Timpano KR, Moya PR, Ren-Patterson R, Andrews AM et al. How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems. Neuropharmacology 2008; 55: 932–960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fox MA, Andrews AM, Wendland JR, Lesch KP, Holmes A, Murphy DL . A pharmacological analysis of mice with a targeted disruption of the serotonin transporter. Psychopharmacology (Berl) 2007; 195: 147–166.

    Article  CAS  Google Scholar 

  33. Fox MA, Jensen CL, Murphy DL . Tramadol and another atypical opioid meperidine have exaggerated serotonin syndrome behavioural effects, but decreased analgesic effects, in genetically deficient serotonin transporter (SERT) mice. Int J Neuropsychopharmacol 2009; 12: 1055–1065.

    Article  CAS  PubMed  Google Scholar 

  34. Kalueff AV, Fox MA, Gallagher PS, Murphy DL . Hypolocomotion anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice. Genes Brain Behav 2007; 6: 389–400.

    Article  CAS  PubMed  Google Scholar 

  35. Diaz SL, Maroteaux L . Implication of 5-HT(2B) receptors in the serotonin syndrome. Neuropharmacology 2011; 61: 495–502.

    Article  CAS  PubMed  Google Scholar 

  36. Jacobs BL . An animal behavior model for studying central serotonergic synapses. Life Sci 1976; 19: 777–785.

    Article  CAS  PubMed  Google Scholar 

  37. Bengel D, Murphy DL, Andrews AM, Wichems CH, Feltner D, Heils A et al. Altered brain serotonin homeostasis and locomotor insensitivity to 3, 4-methylenedioxymethamphetamine ("Ecstasy") in serotonin transporter-deficient mice. Mol Pharmacol 1998; 53: 649–655.

    Article  CAS  PubMed  Google Scholar 

  38. Kim DK, Tolliver TJ, Huang SJ, Martin BJ, Andrews AM, Wichems C et al. Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter. Neuropharmacology 2005; 49: 798–810.

    Article  CAS  PubMed  Google Scholar 

  39. Cases O, Lebrand C, Giros B, Vitalis T, De Maeyer E, Caron MG et al. Plasma membrane transporters of serotonin, dopamine, and norepinephrine mediate serotonin accumulation in atypical locations in the developing brain of monoamine oxidase A knock-outs. J Neurosci 1998; 18: 6914–6927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Holschneider DP, Scremin OU, Huynh L, Chen K, Seif I, Shih JC . Regional cerebral cortical activation in monoamine oxidase A-deficient mice: differential effects of chronic versus acute elevations in serotonin and norepinephrine. Neuroscience 2000; 101: 869–877.

    Article  CAS  PubMed  Google Scholar 

  41. Zhou FC, Lesch KP, Murphy DL . Serotonin uptake into dopamine neurons via dopamine transporters: a compensatory alternative. Brain Res 2002; 942: 109–119.

    Article  CAS  PubMed  Google Scholar 

  42. Mathews TA, Fedele DE, Coppelli FM, Avila AM, Murphy DL, Andrews AM . Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J Neurosci Methods 2004; 140: 169–181.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang G, Krishnamoorthy S, Ma Z, Vukovich NP, Huang X, Tao R . Assessment of 5-hydroxytryptamine efflux in rat brain during a mild, moderate and severe serotonin-toxicity syndrome. Eur J Pharmacol 2009; 615: 66–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. D'Souza UM, Craig IW . Functional genetic polymorphisms in serotonin and dopamine gene systems and their significance in behavioural disorders. Prog Brain Res 2008; 172: 73–98.

    Article  CAS  PubMed  Google Scholar 

  45. O'Leary RE, Shih JC, Hyland K, Kramer N, Asher YJ, Graham JM . De novo microdeletion of Xp11.3 exclusively encompassing the monoamine oxidase A and B genes in a male infant with episodic hypotonia: A genomics approach to personalized medicine. Eur J Med Genet 2012; 55: 349–353.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Whibley A, Urquhart J, Dore J, Willatt L, Parkin G, Gaunt L et al. Deletion of MAOA and MAOB in a male patient causes severe developmental delay, intermittent hypotonia and stereotypical hand movements. Eur J Hum Genet 2010; 18: 1095–1099.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Collins FA, Murphy DL, Reiss AL, Sims KB, Lewis JG, Freund L et al. Clinical, biochemical, and neuropsychiatric evaluation of a patient with a contiguous gene syndrome due to a microdeletion Xp11.3 including the Norrie disease locus and monoamine oxidase (MAOA and MAOB) genes. Am J Med Genet 1992; 42: 127–134.

    Article  CAS  PubMed  Google Scholar 

  48. Murphy DL, Sims K, Eisenhofer G, Greenberg BD, George T, Berlin F et al. Are MAO-A deficiency states in the general population and in putative high-risk populations highly uncommon? J Neural Transm Suppl 1998; 52: 29–38.

    Article  CAS  PubMed  Google Scholar 

  49. Deckert J, Catalano M, Syagailo YV, Bosi M, Okladnova O, Di Bella D et al. Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Hum Mol Genet 1999; 8: 621–624.

    Article  CAS  PubMed  Google Scholar 

  50. Sabol SZ, Hu S, Hamer D . A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 1998; 103: 273–279.

    Article  CAS  PubMed  Google Scholar 

  51. Balciuniene J, Emilsson L, Oreland L, Pettersson U, Jazin E . Investigation of the functional effect of monoamine oxidase polymorphisms in human brain. Hum Genet 2002; 110: 1–7.

    Article  CAS  PubMed  Google Scholar 

  52. Lenders JW, Eisenhofer G, Abeling NG, Berger W, Murphy DL, Konings CH et al. Specific genetic deficiencies of the A and B isoenzymes of monoamine oxidase are characterized by distinct neurochemical and clinical phenotypes. J Clin Invest 1996; 97: 1010–1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA . Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 1993; 262: 578–580.

    Article  CAS  PubMed  Google Scholar 

  54. Kim-Cohen J, Caspi A, Taylor A, Williams B, Newcombe R, Craig IW et al. MAOA, maltreatment, and gene-environment interaction predicting children's mental health: new evidence and a meta-analysis. Mol Psychiatry 2006; 11: 903–913.

    Article  CAS  PubMed  Google Scholar 

  55. Samochowiec J, Lesch KP, Rottmann M, Smolka M, Syagailo YV, Okladnova O et al. Association of a regulatory polymorphism in the promoter region of the monoamine oxidase A gene with antisocial alcoholism. Psychiatry Res 1999; 86: 67–72.

    Article  CAS  PubMed  Google Scholar 

  56. Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW et al. Role of genotype in the cycle of violence in maltreated children. Science 2002; 297: 851–854.

    Article  CAS  PubMed  Google Scholar 

  57. Contini V, Marques FZ, Garcia CE, Hutz MH, Bau CH . MAOA-uVNTR polymorphism in a Brazilian sample: further support for the association with impulsive behaviors and alcohol dependence. Am J Med Genet B Neuropsychiatr Genet 2006; 141B: 305–308.

    Article  PubMed  Google Scholar 

  58. Meyer-Lindenberg A, Buckholtz JW, Kolachana B, Hariri AR, Pezawas L, Blasi G et al. Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc Natl Acad Sci USA 2006; 103: 6269–6274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Williams LM, Gatt JM, Kuan SA, Dobson-Stone C, Palmer DM, Paul RH et al. A polymorphism of the MAOA gene is associated with emotional brain markers and personality traits on an antisocial index. Neuropsychopharmacology 2009; 34: 1797–1809.

    Article  CAS  PubMed  Google Scholar 

  60. Cohen IL, Liu X, Schutz C, White BN, Jenkins EC, Brown WT et al. Association of autism severity with a monoamine oxidase A functional polymorphism. Clin Genet 2003; 64: 190–197.

    Article  CAS  PubMed  Google Scholar 

  61. Yoo HJ, Lee SK, Park M, Cho IH, Hyun SH, Lee JC et al. Family- and population-based association studies of monoamine oxidase A and autism spectrum disorders in Korean. Neurosci Res 2009; 63: 172–176.

    Article  CAS  PubMed  Google Scholar 

  62. Aklillu E, Karlsson S, Zachrisson OO, Ozdemir V, Agren H . Association of MAOA gene functional promoter polymorphism with CSF dopamine turnover and atypical depression. Pharmacogenet Genomics 2009; 19: 267–275.

    Article  CAS  PubMed  Google Scholar 

  63. Yu YW, Tsai SJ, Hong CJ, Chen TJ, Chen MC, Yang CW . Association study of a monoamine oxidase a gene promoter polymorphism with major depressive disorder and antidepressant response. Neuropsychopharmacology 2005; 30: 1719–1723.

    Article  CAS  PubMed  Google Scholar 

  64. Xie P, Kranzler HR, Poling J, Stein MB, Anton RF, Brady K et al. Interactive effect of stressful life events and the serotonin transporter 5-HTTLPR genotype on posttraumatic stress disorder diagnosis in 2 independent populations. Arch Gen Psychiatry 2009; 66: 1201–1209.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Dunkley EJ, Isbister GK, Sibbritt D, Dawson AH, Whyte IM . The Hunter Serotonin Toxicity Criteria: simple and accurate diagnostic decision rules for serotonin toxicity. QJM 2003; 96: 635–642.

    Article  CAS  PubMed  Google Scholar 

  66. Bonetto N, Santelli L, Battistin L, Cagnin A . Serotonin syndrome and rhabdomyolysis induced by concomitant use of triptans, fluoxetine and hypericum. Cephalalgia 2007; 27: 1421–1423.

    Article  CAS  PubMed  Google Scholar 

  67. Ng BK, Cameron AJ . The role of methylene blue in serotonin syndrome: a systematic review. Psychosomatics 2010; 51: 194–200.

    Article  PubMed  Google Scholar 

  68. Packer S, Berman SA . Serotonin syndrome precipitated by the monoamine oxidase inhibitor linezolid. Am J Psychiatry 2007; 164: 346–347.

    Article  PubMed  Google Scholar 

  69. Kuehn B . Serotonin Syndrome Update. J Am Med Assoc 2011; 306: 2261.

    Google Scholar 

  70. Ringland C, Mant A, McGettigan P, Mitchell P, Kelman C, Buckley N et al. Uncovering the potential risk of serotonin toxicity in Australian veterans using pharmaceutical claims data. Br J Clin Pharmacol 2008; 66: 682–688.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hu XZ, Lipsky RH, Zhu G, Akhtar LA, Taubman J, Greenberg BD et al. Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. Am J Hum Genet 2006; 78: 815–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996; 274: 1527–1531.

    Article  CAS  PubMed  Google Scholar 

  73. Praschak-Rieder N, Kennedy J, Wilson AA, Hussey D, Boovariwala A, Willeit M et al. Novel 5-HTTLPR allele associates with higher serotonin transporter binding in putamen: a [(11)C] DASB positron emission tomography study. Biol Psychiatry 2007; 62: 327–331.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the NIMH Intramural Research Program and by NIH, NIMH RO1-MH39085 and the Boyd and Elsie Welin Professorship to JCS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Fox.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, M., Panessiti, M., Moya, P. et al. Mutations in monoamine oxidase (MAO) genes in mice lead to hypersensitivity to serotonin-enhancing drugs: implications for drug side effects in humans. Pharmacogenomics J 13, 551–557 (2013). https://doi.org/10.1038/tpj.2012.35

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2012.35

Keywords

This article is cited by

Search

Quick links